The URMC Flow Cytometry Resource: Bonus Mass and Full Spectrum Cytometry Discussion

Outline

Introduction to URMC Flow Cytometry Core

- The team
- Services
- Instrumentation

Introduction to Cytek Aurora

Introduction to the Helios Mass Cytometer

Our Team

Leadership Group

- Tim Bushnell, Ph.D. Scientific Director
- Matt Cochran, Technical Director
- Wojciech Wojciechowski, Development Director
- James Java, Data Analytics

Seven full time instrumentation/project specialists*

- Jeffrey Capomaccio
- Justin Cobb (not pictured)
- Kate Fegan
- Meghann O'Brien
- Steven Polter
- Taylor Waldrop
- Terry Wightman

Aministration etc.

- Sharleen Slaunwhite
- Beth Laffey

Support and Services - General

Consultation (office hrs: Zoom as requested)

- Experiment/Panel design
- Data interpretation
- Sorting strategy/setup

Instrument/Software assistance

- Slack on all computers monitored during normal business hours
- Full remote software access/control

Data analysis

- Both Flowjo and FCS Express licenses are available
 - Information, practice data on website and FCC_Library
- High dimensional analysis help is also available

Continuing Education

- FCC_Library share
- Occasional seminars, lectures, and demos

Support and Services - Data

Analysis Computers

- PC workstation in 3-4151
 - Multiple analysis programs: ISX, Celigo, Nanosight, Flowjo
- Separate dedicated workstation for full spectrum (Aurora) analysis
 - Remote access only at this time.

Data archiving and transfer

- FCC archives experimental data
 - Code42 automated archiving
 - Backs up every 10 minutes
 - Saved indefinitely
 - Files can be retrieved upon request (Instrument used, Exp Title, Date run)
- FCC_Transfer provides a space for moving data from cytometers to lab
 - Not for long term storage. Space is cleared once a month.
 - Box is accessible as an alternative/backup

Support and Services – Communication/Scheduling

Website: http://www.urmc.rochester.edu/flow-core

- Policies and overview not very dynamic
- Instrument pages for all equipment
- Library contains links and useful information
- Recent updates
 - Cell sorting page overhaul
 - FAQ added to the Library page
 - Data analysis page in progress under Services.

PPMS

- Shared between all SRLs
 - Toggle between accounts easily
- Recently updated
 - Better control/flexibility for accounting
 - New "Edit" button for existing reservations!
 - Instrument sign in page will be updated as well

Listserve

Instruments – Traditional Analytical

BD Accuri C6+ (Pepe)

- 2 lasers
- 4 fluorescent parameters
- Strengths: ease of use, volumetric acquisition
- Weaknesses: inflexible

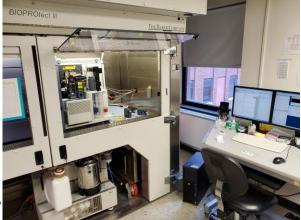
LSRII/LSRFortessa (Fozzie, Oscar, Animal, Dr. Teeth)

- 4 lasers (LSRII), 5 lasers (Fortessa)
- 18 Fluorescent parameters
- Strengths: Flexibility (fluidics and fluorescence), availability/redundancy, institutional knowledge
- Weaknesses: Aging technology (Kermit is almost 17!)

Instruments – Cell Sorting

BD FACSAriaII (Statler, Waldorf)

• 4 lasers



- 18 fluorescence parameters matched to the LSRIIs
- Strengths: Flexibility* (Fluorescence, speed, collection, setup)
- Weaknesses: Complicated, finicky

BioRad S3e (Scooter)

- 2 lasers
- 4 fluorescent parameters
- Strengths: relative simplicity, automated control
- Weaknesses: single nozzle size, no plate sorting, automated control

Instruments - Imaging

Luminex Image StreamX (Sam the Eagle)

- Imaging flow cytometer
- 4 lasers
- 9-10 fluorescent parameter
- Strengths: Best of both worlds, multiple magnifications, sub-micron resolution
- Weaknesses: throughput, aging technology, EOL

Nexcelom Celigo S (Stinky the Stinkweed)

