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Running title: Effect of flu vaccination in 2017-2018 

 

Summary: During the 2017–2018 influenza season, we estimate that influenza vaccination reduced the 

risk of medically-attended influenza by 38% and prevented 7 million illnesses, 4 million medical visits, 

109,000 hospitalizations, and 8,000 deaths in the United States.  
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Abstract  

 

Background: The severity of the 2017–2018 influenza season in the U.S. was high with influenza 

A(H3N2) viruses predominating. We report influenza vaccine effectiveness (VE) and estimate the 

number of vaccine prevented influenza-associated illnesses, medical visits, hospitalizations, and deaths 

for the 2017–2018 influenza season.  

 

Methods: We used national age-specific estimates of 2017–2018 influenza vaccine coverage and disease 

burden. We estimated VE, and 95% confidence intervals (CI), against medically-attended RT-PCR 

confirmed influenza virus infection, in the ambulatory setting, using a test-negative design. We 

estimated influenza type/subtype-specific burden using multipliers applied to population-based rates of 

influenza-associated hospitalizations. We used a compartmental model to estimate numbers, with 95% 

credible intervals (CrI), of influenza-associated outcomes prevented by vaccination.  

 

Results: The VE against outpatient medically-attended, laboratory-confirmed influenza was 38% (95% CI: 

31–43%) including 22% (95% CI: 12–31%) against influenza A(H3N2), 62% (95% CI: 50–71%) against 

influenza A(H1N1)pdm09, and 50% (95% CI: 41–57%) against influenza B. We estimated that influenza 

vaccination prevented 7.1 million (95% CrI: 5.4 million–9.3 million) illnesses, 3.7 million (95% CrI: 2.8 

million–4.9 million) medical visits, 109,000 (95% CrI: 39,000–231,000) hospitalizations, and 8,000 (95% 

CrI: 1,100–21,000) deaths. Vaccination prevented 10% of expected hospitalizations overall and 41% 

among young children (6 months–4 years).  
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Conclusions: Despite 38% VE, influenza vaccination reduced a substantial burden of influenza-associated 

illness, medical visits, hospitalizations, and deaths in the U.S. during the 2017–2018 season. Our results 

demonstrate the benefit of current influenza vaccination and the need for improved vaccines. 

 

Keywords: Influenza; Vaccination; Prevented illnesses; Burden 
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Introduction 

The 2017–2018 influenza season in the United States was a high severity season [1, 2]. Circulation of 

influenza viruses was widespread for an extended period throughout the country. Influenza A(H3N2) 

viruses predominated, but influenza A(H1N1)pdm09 and B viruses also circulated [2]. The Centers for 

Disease Control and Prevention (CDC) has estimated that there were 49 million influenza illnesses, 

960,000 hospitalizations, and 79,000 influenza-associated deaths during 2017–2018, the highest 

morbidity and mortality since the 2009 pandemic [3].  

 

Influenza vaccination is the primary strategy to prevent influenza illness and its complications. Recent 

reports estimate that 42% of the U.S. population was vaccinated against influenza during the 2017–2018 

season [4, 5]; and the mid-season estimates of the effectiveness of influenza vaccine were 36% against 

all influenza A and B virus infections and 25% against A(H3N2) virus infections [6]. Here we report end-

of-season vaccine effectiveness (VE) and apply it with vaccine coverage to estimate the number of 

influenza-associated illnesses, medical visits, hospitalizations, and deaths prevented by influenza 

vaccination.   

 

Methods 

Influenza vaccine composition  

The recommended composition of the 2017–2018 Northern Hemisphere trivalent influenza vaccine 

included an A/Michigan/45/2015 (H1N1)-like virus, an A/Hong Kong/4801/2014 (H3N2)-like virus, and a 

B/Brisbane/60/2008-like virus (Victoria lineage); in addition, quadrivalent vaccines included a 

B/Phuket/3073/2013-like virus (Yamagata lineage) [7].  

