

Alarm Fatigue: Understanding the Problem & Strategies for Reducing Alarm Burden

E. Kate Valcin, MSN, RN, NEA-BC, CCRN

Senior Nurse Manager, Medical Intensive Care Unit
Strong Memorial Hospital

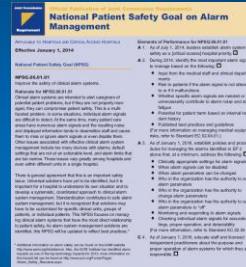
MEDICINE of
THE HIGHEST ORDER

UR MEDICINE | STRONG
MEMORIAL HOSPITAL

The Problem of Excessive Alarms

Joint Commission Sentinel Event Alert (SEAL) (April 8, 2013)

MEDICINE of
THE HIGHEST ORDER


UR MEDICINE | STRONG
MEMORIAL HOSPITAL

The Problem of Excessive Alarms

Released in 2013

As of July 1, 2014- hospitals must establish alarm system safety as a hospital priority

As of January 1, 2016- have staff education completed and have updated policies implemented

Joint Commission Perspectives 33 (7): July, 2013

MEDICINE of
THE HIGHEST ORDER

UR MEDICINE | STRONG
MEMORIAL HOSPITAL

The Problem of Excessive Alarms

Alarm Type	Number of Alarms		
	Alarms Received	Non-Related Alarms	Alerting
Technically false	261	101	160 (59.8%)
Technically true	301	1554	1455 (48.4%)
Total	562	1655	1615 (58.2%)
Other series total	572	1655	1627 (57.2%)
Total	623	1716	1674 (54.4%)
Other series total	623	1716	1674 (54.4%)
Total	623	1716	1674 (54.4%)
Technically false	363	558	315 (36.3%)
Technically true	11	28	—
Total	374	586	315 (36.4%)
Other series false	11	22	20 (90.9%)
Technically false	6	12	—
Total	17	34	20 (58.8%)
All alarms	121	372	83 (52.5%)
Technically false	64	174	46 (56.3%)
Technically true	44	198	148 (32.6%)
Total	108	372	134 (36.0%)
Total	662	2032	1615 (58.2%)

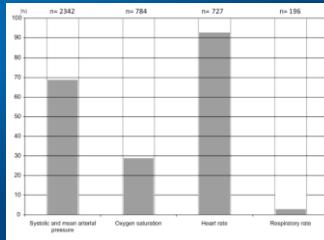
Critical Care Medicine 38(2):451; February, 2010

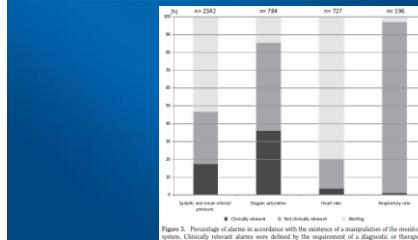
Total Technically False Alarms 1505 (36.3%)

Total Threshold Alarms 4057

Total Alarms 5820

The Problem of Excessive Alarms




Figure 1. Classification of alarms used in this study. The alarms were annotated in respect of technical validity and clinical relevance. The presence of medical staff was also noted.

Critical Care Medicine 38(2):451; February, 2010

MEDICINE of
THE HIGHEST ORDER

UR MEDICINE | STRONG
MEMORIAL HOSPITAL

The Problem of Excessive Alarms

MEDICINE of
THE HIGHEST ORDER

UR MEDICINE | STRONG
MEMORIAL HOSPITAL

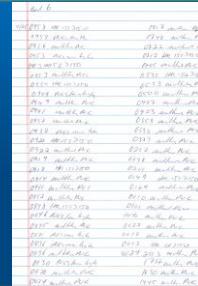
UR MEDICINE | STRONG
MEMORIAL HOSPITAL

Figure 2. Percentage of alarms in accordance with the existence of a manipulation of the monitoring system. Clinically relevant alarms were defined by the requirement of a diagnosis or therapeutic intervention to be present. Non-clinically relevant alarms were defined as those that did not require a diagnosis or therapeutic intervention but nevertheless judged to be helpful. Manipulations were divided in patient manipulations (i.e., those that were done by the patient or family) and medical manipulations (i.e., those that were done by the medical staff without concurrent change of the blood pressure value).