- Plate based high throughput imaging
- Brightfield plus 3 fluorescent parameters **
- Strengths: speed, ease of use, kits and established assays
- Weaknesses: somewhat inflexible, moderate resolution

Instruments – Flow Adjacent

Agilent Seahorse XFe96 (Lew Zealand)

- Cellular metabolomics
 - Meaures changes in O2 and pH
- Strengths: ease of use, high sensitivity
- Weaknesses: cell numbers

Malvern Nanosight NS300 (Bean Bunny)

- Small particle analysis
 - \sim 500nM down to \sim 20nM
 - Sizing and counting
 - Limited fluorescence capabilities
- Strengths: ease of use, broad size and concentration ranges, sample input flexibility
- Weaknesses: fluorescence limitations, "black box"

FULL SPECTRUM CYTOMETRY CYTEK AURORA

Introduced in January 2020 just in time for everything to fall apart

What is Full Spectrum Cytometry

▶Introduced by Cytek in 2017 at the annual Cyto meeting and took off

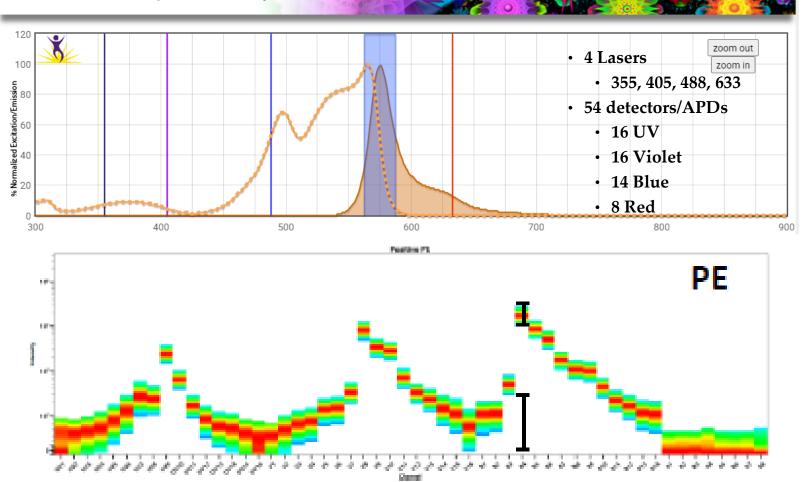
≻Commercialized by Sony 2013 (SP6800) but didn't catch on.

≻Original work stretches back to 1979 (Wade et. al.)

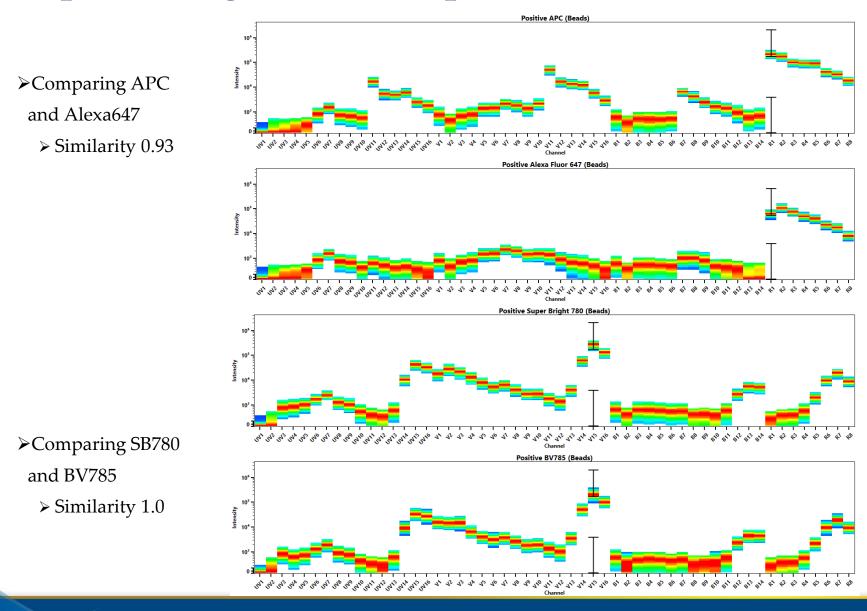
≻Whats the big idea?

