Archives News

2014 2013 2012 2011 2010 Archives

  • December 14, 2009

    NSC Graduate Student, Cory Hussar, Publishes an Article in December 2009 Edition of Neuron

    Cory Hussar, a 5th year Neuroscience graduate student in Dr. Tania Pasternak's lab (NBA) has published an article in this month's edition of Neuron. The article, entitled Flexibility of sensory representations in prefrontal cortex depends on cell type, reports that neurons in prefrontal cortex (PFC) represent visual motion with precision comparable to cortical neurons at early stages of motion processing, and readily adapt this representation to behavioral context. Furthermore, results show that flexible sensory representation during active discrimination tasks is achieved in the PFC by a specialized neuronal network of both NS neurons readily adjusting their selectivity to behavioral context, and BS neurons capable of maintaining relatively stable sensory representation.

  • December 9, 2009

    Helen Wei and Youngsun Cho Accepted into MSTP Program

    Congratulations to Helen Wei and Youngsun Cho, both recently accepted into the MSTP (MD-PhD program) from the MD-MS Program in Medical Neurobiology. We are delighted to welcome them to a continued and augmented commitment to neuroscience research as they now pursue their PhD candidacy and thesis projects.

  • November 10, 2009

    Scientists Create a 'Golden Ear' Mouse with Great Hearing as It Ages

    What do you get when you cross a mouse with poor hearing and a mouse with even worse hearing? Ironically, a new strain of mice with golden ears - mice that have outstanding hearing as they age.

    The work by one of the world's foremost groups in age-related hearing loss, or presbycusis, marks the first time that scientists have created the mouse equivalent of a person with golden ears - people who are able to retain great hearing even as they grow older. The research at the University of Rochester Medical Center was published online recently in the journal Neurobiology of Aging.

    The new mouse is expected to offer clues about how these lucky folks are able to retain outstanding hearing even through old age. Researchers estimate that approximately 5 percent of people, mainly women, fall into this category. The new mice created in the laboratory of Robert Frisina, Ph.D., embody many of the same traits of human golden ears because of an astute cross of two types of mice long popular with researchers.

  • October 9, 2009

    Katie McAvoy receives the Ruth L. Kirschstein National Research Service Awards

    Congratulations to Kathleen McAvoy, a graduate student in Neuroscience. Katie received Ruth L. Kirschstein National Research Service Awards for Individual Predoctoral Fellows. The title of her grant is, The role of the von-Hippel Lindau protein in developmental cell death in sympathetic neurons.

  • October 7, 2009

    Neuroscientist Wins Society Career Development Award

    The Society for Neuroscience has given Raphael Pinaud, assistant professor of Brain and Cognitive Sciences, a 2009 Career Development Award in recognition of his contributions in neuroscience.The award recognizes scientists that have published substantial contributions to science and have shown indications of leadership in ideas for colleagues within the scientific community.

  • October 1, 2009

    Dr. Kerry O'Banion featured in NASA Fall Newsletter

    The son of two educators, Kerry O'Banion has always adopted a broad view in his scientific pursuits. As an undergraduate at the University of Illinois in Urbana-Champaign, he investigated pair bonding behavior in common prairie voles, but chose Microbiology for his PhD work because of the promise of immersing himself in molecular biology. Indeed, at the same time he was learning about human pathophysiology and how to do a proper neurological examination as an MD-PhD trainee in the nascent Medical Scholars Program, also at the University of Illinois in Urbana-Champaign, Kerry entertained working with Carl Woese, who had established the existence of a new kingdom of organisms (Archaea) by sequencing rRNA. Ultimately Kerry carried out his thesis work with Manfred Reichmann in Microbiology and John Sundberg in the Department of Veterinary Pathobiology to characterize and clone novel animal papillomaviruses. All together, he cloned viruses from six animal species and witnessed at national and international conferences the recognition that oncogenic human papillomaviruses caused cervical and other epithelial cancers.

  • September 30, 2009

    $10.5 Million in Funding Creates Center to Study OCD

    A new research center exploring the science underlying a potential new treatment for obsessive-compulsive disorder has been established at the University of Rochester Medical Center, thanks to a $10.5 million award from the National Institute of Mental Health.

    Rochester will serve as the hub of a five-year collaborative effort that includes six institutions around the nation and in Puerto Rico. The prestigious Silvio O. Conte Center will link more than 50 researchers who will focus on how deep brain stimulation affects people with obsessive-compulsive disorder.