 

Influenza vaccine effectiveness  
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Effectiveness of 2017–2018 influenza vaccination for the prevention of outpatient medically-attended 

influenza illness was determined through the U.S. Influenza Vaccine Effectiveness (Flu VE) Network, 

which has been described in detail previously [8-11]. Briefly, study staff recruited, consented, and 

enrolled patients aged ≥6 months seeking outpatient care for acute respiratory illness (including cough) 

within 7 days of symptom onset at 52 participating health care facilities in five research sites in 

Michigan, Pennsylvania, Texas, Washington, and Wisconsin. Patients who received an antiviral 

medication in the 7 days before enrollment or who were enrolled in the prior 14 days were not eligible. 

Study staff collected a combined nasal and throat swab from patients aged ≥2 years or a nasal swab only 

from children aged <2 years. Reverse-transcription polymerase chain reaction (RT-PCR) was used to 

detect influenza viruses, including subtype and lineage.  All diagnostic labs used primers and probes 

from CDC and passed proficiency testing. Staff interviewed patients for demographic data, current 

health status, symptoms, and reported receipt of 2017–2018 influenza vaccine. We looked for 

International Classification of Diseases codes assigned to medical encounters in the year prior to 

enrollment to determine whether participants had a pre-existing health condition associated with 

increased risk of severe influenza [12, 13].  

 

For all U.S. Flu VE Network sites, a participant’s vaccination status was based on documented receipt of 

2017–2018 influenza vaccine in electronic immunization records (medical records, state immunization 

systems, and employee health records). In addition, at four sites (excluding Wisconsin), we considered 

adults aged ≥18 years vaccinated if they reported timing and place of vaccination without documented 

receipt. We excluded children (aged 6 month–8 years) who were partially vaccinated. We used a test-

negative design to estimate VE, contrasting the odds of influenza vaccination among participants with 

RT-PCR-positive influenza (cases) to the odds of vaccination among participants who were negative for 

influenza (controls) using a logistic regression model [14]. We estimated VE, and 95% confidence 
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intervals (CI), against any influenza and by influenza virus type or subtype in separate models and 

stratified models by participant age (6 months–4 years, 5–17 years, 18–49 years, 50–64 years, and ≥65 

years). We adjusted all logistic regression models, a priori, for network site, calendar time (in bi-week 

increments), participant age, and high-risk status.  

 

The VE Network study was approved by institutional review boards at each participating site and CDC. 

 

Estimates of influenza-associated outcomes 

The methods for estimating age-specific influenza burden have been detailed elsewhere and estimates 

from the 2017–2018 season are available at https://www.cdc.gov/flu/about/burden/estimates.htm [3, 

15]. This method uses mathematical multipliers to calculate illnesses, medical visits, and deaths from 

data on hospitalized cases reported through the Influenza Hospitalization Surveillance Network (FluSurv-

NET), as illustrated in Supplemental Figure 1. For this analysis, we restricted burden estimates to those 

aged ≥6 months. We further estimated the burden by influenza virus type and subtype using virologic 

distributions observed in the U.S. Flu VE Network patients for illnesses and medical visits and the 

distributions observed in FluSurv-NET to estimate hospitalizations and deaths for each (sub)type [16]. As 

data on influenza A subtype was missing for 60% of FluSurv-NET patients with influenza A virus infection, 

we used multiple imputation (70 imputations) to estimate the rate of hospitalization for each subtype, 

including patient age, surveillance site, and admission time period (October-December, January, 

February, or March-May) in the imputation model.  

 

Influenza vaccine coverage  
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We obtained annual estimates of influenza vaccination coverage in the U.S. by month, from August 2017 

through April 2018, which were reported at https://www.cdc.gov/flu/fluvaxview/1718season.htm  

(Supplemental Figure 2) [4, 5].  

 

Influenza-associated outcomes prevented by vaccination  

We estimated the effect of seasonal influenza vaccination on disease burden using a mathematical 

compartmental model, stratified by age group [17]. We began the model with all members of the U.S. 

population unvaccinated and susceptible to influenza. Each month the susceptible population was 

divided, based on observed data, into those who became infected (using data on estimated illness), 

those who were vaccinated and protected against influenza (using data on vaccine coverage and 

effectiveness), and those who remained susceptible to infection. Each month we estimated age-specific 

rates of illness (and medical visits, hospitalizations, and deaths) by dividing the observed monthly count 

by the prior month’s susceptible population. Using these rates among susceptible persons, we estimated 

the number of outcomes that would have occurred in the same population without influenza 

vaccination. We calculated the prevented outcomes as the difference between outcomes in the absence 

of vaccination and those estimated under current levels of vaccination [15, 18, 19].  