> What if, instead of trying to pinpoint the best fluor for each

filter/detector set, we measure "everything" and use all that

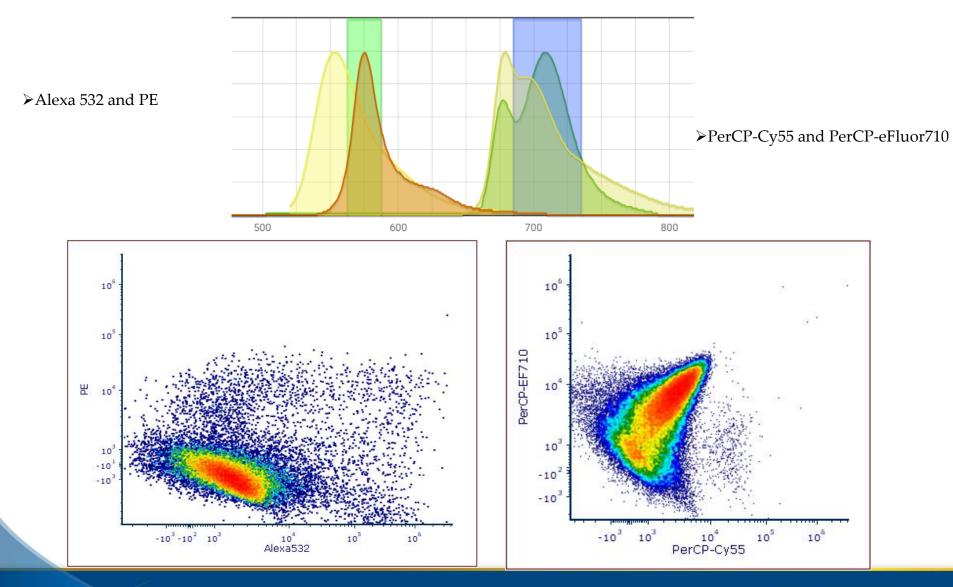

information?

Enter the Spectral Signature


≻Measure from ~370nm – 810nm for everything.