Critical Care Medicine 38(2):451; February, 2010

The Problem of Excessive Alarms

Table 1. Alarm Frequency, Duration, and Classification


	No. of alarms (#)	Alarm frequency (#/h)	Alarm duration (s/h)	Effective patient (%)	Effective technical (%)	Ignored (%)	Ineffective (%)
Tidal volume	247	1.24	15.9	7.7	3.6	39.3	49.4
Mean arterial	197	0.99	21.0	9.1	7.1	55.8	27.9
Pulse oximeter	188	0.94	36.1	1.1	3.7	72.4	23.5
Infusion pump	147	0.74	42.7	0.0	82.9	17.1	0.0
Heart rate and arrhythmias	134	0.67	14.0	3.7	5.2	50.0	41.0
Blood pressure (arterial and noninvasive)	127	0.64	38.2	7.1	12.6	53.5	26.8
Respiratory rate	75	0.58	10.3	5.0	0.3	37.3	45.3
Pain airway pressure	37	0.19	2.9	13.5	2.7	42.2	40.5
Other	32	0.16	2.3	0.0	18.8	59.4	21.9
Feeding pump	30	0.15	13.7	0.0	90.3	9.7	0.0
Overall	1214	6.07	197.5	5.3	17.8	40.7	36.0

Anesthesia and Analgesia 108(5):1546; May, 2009

MEDICINE of
THE HIGHEST ORDER

The Problem of Excessive Alarms

Multiform PVC 38/56 Alarms
HR 151>150 or 152>150 10/56 Alarms

8-1600 Alarm Rates:

- An alarm occurs every 3 minutes
- A red alarm occurs every 10.8 minutes
- A yellow alarm occurs every 4.8 minutes

MEDICINE of
THE HIGHEST ORDER

Alarm Reduction Protocols

Outcome Measures	Pre	Post
Total Number of Alarms	16,953	9,647
Nurse Ratings of Noise Level	4.0	3.5
Nurse Ratings of Noise From Monitor Alarms	3.1	2.97

American Journal of Critical Care, 19(1):26; January, 2010.

MEDICINE of
THE HIGHEST ORDER

Implementation of a Nighttime Noise Reduction Bundle and Modified Alarm Profile to Reduce ICU Noise and Alarms

Hypothesis

Implementing a nighttime noise reduction bundle (NNRB) concurrently with a streamlined patient monitoring alarm profile will reduce Medical Intensive Care Unit (MICU) noise levels and decrease alarm frequency.

Methods

ALARM PROFILE: The new profile was designed with the goal of reducing nuisance alarms by applying more stringent criteria. Proposed changes were presented to and approved by the institutional Critical Care Quality Council before implementation. The final alarm profile was active 24 hours per day.

Study Design Timeline

Implement Bundle and New Alarm Profile: March 10th, 2013

Pre-Measurement:
1. Bundle Compliance*
2. Alarm Frequency†
Mar 10th to Mar 15th, 2013

Post-Measurement:
1. Bundle Compliance*
2. Alarm Frequency†
Apr 8th to Apr 25th, 2013

Bundle Compliance was evaluated right before 0300 - 0300 hours. Alarm level was measured every 1 minute in 4 locations.

E. Kate Volin and Anne Marie Mattingly, MD
Co-investigators JoAnn Eldred, RN, CCRN, Janice Keating, RN, Phyllis Tomeck, RN, CCRN, and Amy Wanck, RN, CCRN

MEDICINE of
THE HIGHEST ORDER

Strategies for Managing Alarms

What We Need to Do

•Individualize Alarm

Parameters

•Optimize Signal Quality

- ECG electrodes
- O2 Sat Monitoring
- BP Cuff Positioning

How We Need to Do It

•Interprofessional Teams

•Measurement

•Human Factors Engineering

AACN Advanced Critical Care 24 (4): 378-386

MEDICINE of
THE HIGHEST ORDER

Changing an Alarm Profile

Table 2 Heart and respiratory rate alarms for medical-surgical unit population with no severe adverse events. n = 317 patients; time = 7897 days of monitoring (24/6 days/ patient)

