
Genotyping of the SSLP

The simple sequence length polymorphism (SSLP) 3.5 kb proximal to D4Z4 is studied by PCR and the sequence is localized between positions 1532 and 1694 of AF117653 (see figure below).

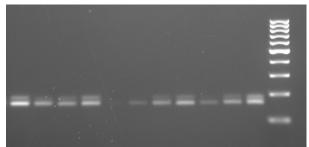
2CAF (forward primer)5'-GGTGGAGTTCTGGTTTCAGC-3'2CAR (reverse primer)5'-CCTGTGCTTCAGAGGCATTTG-3'For fragment analysis, the forward primer is labelled with HEX.

FSHD & Neuromuscular Research

CENTER

Conditions for SSLP PCR

DNA (2,5 ng/uL)	2 uL		
2CAF (10 uM)	0,4 uL		
2CAR (10 uM) 0,4 uL			
HF buffer	5 uL		
dNTP (2 mM)	2,5 uL		
Phusion enzyme	0,2 uL		
water	14,5 uL		
	25 uL		


Conditions

98C	3"	
98C	15"	
60C	30"	
72C	15"	32x
72C 72C	15" 30'	32x
		32x

Dilution of PCR products for SSLP analysis:

As you can see in the protocol above, we only use a very small amount of input DNA in PCR. After the PCR we normally check the PCR-reaction on an agarose gel. Then we run 8 uL PCR reaction on gel, which yields about 25-50 ng PCR product. This product is then further diluted about 300 times for the fragment run.

For optimal determination of allele composition, peak height signals of a single allele peak should be between 1000 and 2000 AU (SoftGenetics GeneMarker). To optimize the fragment run result several dilutions of the input PCR product should be tested.

Electrophoresis picture of SSLP PCR products (on gel: 8 uL PCR product and 8 uL 100 bp GeneRuler molecular size marker).

For fragment analysis:

- 1. Dilute samples (directly from PCR mix, unpurified) to approx. 0,8-1 ng/uL.
- 2. Mix: 2 uL diluted PCR product + 10 uL ROX/formamide mix (2,5 uL ROX HD400 with 500 uL ionized formamide)

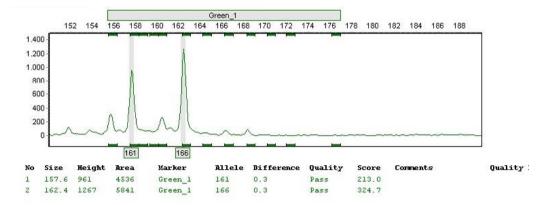
For the SSLP analysis you might also have problems with the double peaks.

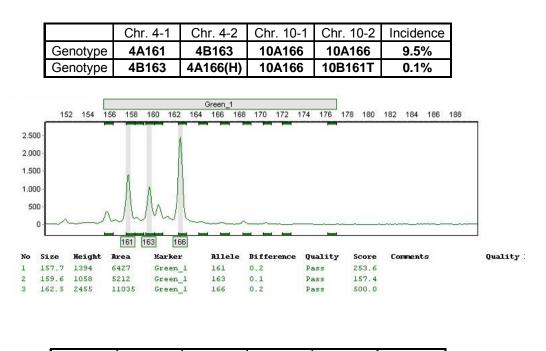
- Input DNA concentration might have been too high.
- Try different PCR-enzymes, we obtained best results with the proofreading enzyme Phusion (with other enzymes [for instance amplitaq gold] we obtained double peaks).

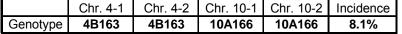
Analysis of fragment run

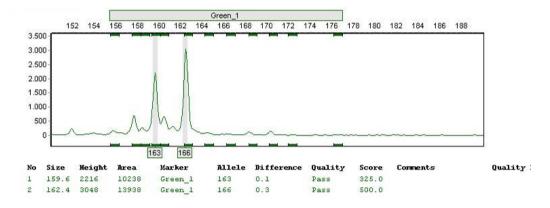
Size differences in the SSLP fragments were determined with the use of an ABI Prism 3100 Genetic Analyzer.

SSLP haplotyping of these D4Z4 alleles requires some experience.

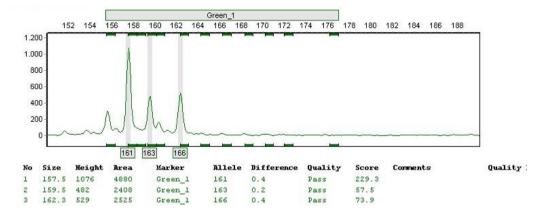

- All SSLP peaks appear 3 bp shorter than the actual PCR fragment, this is a running artifact (see examples below)
- Not all SSLP peaks appear with the same peak height on the fragment runresult (for example: 164>166>161>168>163>176,180).
- Furthermore some peaks appear with a stutter peak before the base-peak and others have a stutter peak behind the base peak.
- AJHG paper (2007) we show haplotypes that were found in individuals with a standard allele configuration, in our 2010 AJHG paper we show all haplotypes found in the European population.
- About 10% of the European individuals carry a 4-type repeat on 10q and 10% carry 10-type repeats on 4q. For these unusual alleles we observe other SSLP lengths (161 [10B161T], 176 [10A176T] and 180 [10A180T].
- Also other rare sizes (>170 bp) have been detected in our AJHG study.

