
”Selection of statistical thresholds in graphical models”, Anthony Almudevar
R library of subroutines

This files contains documentation for the R library of subroutines used to perform the calculations
for the manuscript ”Selection of statistical thresholds in graphical models” (Anthony Almudevar). Refer-
ences to this manuscript are made below. A number of conventions regarding R objects will be adopted.
The variable n.node gives the number of nodes of a directed graph labelled 1, . . . ,n.node. The variable
n.depth is reserved for a network model parameter described in Section 4. Formally, it is the highest
k for which µk 6= 0. Order k ≤ n.depth relationships are statistically detectable. An edge object is an
n× 2 matrix enumerating edges of a directed graph with n.node nodes. The second column represents
the parent node.

In addition, the following function assignments are made, and should therefore not be reassigned:

f0 <- function(x) {sort.list(x)[1]}
f2 <- function(x) {mean(log10(x))}
min.dist<-function(input.matrix) {output.matrix<-apply(input.matrix,1,min)}
mean.dist<-function(input.matrix) {output.matrix<-apply(input.matrix,1,mean)}
meanlog.dist<-function(input.matrix) {output.matrix<-apply(input.matrix,1,f2)}
idmin.dist<-function(input.matrix) {output.matrix<-apply(input.matrix,1,f0)}

The remaining functions follow:

random.matrix(n.node) { . . . return(output.matrix)}

Returns output.matrix, a data matrix D for a null graph of order n.node (the null graph model
is the one described in Section 2.1).

random.matrix.network(n.node, effect.size, edges.list) { . . . return(output.matrix)}

Returns output.matrix, a data matrix D for a network model as described in Section 4. The
matrix is n.node × n.node, and effect.size is a vector of length n.depth, with kth element
µk, and edges.list is a list of edge objects, with the kth element consisting of all kth order edge
relationships.

matrix.reduction(m) { . . . return(list(cv=cv, rv=rv))}

Input matrix m. Output list with components cv, rv, which are vectors consisting of column and
row totals. Lengths are determined by matrix dimension. Usually, m is a 0− 1 matrix, but this is
not required.

icd(x) { . . . return(ans)}

Integer code length (function b̄(i) in Section 3.1).

b0(k, m)

Subset code length (function B0(k, m) in Section 3.1).

b0gt0(k, m)

Not used in current manuscript (alternative coding algorithm).

c0(rv, cv) { . . . return(ans)}
c1(rv, cv) { . . . return(ans)}
c2(rv, cv) { . . . return(ans)}

1



Various graph code lengths. Input is adjacency matrix row and column totals as described in func-
tion matrix.reduction. Functions c0 and c2 are code lengths C0(M) and CM (M) respectively,
introduced in Section 3.1. Function c1 is associated with an alternative coding algorithm not used
in the manuscript.

score.single.matrix(input.matrix) { . . . return(score.temp)}

Accepts input.matrix. This matrix is expected to be a square 0-1 matrix M . Output is a vector
of length six, in the notion of Section 3.1, (C0(M), C0(MT ), C1(M), C1(MT ), CM (M), CM (MT )).
Note that C1 refers to a quantity not appearing in the manuscript. The compound score in equation
(3.3) is therefore calculable by min(score.single.matrix(input.matrix)[5:6]). If input.matrix
is not a 0-1 matrix a value will be returned, but will not be interpretable as a code length.

score.single.matrix.series(input.matrix, max.edge) { . . . return(score.all)}

Accepts input.matrix. This matrix is expected to be a square real valued matrix M . A hierarchi-
cal sequence of graphs (Section 2.1) is produced by sorting the values of M in ascending order. The
sequence ends at edge number max.edge. A vector of length 6×max.edge is output by appending
in sequence for each graph the six code lengths calculated in score.single.matrix(input.matrix).
Ties in the values in input.matrix will result in repeated elements in the output.

compound.score.series(input.matrix, compound.definition)
{ . . . return(list(score.min=score.min, score.id=score.id))}

Accepts input.matrix. In this matrix each row is structured according to the output vector
of score.single.matrix.series. This means input.matrix is expected to have 6 × max.edge
columns. If input.matrix is a vector it is converted to a single row matrix. The object com-
pound.definition is a nonempty subset of (1,2,3,4,5,6) which defines a compound score as the
minimum of a subset from (C0(M), C0(MT ), C1(M), C1(MT ), CM (M), CM (MT )). For example,
the compound score in equation (3.3) is generated by setting compound.definition = c(5,6).
The output object is a list with two elements, score.min and score.id. Each row of input.matrix
generates one row in the output matrices. Element [i, j] of score.min is the compound score de-
fined by compound.definition for row i of input.matrix, and edge j, that is:

min(input.matrix[i,6*(j-1)+compound.definition]).