 

Estimates of VE in adult outpatients and inpatients during 2017–2018 were similar in the U.S., thus we 

assumed that VE estimates from the U.S. Flu VE Network applied to all influenza outcomes and were 

also constant across the season [20]. We applied (sub)type-specific VE estimates to the (sub)type 

specific models.  

 

We estimated the number needed to vaccinate (NNV) to prevent one influenza-associated 

hospitalization by dividing the number of vaccinated individuals by hospitalizations prevented by 
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vaccination. When VE 95% confidence intervals included the null, the undefined value of NNV was 

indicated as >999,999. Our estimates of NNV were stratified by age group.   

 

We used a Monte Carlo algorithm to estimate a 95% credible interval (CrI) around the estimates, 

incorporating uncertainty in each data input. Briefly, we chose a value at random from the assumed 

distribution for each of the model inputs (Supplemental Table 1) and calculated the estimated 

prevented outcome and repeated the process 5,000 times. Distributions for VE and vaccine coverage 

were truncated at 0.  

 

Sensitivity analysis for vaccine coverage 

Because missing responses to the influenza vaccination question were more common in the BRFSS 

telephone survey in 2017–2018 compared with 2016–2017, we conducted sensitivity analyses to assess 

the effect of differences in vaccine coverage on estimates of prevented hospitalizations [4]. We explored 

the following scenarios for age-group specific coverage: as observed in 2016–2017; 2017–2018 coverage 

assuming individuals with missing responses were vaccinated; 2017–2018 coverage assuming individuals 

with missing responses were unvaccinated; and reducing coverage by 3-17% to account for over-

estimation by self-report [21-25].  

 

Results 

Among the population eligible for influenza vaccination, aged ≥6 months, we estimated there were 47.9 

million illnesses, 22.1 million medical visits, 953,000 hospitalizations, and 79,400 deaths associated with 

influenza in 2017–2018. Adults aged ≥65 years accounted for 15% of illnesses, but 70% and 90% of all 

hospitalizations and deaths, respectively. 
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Influenza A(H3N2) was associated with the highest rates of illness, affecting 9% of children aged 6 

months–4 years and 15% of adults aged 50–64 years (Figure 1 and Supplemental Table 2). After applying 

these rates to the U.S. population, influenza A(H3N2) was associated with an estimated 28.4 million 

illnesses, 13.0 million medical visits, 587,000 hospitalizations, and 49,000 deaths overall (Supplemental 

Table 3). Influenza A(H1N1)pdm09 virus infections were less common, with 4.6 million illnesses. 

Influenza B virus infections accounted for 15.7 million illnesses, 32% of all influenza illnesses.   

 

Vaccine effectiveness  

From the U.S. Flu VE Network, 8,900 people were enrolled and 8,436 were included in analysis for the 

2017–2018 influenza season, including 3,050 case-patients with RT-PCR-confirmed influenza and 5,386 

controls with non-influenza acute respiratory illness (Table 1; Supplemental Table 4). Influenza A virus 

infections were identified from November, 2017 through February, 2018 (Supplemental Figure 3). 

Influenza A(H3N2) viruses accounted for 84% of influenza A virus infections; and influenza B virus 

infections occurred later in the season with a peak in mid-March.  

 

Among those enrolled in the U.S. Flu VE Network, 42% of influenza-positive case-patients and 53% of 

influenza-negative controls were vaccinated against influenza (Supplemental Table 5). Of the vaccinated 

participants aged <65 years with known vaccine type, 97% received quadrivalent inactivated influenza 

vaccine (IIV4) and 3% received trivalent inactivated influenza vaccine (IIV3). Of vaccinated adults aged 

≥65 years with known vaccine type, 51% received high dose IIV3, 47% received standard dose IIV4 or 

IIV3, and 2% received adjuvanted IIV3.   