    Obsessive-compulsive disorder is a truly debilitating disease for some patients, said Rochester neuroscientist Suzanne Haber, Ph.D., professor of Pharmacology and Physiology, who heads the center. While treatment helps most patients lead fulfilling lives, there are a few for whom today's therapies simply don't work. Our center is designed to explore the science and the effects of deep-brain stimulation, which has been effective for some other diseases involving the brain, such as Parkinson's disease.

  • September 29, 2009

    Emmy Awarded to ABC News Primetime Story Featuring Jonathan Mink, M.D., Ph.D.

    ABC News was recognized with an Emmy Award from the National Academy of Television Arts and Sciences for a Primetime story featuring URMC pediatric neurologist Jonathan Mink, M.D., Ph.D. Dr. Mink, a professor of Neurology, Neurobiology & Anatomy, Pediatrics, and Brain & Cognitive Sciences, focuses his reseach on the function of the basal ganglia in normal control of movement and the pathophysiology of basal ganglia disorders characterized by abnormal involuntary movements.

  • September 9, 2009

    First Year PhD Student in Neuroscience Receives the Merritt and Marjorie Cleveland Fellowship Award.

    Congratulations to Adam Pallus, 1st year Ph.D. student in Neuroscience for receiving the Merritt and Marjorie Cleveland Fellowship Award. The fund was established in 1991, with a gift from Mr. and Mrs. Merritt Cleveland. The fund supports a first year graduate student entering graduate study through the Graduate Education in the Biomedical Sciences Program with an interest in developing a neuroscience-related research career.

  • July 28, 2009

    Blue Dye May Hold Promise in Treating Spinal Cord Injury

    A compound strikingly similar to the common food additive that gives M&Ms and Gatorade their blue tint may offer promise for preventing the additional – and serious – secondary damage that immediately follows a traumatic injury to the spinal cord. In an article published online today in the Proceedings of the National Academy of Sciences, researchers report that the compound Brilliant Blue G (BBG) stops the cascade of molecular events that cause secondary damage to the spinal cord in the hours following a spinal cord injury, an injury known to expand the injured area in the spinal cord and permanently worsen the paralysis for patients.

    This research builds on landmark laboratory findings first reported five years ago by researchers at the University of Rochester Medical Center. In the August 2004 cover story of Nature Medicine, scientists detailed how ATP, the vital energy source that keeps our body's cells alive, quickly pours into the area surrounding a spinal cord injury shortly after it occurs, and paradoxically kills off what are otherwise healthy and uninjured cells.

    This surprising discovery marked a milestone in establishing how secondary injury occurs in spinal cord patients. It also laid out a potential way to stop secondary spinal injury, by using oxidized ATP, a compound known to block ATP's effects. Rats with damaged spinal cords who received an injection of oxidized ATP were shown to recover much of their limb function, to the point of being able to walk again, ambulating effectively if not gracefully.

  • July 24, 2009

    Dr. Julie Fudge co-authors an article in the August edition of Nature Reviews Neuroscience.

    Julie Fudge, M.D., Associate Professor of Neurobiology & Anatomy and Psychiatry has co-authored an article in Nature Reviews Neuroscience with Walter Kaye and Martin Paulus. Fudge's lab studies the anatomy and neurochemistry of brain regions associated with symptoms in major psychiatric illnesses such as schizophrenia and mood disorders.

  • June 15, 2009

    Protein Regulates Movement of Mitochondria in Brain Cells

    Scientists have identified a protein in the brain that plays a key role in the function of mitochondria - the part of the cell that supplies energy, supports cellular activity, and potentially wards off threats from disease.The discovery, which was reported today in the Journal of Cell Biology, may shed new light on how the brain recovers from stroke.

  • May 16, 2009

    Nancy Ann Oberheim Bush, Ph.D., Receives the 2009 Vincent du Vigneaud Award

    Congratulations to Nancy Ann Oberheim Bush, Ph.D., for receiving the 2009 Vincent du Vigneaud Award! This award is given annually by the School of Medicine to a graduating student judged to have performed especially meritorious research that stands out for its potential for stimulating and extending research in the field.

  • May 15, 2009

    Neuroscience Alumnus Receives Robert Doty Award

    Yasser Elshatory, M.D., Ph.D., a former student in the Neuroscience Graduate Program and Medical Scientist Training Program, has received the Robert Doty Award of Excellence in recognition of outstanding dissertation research in neuroscience. His doctoral thesis, carried out under the direction of Dr. Lin Gan, was in the field of developmental neurobiology and entitled The LIM-homeodomain protein Islet-1 is a key regulator of restricted neuronal subtypes in the retina and forebrain.