Fluorescence Spectra Analyzer

Spectral Signature Interpretation


Spectral Signature Interpretation

Color/Format 1 BUV395		BUV395	BUV496	BUV563	BUV661	BUV737	BV421	Vio Blue	BV480	BV605	BV650	BV711	BV750	Super Bright 780	BB515	Alexa 532	PE	PE-Dazzle594	LIVE DEAD Red	PE-Cy5	PerCP-eFluor 710	PE-Cy7	APC	Alexa Fluor 647	APC-R700	APC-eFluor 780
2 BUV496	BV421	0.07	0.09	0.02	0.01	0.01	1	0.8	0.28	0.08	0.12	0.11	0.08	0.12	0	0.01	0.01	0.01	0.01	0	0	0	0	0	0	0
3 BUV563	Vio Blue	0.04	0.14	0.03	0.01	0.01	0.8	1	0.59	0.1	0.11	0.1	0.07	0.12	0.01	0.02	0.03	0.02	0.04	0.01	0.01	0	0.01	0.01	0.01	0.0
4 BUV661	BV480	0.09	0.41	0.11	0.02	0.01	0.29	0.50	1	0.17	0.09	0.05	0.04	0.06	0.07	0.06	0.11	0.06	0.11	0.01	0.01	0.01	0.01	0.02	0.01	0.0
BUV737										_																
rilliant Violet 421	BV605	0.02	0.08	0.17	0.15	0.06	0.08	0.1	0.17	1	0.57	0.19	0.13	0.09	0.01	0.11	0.23	0.39	0.84	0.1	0.12	0.03	0.08	0.02	0.03	0.0
VioBlue	BV650	0.02	0.03	0.04	0.44	0.15	0.12	0.11	0.08	0.57	1	0.46	0.25	0.17	0	0.03	0.06	0.18	0.43	0.26	0.3	0.04	0.36	0.21	0.18	0.0
Brilliant Violet 480	BV711	0.01	0.02	0.01	0.3	0.42	0.11	0.1	0.05	0.19	0.46	1	0.69	0.48	0	0.01	0.02	0.06	0.13	0.21	0.69	0.15	0.26	0.23	0.46	0.2
Brilliant Violet 605	BV750	0.01	0.02	0.01	0.12	0.37	0.08	0.07	0.04	0.13	0.25	0.69	1	0.82	0	0.01	0.02	0.04	0.08	0.08	0.42	0.23	0.08	0.04	0.13	0
e/Dead Fix Red	Super Bright 780	0.01	0.02	0.01	0.06	0.2	0.12	0.12	0.06	0.00	0.17	0.49	0.82	1	0	0.01	0.01	0.02	0.05	0.04	0.27	0.25	0.04	0.02	0.07	
lliant Violet 650																					0.27	0.25	0.04	0.02	0.07	
illiant Violet 711	BB515	0.01	0.08	0.05	0	0	0	0.01	0.07	0.01	0	0	0	0	1	0.25	0.1	0.05	0.02	0.01	0	0	0	0	0	
rilliant Violet 750	Alexa 532	0.01	0.08	0.33	0.02	0.01	0.01	0.02	0.06	0.11	0.03	0.01	0.01	0.01	0.25	1	0.88	0.57	0.32	0.16	0.06	0.03	0.01	0.01	0	0
erBright 780	PE	0.02	0.06	0.29	0.02	0.01	0.01	0.03	0.11	0.23	0.06	0.02	0.02	0.01	0.1	0.88	1	0.48	0.33	0.11	0.04	0.02	0.01	0.01	0.01	0
515	PE-Dazzle594	0.01	0.03	0 14	0.05	0.03	0.01	0.02	0.06	0 39	0.18	0.06	0.04	0.02	0.05	0.57	0.48	1	0.77	0.41	0.19	0.06	0.03	0.01	0.01	0
lexa Fluor™ 532																										
PE	LIVE DEAD Red	0.02	0.06	0.17	0.17	0.07	0.01	0.04	0.11	0.84	0.43	0.13	0.08	0.05	0.02	0.32	0.33	0.77	1	0.27	0.16	0.04	0.12	0.09	0.06	(
-Dazzle 594	PE-Cy5	0	0.01	0.03	0.36	0.16	0	0.01	0.01	0.1	0.26	0.21	0.08	0.04	0.01	0.16	0.11	0.41	0.27	1	0.53	0.14	0.41	0.4	0.27	(
-Су5	PerCP-eFluor 710	0.01	0.01	0.02	0.26	0.38	0	0.01	0.01	0.12	0.3	0.69	0.42	0.27	0	0.06	0.04	0.19	0.16	0.53	1	0.36	0.25	0.24	0.45	(
CP-eFluor 710	PE-Cy7	0	0	0.01	0.03	0.2	0	0	0.01	0.03	0.04	0.15	0.23	0.25	0	0.03	0.02	0.06	0.04	0.14	0.36	1	0.03	0.03	0.07	0
Су7		-					-																			
PC	APC	0	0.01	0.01	0.77	0.21	0	0.01	0.01	0.08	0.36	0.26	0.08	0.04	0	0.01	0.01	0.03	0.12	0.41	0.25	0.03	1	0.93	0.56	0
Alexa647	Alexa Fluor 647	0	0.01	0.01	0.71	0.19	0	0.01	0.02	0.02	0.21	0.23	0.04	0.02	0	0.01	0.01	0.01	0.09	0.4	0.24	0.03	0.93	1	0.64	0
APC-R700	APC-R700	0	0	0	0.49	0.4	0	0.01	0.01	0.03	0.18	0.46	0.13	0.07	0	0	0.01	0.01	0.06	0.27	0.45	0.07	0.56	0.64	1	0
APC-eFluor 780	APC-eFluor 780	0	0.01	0.01	0.17	0.29	0	0.01	0.01	0.02	0.08	0.23	0.2	0.2	0	0.01	0.01	0.01	0.03	0.1	0.2	0.19	0.23	0.23	0.36	