 

VE against any influenza A or B virus infection was 38% (95% CI: 31–43%) after adjustment for study site, 

age, high-risk condition, and calendar time (Figure 2; Supplemental Table 5). The VE estimates against 
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any influenza virus infection varied by age group and were statistically significant in all age groups 

except for people aged ≥65 years (Figure 2). The adjusted VE against A(H3N2) was 22% (95% CI: 12–31%) 

overall, but also varied by age and was only statistically significant in children aged 6 months–4 years. 

The adjusted VE against A(H1N1)pdm09 was 62% (95% CI: 50–71%) and VE against influenza B was 50% 

(95% CI: 41–57%).  

    

Vaccine prevented burden 

We estimated that influenza vaccination prevented 7.1 million (95% CrI: 5.4 million–9.3 million) illnesses 

and 3.7 million (95% CrI: 2.8 million–4.9 million) medical visits (Table 2). Prevented illnesses included 2.3 

million illnesses due to A(H3N2) viruses and 1.4 million illnesses due to A(H1N1)pdm09 viruses; 48% and 

70% of which, respectively, were prevented among children (Supplemental table 6). Additionally, over 3 

million illnesses from influenza B viruses were prevented with vaccination.   

 

Overall, an estimated 109,000 (95% CrI: 38,900–231,000) hospitalizations were prevented by 

vaccination; or 10% (95% CrI: 4–19%) of expected hospitalizations (Table 2). However, the percent of 

expected hospitalizations prevented by vaccination varied by age group, from a low of 7% (95% CrI: 4–

10%) in adults aged 18–49 years, who had the lowest vaccine coverage, to a high of 41% (95% CrI: 33–

47%) in children aged 6 months–4 years, who had high vaccine coverage and the highest VE (Figure 3).   

 

The burden of influenza-associated hospitalizations was greatest in adults aged ≥65 years and our model 

estimated that influenza vaccination prevented approximately 65,000 influenza-associated 

hospitalizations (95% CrI: 0–185,000; 9% of expected, 95% CrI: 0–21%) in this age group despite lower 

VE compared with other age groups. Using the estimated vaccine coverage and the overall prevented 
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hospitalizations, we estimate that 462 people (95% CrI: 162, >999,999) aged ≥65 years needed to be 

vaccinated for each influenza-associated hospitalization prevented (Table 3).  

 

Finally, an estimated 8,000 (95% CrI: 1,100–21,000) influenza-associated deaths were prevented by 

vaccination (9% of expected deaths, overall; 95 % CrI: 1–20%). Influenza vaccination prevented an 

estimated 39% (95% CrI: 30–45%) of influenza-related mortality in children aged 6 months–4 years. 

 

In sensitivity analysis, all credible intervals for estimates of prevented hospitalizations using various 

vaccine coverage scenarios overlapped with the credible intervals using the reported 2017–2018 

coverage (Supplemental Table 7).  

 

Discussion 

During the 2017–2018 season, currently available influenza vaccines reduced the risk of any influenza 

associated medically-attended illness by 38% and A(H3N2) associated illness by 22%. When modeled 

with burden and vaccine coverage, we estimated that influenza vaccination prevented 7.1 million 

illnesses, 109,000 hospitalizations, and 8,000 deaths related to influenza. In young children, aged 6 

months–4 years, the benefits of vaccination were greatest with 41% of all expected hospitalizations 

prevented by vaccination. VE against A(H1N1)pdm09 and B viruses was greater in all age groups than for 

A(H3N2); and accordingly, the benefit of vaccination against these viruses was greater than against 

A(H3N2) viruses. Nevertheless, our results suggest that currently available vaccines provided substantial 

benefit during a season with high rates of influenza associated medical visits, hospitalizations, and 

deaths.  
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The population benefit of influenza vaccination in our model depends on burden, vaccine effectiveness, 

and vaccine coverage. During 2017–2018, the benefit of influenza vaccination was substantial mainly 

because of the high burden of influenza-associated disease. Vaccination prevented 109,000 

hospitalizations, but this number represents only 10% of expected hospitalizations overall. Thus, while 

vaccination is an important strategy to mitigate some of the burden and severity of the influenza 

season, improvements in both vaccine effectiveness and vaccine coverage are needed and would result 

in a greater reduction in burden, enhancing both the public health and economic benefits of annual 

influenza vaccination. Our model of prevented illness may be underestimating the population benefit of 

vaccination as it only accounts for direct effects of vaccination. Various studies suggest that influenza 

vaccination, particularly of school-aged children, may also provide indirect protection (i.e. herd 

immunity) against influenza virus infection, largely by reducing the probability of contact with an 

infected person [26-31]. The magnitude of indirect protection is inconsistent between studies [32]; 

however, the population benefit of seasonal influenza vaccination would be greater if indirect effects 

were present and considered in the model [33, 34]. 