    His work uncovered a novel gene network involved in the establishment of restricted neuronal lineages in the developing retina and a similar network important for development of the cholinergic phenotype in the forebrain. Collectively, Dr. Elshatory's thesis research resulted in three first author publications, two in the Journal of Neuroscience and one in the Journal of Comparative Neurology. After graduating, Dr. Elshatory completed an internship in transitional medicine in San Bernardino County, California and is currently an ophthalmology resident at the Dean McGee Eye Institute in Oklahoma City, OK.

    Dr. Robert Doty was a leading brain researcher who helped create what is now the world's largest organization of neuroscientists, the Society for Neuroscience. Dr. Doty had served the University of Rochester School of Medicine and Dentistry since 1961, a central figure to a team of people that has made the University an internationally recognized powerhouse in neuroscience.

  • May 11, 2009

    Neuroscience Graduate Student Wins Travel Fellowship to International Multisensory Research Forum

    Congratulations to Maria Diehl for winning a travel fellowship to attend the 10th International Multisensory Research Forum in New York City. The forum will be held June 29 - July 2 at the City College of New York. Featured keynote speakers this year are Dora Angelaki, Jon Kaas, and Nikos Logothetis.

  • April 15, 2009

    Rochester Scientist Wins Major Award for Alzheimer's Research

    A Rochester researcher whose work has opened up a whole new avenue in Alzheimer's disease research has received a major prize from the American Academy of Neurology.

    Berislav Zlokovic, M.D., Ph.D., director of the Center for Neurodegenerative and Vascular Brain Disorders at the University of Rochester Medical Center, will receive the 2009 Potamkin Prize for Research in Pick's, Alzheimer's, and Related Diseases during the AAN annual meeting later this month in Seattle.

  • April 1, 2009

    Rigorous Visual Training Teaches the Brain to See Again After Stroke

    By doing a set of vigorous visual exercises on a computer every day for several months, patients who had gone partially blind as a result of suffering a stroke were able to regain some vision, according to scientists who published their results in the April 1st issue of the Journal of Neuroscience.

    We were very surprised when we saw the results from our first patients, said Krystel Huxlin, Ph.D., the neuroscientist and associate professor who led the study of seven patients at the University of Rochester Flaum Eye Institute. This is a type of brain damage that clinicians and scientists have long believed you simply can't recover from. It's devastating, and patients are usually sent home to somehow deal with it the best they can.

  • March 23, 2009

    Astrocytes Help Separate Man from Mouse

    A type of brain cell that was long overlooked by researchers embodies one of very few ways in which the human brain differs fundamentally from that of a mouse or rat, according to researchers who published their findings as the cover story in the March 11 issue of the Journal of Neuroscience.

    Scientists at the University of Rochester Medical Center found that human astrocytes, cells that were long thought simply to support flashier brain cells known as neurons that send electrical signals, are bigger, faster, and much more complex than those in mice and rats.

    "There aren't many differences known between the rodent brain and the human brain, but we are finding striking differences in the astrocytes. Our astrocytes signal faster, and they're bigger and more complex. This has big implications for how our brains process information," said first author Nancy Ann Oberheim, Ph.D., a medical student who recently completed her doctoral thesis on astrocytes.

  • January 5, 2009

    Researchers Find New Point of Entry for HIV in Brain Cells

    Although AIDS is not usually considered a neurological disorder, the human immunodeficiency virus (HIV) can and does attack the brain—resulting in tremors, memory impairments, even dementia. Researchers have now identified a route through which the virus wreaks havoc on brain cells. The finding, appearing online in the November 14th issue of the open-access journal PLoS One, may point to new approaches for treating a phase of the disease that is ominously on the increase.

  • December 29, 2008

    Can’t hear at holiday parties? Blame your brain

    Scientists are still trying to piece together why our hearing goes downhill with age, with the goal of trying to slow it or even reverse it. When it comes to the cocktail party problem, the dimmer switch is a piece of that story, though it's not clear just how big a factor.

    I think it's a significant player, said Robert Frisina of the University of Rochester in New York, who is studying it. Frisina and colleagues published evidence in 2002 that the dimmer switch effectiveness declines with age. The drop-off showed up in middle-aged people (ages 38 to 52) and was even worse in people past age 62.

  • December 18, 2008

    Panel: EPA must consider effects of chemical barrage

    Chemicals that interfere with the male hormone system are so common — and so potentially damaging — that the government should stop studying them one by one and consider their combined effect, an expert panel said Thursday.

    The Environmental Protection Agency typically studies the impact of these and other chemicals individually. But that approach may underestimate the effect of being exposed to many different chemicals with similar effects, says the University of Rochester School of Medicine and Dentistry's Deborah Cory-Slechta, chairwoman of the committee that wrote the report.