Complexity Index: 16.98

Impossible Fluorochrome Combinations

Full Spectrum Strengths and Weaknesses

Constantine - Strengths

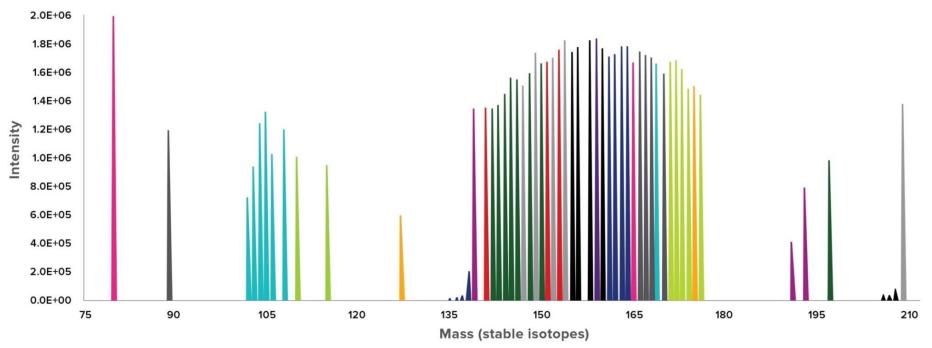
- Sensitivity
- Standardization Cytek assay settings
 - APDs with flat top lasers
- Autofluorescence as a parameter
- Small particle detection
- Plate loader and volumetric
- Resources customer service
- Familiarity

Weaknesses

- New
- No redundancy
- Slow warmup
- ????