 

VE against circulating A(H3N2) viruses and prevented fraction of A(H3N2) disease were lower than with 

influenza A(H1N1)pdm09 and B viruses. Reduced vaccine protection against A(H3N2) viruses is likely 

multifactorial and was also observed during the 2016–2017 influenza season with the same A(H3N2) 

vaccine reference virus (A/Hong Kong/4801/2014) [35]. Antigenic characterization indicated that most 

circulating A(H3N2) viruses in 2017–2018 remained antigenically similar to the cell-propagated A/Hong 

Kong/4801/2014 reference virus, suggesting limited antigenic drift between the seasons [2].  However, 

A(H3N2) viruses continued to evolve and several viral genetic groups circulated.  Further, many 

circulating A(H3N2) viruses were poorly inhibited by antisera raised against egg-adapted viruses used for 

production of the majority of influenza vaccines in the U.S. [2].  The higher VE against A(H3N2) viruses 
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that we observed in young children may suggest that the immune response to the current A(H3N2) 

vaccine virus differs by age; this deserves more attention as young children had higher VE despite being 

vaccinated with egg-based vaccines. Among older adults, egg adaptation of A(H3N2) vaccine viruses may 

have contributed to reduced effectiveness despite increasing use of high dose vaccine, which was shown 

previously to be more effective than standard dose influenza vaccines in previous A(H3N2) predominant 

seasons [36]. Even with reduced VE among older adults, vaccination still prevented one influenza-

related hospitalization for every 462 people vaccinated. More broadly, we need to better understand 

the factors that contribute to differences in VE to improve influenza vaccines.   

 

Our estimates of the effect of vaccination rely on large, multi-state research and surveillance platforms, 

but there are limitations to the available data. First, multipliers are used to scale surveillance data to 

national burden estimates. Data to calculate the multipliers often lag by two years; thus, we use 

multipliers measured during previous influenza seasons. Any changes in testing practices, care-seeking 

behavior, or disease severity patterns that occurred during 2017–2018 would not be reflected in the 

multipliers. Our estimates of the effect of vaccination will be revised on CDC websites as data are 

updated. Second, we imputed subtype-specific hospitalization rates because subtyping was not 

performed systematically in FluSurv-Net. Third, our model does not currently account for possible 

waning effectiveness of influenza vaccination over the season [37-43]. The current literature is 

inconsistent about the amount of waning that occurs; however, including any amount of waning 

effectiveness in the model would have reduced our estimated population benefit. Fourth, vaccination 

coverage estimates from self-report and telephone surveys have limitations, including lower response 

rates and possible inaccuracy of vaccination status [21-25, 44, 45]. All results of our sensitivity analysis 

fell within the credible intervals using reported coverage. Fifth, as we assumed that influenza 

vaccination would not increase the risk of infection, our credible intervals are truncated at 0 and thus 
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skewed in favor of a population benefit. Finally, the role of genetic and antigenic diversity on the VE and 

estimated population benefit deserves further investigation and full antigenic and genetic 

characterization of specimens from the US Flu VE Network is ongoing towards this effort.  

 

Our results highlight the large burden of influenza-associated illnesses, medical visits, hospitalizations, 

and deaths during 2017–2018 and the value of current vaccines to reduce the burden of disease, even 

with a VE of 38% against influenza A and B viruses and 22% against A(H3N2) viruses. Given the 

substantial burden of influenza-associated illness, efforts to improve influenza vaccines are imperative. 