Element [i, j] of score.id is the element defining the compound score which is the minimum. This
will be the index of compound.definition, not the actual value.

z.score.null(input.matrix)
{ . . . return(list(score.mean=score.mean, score.sd=score.sd))}

Accepts input.matrix, a matrix of max.edge columns. Each row represents a replication from
a network model, so that element [i, j] is expected to represent the compound score (for example,
equation (3.3)) for a j-edge graph from a hierarchical sequence (Section 2.1). This will typically be
the object score.min output from function compound.score.series. This function then outputs
two vector objects of length max.edge, in particular the ith element of score.mean and score.sd
are the mean and standard deviations of the ith column of input.matrix. This gives µi(H̃) and
σi(H̃) as defined in Section 2.1

q.score.null(input.matrix)
{ . . . return(q.list)}

Accepts input.matrix as described for function z.score.null. The output object q.list is a list of
max.edge elements, such that q.list[[i]] is a 2 column matrix representing the empirical density
of the ith column of input.matrix. The first column contains, in ascending order, all unique
values of that column, the corresponding entry in the second column is the frequency of the value.

2



z.score.evaluate(input.matrix, z.score.null.obj)
{ . . . return(score.z)}

Accepts input.matrix as described for function z.score.null, also, z.score.null.obj is a list of
the type output by function z.score.null. This function calculates Z(G | H̃) as defined in Section
2.1, and is output as a vector score.z of length max.edge. Each row of input.matrix represents
an independent replicate of G, while the sample H̃ is represented by the object z.score.null.obj.

q.score.evaluate(input.matrix, q.score.null.obj)
{ . . . return(score.q)}

This function is similar to function z.score.evaluate except that it calculates Q(G | H̃) as defined
in Section 2.1.

graph.depth(n.node, true.edges, n.depth)
{ . . . return(list(n.net.edges=n.net.edges, edges.list=edges.list,

matrix.list=matrix.list, t.matrix.list=t.matrix.list))}

This function inputs a graph in the form of an edge object true.edges. Order k = 1, . . . ,n.depth
relationships (Section 4.1) are calculated. Output consists of a list of elements. The number of
order k relationships is contained in vector n.net.edges (of length n.depth). The relationships
are represented in a number of formats. The objects edges.list, matrix.list, t.matrix.list are
each lists of length n.depth, in particular, edges.list[[k]] is an edge object listing the order k
edges, matrix.list[[k]] is the adjacency matrix for edges.list[[k]], and t.matrix.list[[k]] is the
adjacency matrix indicating all edges of order k or less.

edge.sequence(input.matrix, t.matrix.list, max.edge)
{ . . . return(list(t.vec.sort=t.vec.sort, p.vec.sort=p.vec.sort))}

This function is used to calculate the operating characteristic curves of Section 4.1. The input
object input.matrix is a matrix of real values, assumed to be measures of statistical evidence
(for example, p-values). The input object t.matrix.list is identical in structure to the object
t.matrix.list output by function graph.depth. The intended use is to run graph.depth before
edge.sequence. A list is output consisting of elements t.vec.sort and p.vec.sort. The object
p.vec.sort is a vector consisting of the first max.edge sorted values from input.matrix. Then
t.vec.sort is a n.depth×max.edge matrix, where n.depth is the number of elements in the list
t.matrix.list. Row k consists of the elements of t.matrix.list[[k]] corresponding to the elements
of p.vec.sort. It is expected that t.matrix.list[[k]] represents an adjacency matrix of true edges
of order ≤ k for some known network, so that the prevalence of true positives and true negatives
in a hierarchical sequence of graphs generated by a data matrix can be obtained (Section 4.1).

3