Alarm	Number of patients with limits	Percentage of patients with alarms	Percentage of patients with alarms per day	Number of alarms for total time	Number of alarms per patient per day	Number of alarms per patient per shift
HR high	80	0.01	2.1	1023	3.31	0.44
HR high	34	0.01	1.5	430	2.04	0.18
HR high	23	0.01	1.0	110	0.67	0.05
HR high	135	0.01	0.7	53	0.07	0.02
HR high	16	0.01	0.7	21	0.03	0.01
HR high	12	0.01	0.5	27	0.03	0.01
HR high	9	0.01	0.4	7	0.01	0.00
HR high	6	0.01	0.3			
HR low	35	0	0.0	0	0.00	0.00
HR low	40	9	1.2	125	0.16	0.05
HR low	26	7	1.1	179	0.24	0.06
HR low	75	3	3.2	4378	1.41	1.87
HR low	140	1.0	6.0	10,384	3.30	4.43
HR low	200	2.0	8.5	23,922	0.66	10.21

Journal of Advanced Nursing 65(9):1844; September, 2009

MEDICINE of
THE HIGHEST ORDER

Changing an Alarm Profile

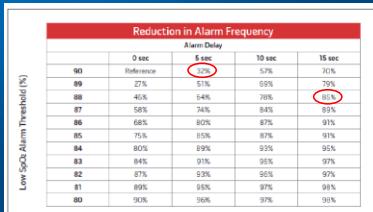
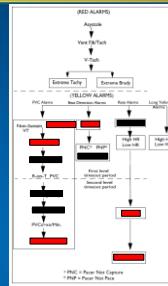


Table 1. Percent reduction in alarms at various low SpO₂ alarm thresholds and alarm notification delays, compared to a 90% low SpO₂ threshold at a zero-second delay.

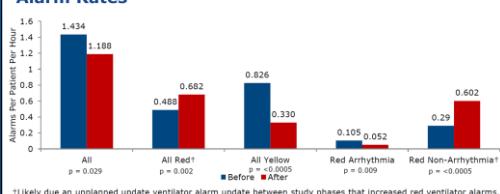
Biomedical Instrumentation & Technology - Spring Supp 45, Spring, 2011


MEDICINE of
THE HIGHEST ORDER

Changing an Alarm Profile

Yellow Arrhythmia Alarms:

Alarm Parameter	Current Limit	New Limit
Normal Sinus Ventricular	PVCs at VT rate, but not enough beats for VT alarm	No change
Tachycardia	>14 PVCs not at VT rate	(VT alarm changed)
Ventricular Rhythm	>2 consecutive PVCs	turn off
Run of PVCs	all PVCs	no change
PVCs in T	PVC < 1/3 R-R with pause	no change
Ventricular Bigeminy	already off	no change
Ventricular Trigeminy	already off	no change
PVC Rate	>10 PVCs/minute	no change
Wolff-Parkinson-White	>2 PVCs/beat recurring	turn off
Pause	no activity for >2 seconds	turn off
Pacer Not Capturing	no QRS or pacer spikes	no change
Pacer Not Pacing	no QRS or pacer spikes	no change
Missed Beat	already off	no change
TV	already off	no change
Atrial Fibrillation	irregular with variable PR	turn off
Irregular Heart Rate	other irregular rhythm	turn off
Miscellaneous:		
Alarm Parameter	Current Limit	New Limit
2 nd Tier Alarm Delay	3 minutes	15 minutes
Yellow Alarm Volume	6	4
Red Alarm Volume	Yellow + 2 (8)	Yellow + 2 (6)



MEDICINE of
THE HIGHEST ORDER

Changing An Alarm Profile

Alarm Rates

MEDICINE of
THE HIGHEST ORDER

Changing an Alarm Profile

Threshold Alarms:

Alarm Parameter	Current Limit	New Limit
Heart Rate - Low	60	50
Heart Rate - High	120	130
Mean Arterial Pressure - Low	60	55
Mean Arterial Pressure - High	110	110 * default BP parameter
Systolic BP - Low	90 *default BP parameter	85
Systolic BP - High	160	180
Diastolic BP - Low	50	50
Diastolic BP - High	90	90
SpO ₂ (yellow alarm)	90% with 5 second delay	88% with 15 second delay
Desaturation (red alarm)	85% for 20 seconds	no change