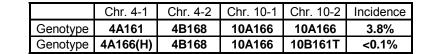

Chromosome 4			Chromosome 10			
haplotype	%	Genbank Acc. Nr.	haplotype	ype % Genbank Acc. Nr.		
0 (deletion)	0.2	-	0 (deletion)	0.9	_	
4A159	0.1	GU480773	10B161T	4.6	GU480777, GU480778	
4A161	39.2	GU480774, GU480775	10A162	0.2	GU480801	
4B161	0.7	GU480803	10A164	4.4	GU480799, GU480800	
4B162	1.8	GU480791, GU480792	10A166	86.1	GU480802, GU480784, GU480785	
4B163	32.9	GU480776	10A166H	0.6	GU480781, GU480782, GU480783	
4A163	0.9	-	10A176T	2.5	GU480779	
4A166	4.4	GU480786	10A180T	0.5	GU480780	
4A166H	3,9	GU480787, GU480788, GU480789	other	0.2	-	
4B166	1.0	-				
4B168	13.2	GU480793, GU480794				
4A168	0.3	GU480797, GU480798				
4A170	0.2	-				
4B170	0.5	GU480795				
4A172	0.2	-				
4B172	0.2	GU480796				
4B174	0.2	-				

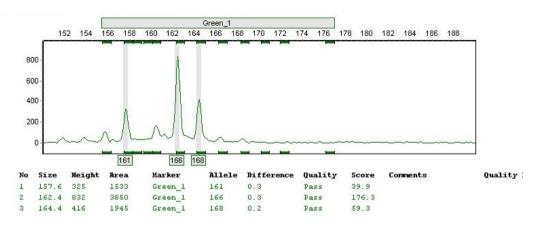

Overview of the prevalence of haplotypes found in the European population (based on a study of 444 independent European controls, AJHG 2010)

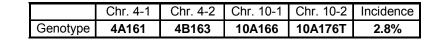

Below you will find some examples of haplotype combinations that we have observed in the European population (but many more combinations can be found). Between brackets is the prevalence of this genotype that can be expected, based on the incidence of the distinct haplotypes. Sometimes, different haplotype combinations give the same SSLP pattern (but in these cases one of the two is more likely).

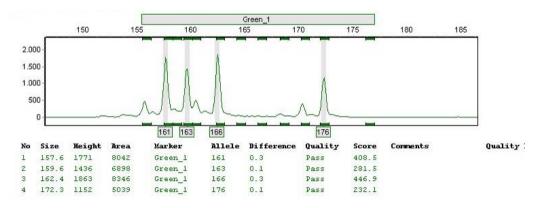

	Chr. 4-1	Chr. 4-2	Chr. 10-1	Chr. 10-2	Incidence
Genotype	4A161	4A161	10A166	10A166	11.2%
Genotype	4A161	4A166(H)	10A166	10B161T	0.1%

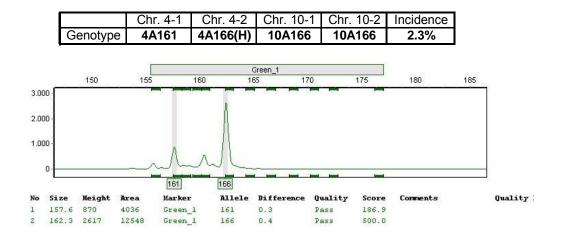


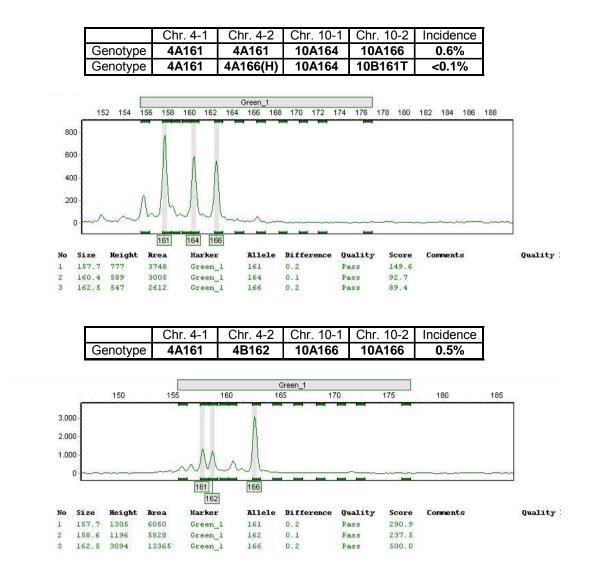












End note:

You can not perform reliable FSHD genotyping (or diagnosis) only based on the SSLP length. When you consider all haplotypes that can be found, some quite frequently occur on 4q and 10q (like 161 and 166). Therefore, you have to combine the SSLP data with PFGE data for all D4Z4 repeats and 4qA/4qB data. The SSLP analysis certainly can assist to specify translocated alleles. Sometimes when you know the complete genotype (Southern and SSLP) of the parents the SSLP of the child can be sufficient to predict the alleles he/she inherited (but we always perform standard Southern analysis for diagnosis).