  • November 1, 2008

    Ania Majewska, Ph.D. named a Kavli Fellow

    Congratulations to Ania Majewska, Ph.D. on being named a Kavli Fellow by the National Academy of Sciences (NAS). Each year the NAS conducts the Kavli Frontiers of Science Symposium with some 100 of the best and brightest of young American scientists attending to hear, discuss, and debate talks across a wide range of the natural sciences. Thus, many of the country's ablest scientists--those now rising to positions of leadership in their institutions and their professions--have gone through a seminar on the value and potential of interdisciplinary research. Attendees are selected from a pool of young researchers who have made significant contributions to science.

  • October 30, 2008

    Scientists Rate University of Rochester a Best Place to Work

    Not only is the University of Rochester the region's largest employer - it's also one of the best places in the nation for scientists to work, according to The Scientist magazine.

    It's gratifying to be recognized for the research environment that we've worked hard to create, said Bradford C. Berk, M.D., Ph.D., CEO of the Medical Center. This is an institution founded on the principle of interdisciplinary collaboration. Our scientists' satisfaction plays an important role in the ultimate success of our research enterprise, and helps us truly achieve Medicine of the Highest Order.

  • September 23, 2008

    Rochester Neuroscientist Honored By Danish Academy

    Maiken Nedergaard, M.D., D.M.Sc., has been elected a member of the Royal Danish Academy of Sciences, the premier scientific society in Denmark. The society elects only six new members worldwide every other year.

    Nedergaard has been a pioneer in brain research, demonstrating that brain cells known as astrocytes play a role in a host of human diseases. For decades, much of the attention of neuroscientists had been focused on brain cells known as neurons, which send electrical signals. Astrocytes were long considered cells whose primary function was to support the neurons.

    Nedergaard has turned that notion on its head, showing that astrocytes themselves play an important role in epilepsy, spinal cord disease, migraine headaches, stroke, and Alzheimer's disease.

  • August 1, 2008

    Summer students Excel in research

    The GEBS summer scholars program is designed for Undergraduate students interested in the Ph.D. degree in the Biological or Biomedical Sciences and students with a potential interest in attending graduate school at the University of Rochester. Students choose from a list of mentors and fill out an application.

  • May 15, 2008

    Neuroscience Alumnus Receives Robert Doty Award

    Xiaohai Wang, M.D., Ph.D., a former student in the Neuroscience Graduate Program, has received the Robert Doty Award of Excellence in recognition of outstanding dissertation research in neuroscience. He received his M.D. from China Medical University, Shenyang, Liaoning, China in 1999, and then worked as an instructor in the Department of Histology & Embryology at the same university until 2002 when he moved to the United States to begin Ph.D. studies in Neuroscience at New York Medical College.

    Dr. Wang joined Dr. Maiken Nedergaard's laboratory for his thesis work. Dr. Wang's dissertation entitled Role of astrocytic Ca2+ signaling in response to sensory stimulation in vivo demonstrated that astrocytes can mediate slow sensory adaptation through Ca2+ dependent release of adenosine. During his tenure as a graduate student, Dr. Wang co-authored a very impressive nine publications with Dr. Nedergaard, including two first author papers in Nature Neuroscience and Nature Medicine. After graduation, he accepted a position as Senior Research Biologist at Merck Research Laboratories.

    Dr. Robert Doty was a leading brain researcher who helped create what is now the world's largest organization of neuroscientists, the Society for Neuroscience. Dr. Doty had served the University of Rochester School of Medicine and Dentistry since 1961, a central figure to a team of people that has made the University an internationally recognized powerhouse in neuroscience.

  • January 14, 2008

    Our Understanding of Movement Is on the Move

    How our brain controls our movements is a bit more complex and varied than scientists have previously recognized, according to research recently published in Science by a team of scientists and physicians at the University of Rochester Medical Center.

    The team led by neurologist Marc Schieber, M.D., Ph.D., professor of Neurology and of Neurobiology & Anatomy, showed that at least occasionally, the brain is able to bypass the usual route of nerve fibers it uses for controlling hand and finger movements, using an alternate route to send its signals. Such flexibility in controlling movement has been suspected but not actually shown before.

  • January 2, 2008

    Research Unveils New Hope for Deadly Childhood Disease

    Investigators at the University of Rochester Medical Center have uncovered a promising drug therapy that offers a ray of hope for children with Batten disease - a rare neurodegenerative disease that strikes seemingly healthy kids, progressively robs them of their abilities to see, reason and move, and ultimately kills them in their young twenties.