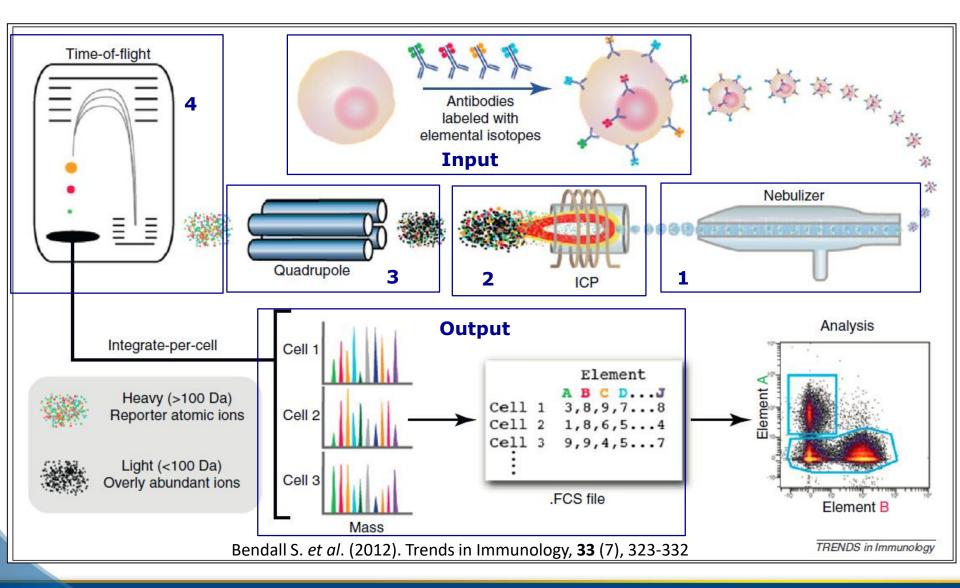
MASS CYTOMETRY FLUIDIGM HELIOS

Recently replaced the CyTOF 1.5 in January 2021



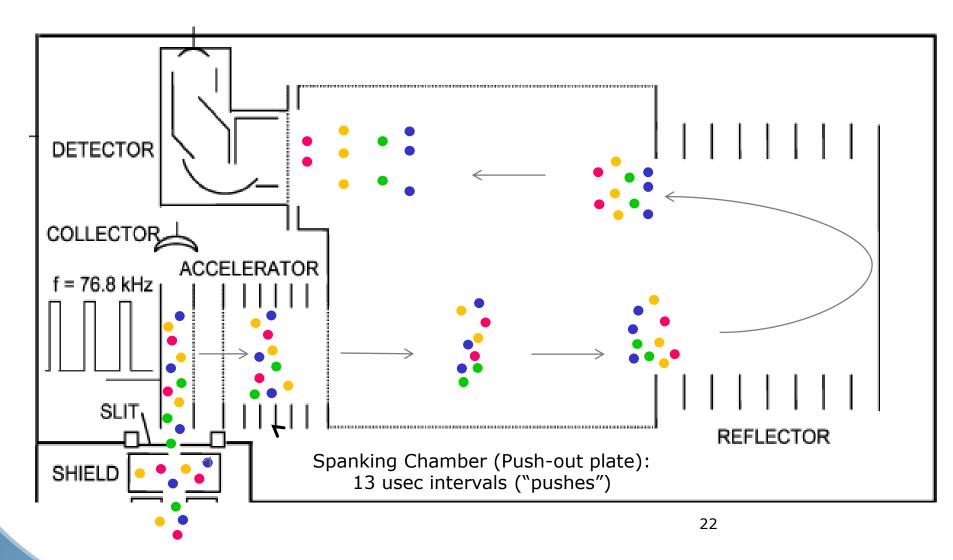
Evolution of the CyTOF

CyTOF 'Spectrum'

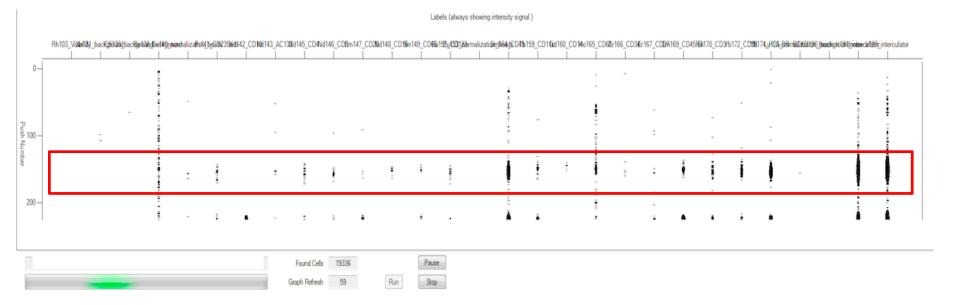


135 channels (75–209 Da range) to measure all existing tags, with more tags being developed

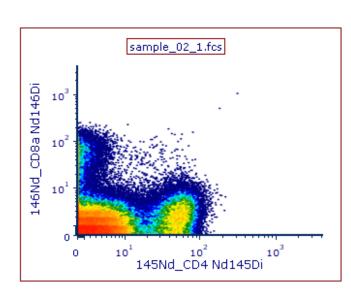
- Abundant tags of similar intensity
- Discreet signals: minimal overlap
- Single metal controls not required
- Background cellular signal: often zero

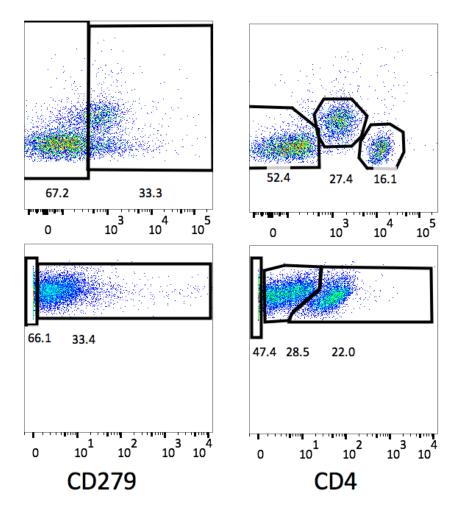


Summarizing the System



4. The TOF Chamber


The Raindrop Display



- 29 Parameters Total
- 200 pushes shown
- Some background in the Ba channel
- Good event rate ~300 evt/sec
- Software processes the raw data to generate the FCS file.
 - System also generates a "raw" IMD file

Output: Comparing the Signal

Flow Run

CyTOF Run

MC Strengths and Weaknesses

- Ludo Strengths
 - Discovery and/or depth
 - No autofluorescence
 - Relative panel design ease
 - Barcoding
 - Sample storage

Weaknesses

- All new reagents
- No redundancy
- Sample prep concerns
 - No scatter parameter
- Slow

THANK YOU