An A(H3N2) vaccine component with improved effectiveness could substantially reduce the number of 

influenza-associated hospitalizations among older adults [46]. Several studies have suggested that 

vaccines with a higher dose of antigen may offer protective advantages over standard dose inactivated 

influenza vaccines in older adults [36, 47, 48].  Also, it is possible that vaccine viruses not propagated in 

eggs could be advantageous, especially for the A(H3N2) vaccine component. There were two licensed 

vaccines (cell-culture derived inactivated vaccine and recombinant vaccine) that did not include egg 

propagated A(H3N2) viruses in 2017–2018 [49]. Efforts to determine the advantages of non-egg based 

and enhanced vaccines are ongoing. At this time, vaccination remains an important component of 

influenza prevention; and our results indicate that current vaccines prevented a substantial burden of 

illness during the 2017–2018 influenza season.    
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Table 1: Demographic and clinical characteristics of participants enrolled in the U.S. Influenza Vaccine 

Effectiveness Network — United States, 2017–2018 influenza season 

 

 

Test result status 

 

Vaccination status 

 

 

Influenza-positive Influenza-negative 

  

Vaccinated 

 Characteristic No. (%) No. (%) p-value * Total No. (%) p-value 
†
 

Overall 3050 

 

5386 

  

8436 4113 

  Study site 

    

<0.001 

   

<0.001 

Michigan 532 (39) 836 (61) 
 

1368 750 (55) 
 

Pennsylvania 501 (38) 804 (62) 
 

1305 599 (46) 
 

Texas 725 (37) 1260 (63) 
 

1985 753 (38) 
 

Washington 501 (29) 1224 (71) 
 

1725 1022 (59) 
 

Wisconsin 791 (39) 1262 (61) 
 

2053 989 (48) 
 

Male sex 1322 (38) 2131 (62) 0.001 3453 1553 (45) <0.001 

Age group (yrs) 

    

<0.001 

   

<0.001 

<5 years 262 (24) 847 (76) 
 

1109 551 (50) 
 

5–17 years 837 (46) 965 (54) 
 

1802 632 (35) 
 

18–49 years 965 (34) 1894 (66) 
 

2859 1128 (39) 
 

50–64 years 571 (38) 937 (62) 
 

1508 891 (59) 
 

≥65 years 415 (36) 743 (64) 
 

1158 911 (79) 
 

Race/ethnicity 

    

0.02 

   

<0.001 

White, non-Hispanic 2171 (36) 3888 (64) 
 

6059 3117 (51) 
 

Black, non-Hispanic 266 (40) 392 (60) 
 

658 226 (34) 
 

Other, non-Hispanic 269 (33) 543 (67) 
 

812 418 (51) 
 

Hispanic 331 (38) 550 (62) 
 

881 339 (38) 
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Unknown 13 (50) 13 (50) 
 

26 13 (50) 
 

Any high-risk condition 
‡
 1370 (34) 2633 (66) 0.001 4003 2445 (61) <0.001 

Asthma/pulmonary high-

risk condition 
537 (32) 1125 (68) <0.001 1662 994 (60) <0.001 

Cardiovascular high-risk 

condition 
274 (34) 540 (66) 0.12 814 587 (72) <0.001 

Diabetes high-risk 

condition 
232 (34) 449 (66) 0.24 681 480 (70) <0.001 

BMI ≥40 
§ 

 179 (32) 381 (68) 0.03 560 360 (64) <0.001 

Other high-risk condition 922 (35) 1704 (65) 0.18 2626 1702 (65) <0.001 

Interval from onset to 

enrollment 

    

<0.001 

   

<0.001 

<3 days 1444 (45) 1759 (55) 

 

3203 1472 (46) 

 3–4 days 1066 (35) 2008 (65) 

 

3074 1501 (49) 

 5–7 days 540 (25) 1619 (75) 

 

2159 1140 (53) 

 Influenza test result 
||

 

              Negative 

  

5386 

  

5386 2842 (53) 

      Influenza B positive 958 

    

958 377 (39) 

           B/Victoria 39 
    

39 8 (21) 
 

          B/Yamagata 908 
    

908 369 (41) 
 

     Influenza A positive 2103 

    

2103 899 (43) 

           A (H1N1)pdm09 318 

    

318 93 (29) 

           A (H3N2) 1761         1761 795 (45)   

 

* P-value calculated using chi-square comparing frequency of participants testing influenza positive 

versus negative by characteristic. 
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† P-value calculated using chi-square test that compares the frequency of vaccination by participant 

characteristic. 