Red Arrhythmia Alarms:

Alarm Parameter	Current Limit	New Limit
Aystole	no activity for > 4 seconds	no change
Ventricular Fibrillation	single episode for > 4 seconds	no change
Ventricular Tachycardia	5+ consecutive PVCs at HR > 100	5+ consecutive PVCs at HR > 130
Extreme Tachycardia	HR > 20 above threshold OR > 240	HR > 50 above threshold OR > 240
Extreme Bradycardia	HR < 20 below threshold OR < 40	HR < 20 below threshold OR < 30

MEDICINE of
THE HIGHEST ORDER

Changing an Alarm Profile

Red Arrhythmia Alarms:

	Hours of Patient Monitoring	Total Alarms	Total Yellow	Total Red	Red Arrhythmia Alarms	Red Non-Arrhythmia Alarms
Pre-Measure	3504.5	5747	3976	1771	489	1282
Post-Measure	3629.5	4480	1506	2974	322	2652

MEDICINE of
THE HIGHEST ORDER

Summary

- The frequency of alarms in ICU's today is putting patients at risk
- Alarm management is a priority set by the Joint Commission
- Analyzing current alarm levels and types is the first step in alarm reduction
- Eliminating false and/or clinically irrelevant alarms reduced alarm burden and improves effectiveness of remaining alarms
- A systematic, interprofessional approach is needed for success
- The issue of alarm management requires on-going monitoring to maintain reductions in alarm levels

MEDICINE of
THE HIGHEST ORDER

A Special Thanks

Critical Care Symposium Committee

Anne Marie Mattingly, MD

Co-Investigators- JoAnn Eldred, RN, CCRN, Janice Keating, RN, Phyllis Tomeck, RN, CCRN, and Amy Wanck, RN, CCRN

University of Rochester Medical Center 8-1600 MICU Staff

Michael Apostolakos, MD; Kathleen Falkner, RN; Deborah Hurley, RN, CCRN; Michael Maxwell, RN, CCRN; Mark Ott, RN; Anthony Pietropaoli, MD; Phillip Rogerson; R. James White, MD, PhD; Mary Wicks, RN; University of Rochester Medical Center, Department of Medicine, Division of Pulmonary and Critical Care Medicine

MEDICINE of
THE HIGHEST ORDER

References

- Burgess, L., Herdman, T., Berg, B., Feaster, W., Hebsur, S. (2009). Alarm limit settings for early warning systems to identify at-risk patients. *Journal of Advanced Nursing*, 65, 1844-1852.
- Gorges, M., Markevitz, B., Westenskow, D. (2009). Improving alarm performance in the medical intensive care unit using delays and clinical context. *Anesthesia & Analgesia*, 108, 1546-1552.
- Graham, K.C. & Cvaček, M. (2010). Monitor alarm fatigue: standardizing use of physiologic monitors and decreasing nuisance alarms. *American Journal of Critical Care*, 19, 28-37.
- Mattingly, A.M. & Valcin, E.K. (2014). Implementation of a nighttime noise reduction bundle and modified alarm profile to reduce ICU noise and alarms. *University of Rochester Medical Center*, January 2014.
- The Joint Commission announces 2014 national patient safety goal. (2013). *Joint Commission Perspectives*, 33 (7):1-3.
- Medical device alarm safety in hospitals. (2013). *The Joint Commission Sentinel Event Alert*, Issue 50: 1-3.
- Sendelbach, S. & Funk, M. (2013). Alarm fatigue: a patient safety concern. *AACN Advanced Critical Care*, 24, 378-386.
- Siebig, S., Kuhls, S., Imhoff, M., Gatter, U., Scholmerich, J., Wrede, C. (2010). Intensive care unit alarms- how many do we need? *Critical Care Medicine*, 38, 451-456.
- Welch, J., (2011). An evidence-based approach to reduce nuisance alarms and alarm fatigue. *Biomedical Instrumentation & Technology Horizons*, Spring, 46-52.

MEDICINE of
THE HIGHEST ORDER

Contact Information

kate_valcin@urmc.rochester.edu

MEDICINE of
THE HIGHEST ORDER

MEDICINE of THE HIGHEST ORDER