‡ Presence of a high-risk health condition is defined as the presence of ≥1 medical record-documented 

International Classification of Disease-10 high risk code from October 1, 2016 to enrollment, as defined 

by the ACIP guidance for conditions that increase risk for complications from influenza [50]. 

§
 Body Mass Index (BMI) was calculated as kg/(m2) from height and weight recorded in the electronic 

medical record.  Calculated for adults aged ≥18 years only. 

|| 14 Influenza B viruses were of unknown lineage.  34 influenza A viruses were of unknown subtype.  

There were 25 coinfections that are each counted twice in the table above:  11 A(H3N2)and 

A(H1N1)pdm09, 9 B/Yamagata and A(H3N2), 3 B/Victoria and B/Yamagata, 1 A(H1N1)pdm09 and 

B/Yamagata, and 1 B/Yamagata and A of unknown subtype. 
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Table 2: Estimates of influenza A and B-associated illness, medical visits, hospitalizations, and deaths prevented by influenza vaccination — 

United States, 2017–2018 influenza season 

  

Illnesses 

 

Medical visits 

 

Hospitalization 

 

Death 

Age group   

Number 

prevented 95% CrI *   

Number 

prevented 95% CrI   

Number 

prevented 95% CrI 

% 

prevented 95% CrI   

Number 

prevented 95% CrI 

6 months-4 

years 

 

2,121,511 

(1,445,133, 

2,928,929) 

 

1,421,413 

(971,080, 

1,966,976) 

 

14,790 

(10,075, 

20,419) 41 (33, 47) 

 

74 (0, 189) 

5-17 years 

 

1,366,965 

(613,310, 

2,178,412) 

 

710,822 

(319,168, 

1,143,256) 

 

3,748 (1,682, 5,973) 15 (7, 22) 

 

89 (28, 197) 

18-49 years 

 

1,138,407 

(663,181, 

1,610,481) 

 

421,211 (243,149, 603,887) 

 

6,390 (3,722, 9,040) 7 (4, 10) 

 

228 (119, 403) 

50-64 years 

 

1,792,530 

(673,687, 

2,937,768) 

 

770,788 

(292,197, 

1,263,230) 

 

19,009 (7,144, 31,154) 10 (4, 15) 

 

868 (330, 1,591) 

≥65 years   715,073 (0, 2,033,756)   400,441 (0, 1,145,616)   65,007 (0, 184,887) 9 (0, 21)   6,796 (0, 19,844) 

All ages   7,134,487 

(5,393,925, 

9,310,339)   3,724,674 

(2,819,761, 

4,877,688)   108,944 

(38,854, 

230,943) 10 (4, 19)   8,054 

(1,059, 

21,320) 

 * 95% credible interval (CrI) from 5,000 Monte Carlo simulations. 
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Table 3: Number needed to vaccinate (NNV) to prevent one influenza A and B-associated hospitalization 

— United States, 2017–2018 influenza season 

Age group NNV 95% CrI 

6 months-4 years 821 (606, 1,190) 

5-17 years 7,811 (4,925, 17,494) 

18-49 years 5,758 (4,105, 9,849) 

50-64 years 1,311 (808, 3,502) 

65+ years 462 (162, >999,999) 

All ages 1,223 (578, 3,438) 

 

* 95% credible interval (CrI) from 5,000 Monte Carlo simulations. 
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Figure legends 

Figure 1: Adjusted rates of influenza-associated (A) illnesses, (B) medical visits, (C) hospitalizations, and 

(D) deaths, by age group and influenza (sub)type — United States, 2017–2018 influenza season 

 

Figure 2: Adjusted vaccine effectiveness against outpatient medically-attended influenza-associated 

illness, U.S. Flu VE Network — 2017–2018 influenza season * 

* The y-axis scale has been truncated for simplicity; however, for adults aged ≥65 years, the 95% 

confidence interval around the adjusted VE estimate against influenza A(H1N1)pdm09 extends beyond 

the lower limit of the y-axis (adjusted VE = 0.19, 95% CI: -0.91, 0.65).   

 

Figure 3: Estimated percent of expected influenza-associated hospitalizations prevented by vaccination 

— United States, 2017–2018 influenza season 
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