    The study, highlighted in the January edition of Experimental Neurology, explains how investigators improved the motor skills of feeble mice that model the disease, helping them to better their scores on successive coordination tests. No treatment currently exists for these kids – nothing to halt the disease, or even to slow it down, said one of the study's authors, David Pearce, Ph.D., a nationally renowned Batten disease expert and Biochemistry professor at the University of Rochester. His team has published more than 50 studies on the disease's basic mechanisms.

  • December 24, 2007

    Sleep Chemical Central to Effectiveness of Deep Brain Stimulation

    A brain chemical that makes us sleepy also appears to play a central role in the success of deep brain stimulation to ease symptoms in patients with Parkinson's disease and other brain disorders. The surprising finding is outlined in a paper published online Dec. 23 in Nature Medicine.

    The work shows that adenosine, a brain chemical most widely known as the cause of drowsiness, is central to the effect of deep brain stimulation, or DBS. The technique is used to treat people affected by Parkinson's disease and who have severe tremor, and it's also being tested in people who have severe depression or obsessive-compulsive disorder.

    Patients typically are equipped with a brain pacemaker, a small implanted device that delivers carefully choreographed electrical signals to a very precise point in the patient's brain. The procedure disrupts abnormal nerve signals and alleviates symptoms, but doctors have long debated exactly how the procedure works.

    Certainly the electrical effect of the stimulation on neurons is central to the effect of deep brain stimulation, said Maiken Nedergaard, M.D., Ph.D., the neuroscientist and professor in the Department of Neurosurgery who led the research team. But we also found a very important role for adenosine, which is surprising.

  • November 7, 2007

    Copper Damages Protein that Defends Against Alzheimer’s

    The research by neuroscientists at the URMC was presented at the annual meeting of the Society for Neuroscience in San Diego Nov. 3-7. The work was highlighted as part of a press conference on potential environmental influences on Alzheimer's disease.

    The team found that copper damages a molecule known as LRP (low-density lipoprotein receptor-related protein), a molecule that acts like an escort service in the brain, shuttling amyloid-beta out of the brain and into the body. The molecule's role in Alzheimer's was revealed more than a decade ago by another author of the work, Berislav Zlokovic, M.D., Ph.D., professor of Neurosurgery and Neurology and director of the Frank P. Smith Laboratory for Neuroscience and Neurosurgery Research. Zlokovic is widely recognized for demonstrating that blood vessels, blood flow, and the blood-brain barrier are central to the development of Alzheimer's disease.

  • November 5, 2007

    Worms Take the Sniff Test to Reveal Sex Differences in Brain

    In the experiment at the University of Rochester Medical Center, worms that are hermaphrodites (with characteristics of both females and males) went for the buttery smell, while the males - the other of the two sexes in these worms - opted for the scent of fresh vegetables. But when researchers tricked a few nerve cells in hermaphrodites into sensing that they were in a male worm, suddenly they too preferred the smell of fresh vegetables.

    Geneticist Douglas Portman, Ph.D., and graduate student KyungHwa Lee ultimately hope to understand gender differences in diseases like autism, depression, and attention-deficit disorder. Many more boys than girls are diagnosed with ADD and autism, and many more girls than boys are diagnosed with depression. While proposed explanations abound, few scientists debate the notion that the brains of the sexes are in some ways fundamentally different.

  • August 30, 2007

    Alzheimer’s Project Focuses on Role of Brain Inflammation

    Scientists at the University of Rochester Medical Center have received $1.37 million to continue their work looking at some of the earliest events that occur at the start of Alzheimer's disease - a condition that now generally goes undetected until the death of key brain cells has been underway for decades.

    The team led by William Bowers, Ph.D., associate professor of Neurology and a scientist in the Center for Neural Development and Disease, is focusing on the role of inflammation in the evolution of the disease. Just as rheumatoid arthritis can ravage the body's joints because of the inflammation it causes, scientists are realizing that the same thing happens to the brain in patients with Alzheimer's disease. The brain can be under assault for decades as the body attempts to fend off some perceived threat.

  • August 13, 2007

    Draining Away Brain's Toxic Protein to Stop Alzheimer's

    Scientists are trying a plumber's approach to rid the brain of the amyloid buildup that plagues Alzheimer's patients: Simply drain the toxic protein away.

    That's the method outlined in a paper published online August 12th by Nature Medicine. A team of scientists from the University of Rochester Medical Center, led by neuroscientist Berislav Zlokovic, M.D., Ph.D., show how the body's natural way of ridding the body of the substance is flawed in people with the disease. Then the team demonstrated an experimental method in mice to fix the process, dramatically reducing the levels of the toxic protein in the brain and halting symptoms. The team is now working on developing a version of the protein that could be tested in people with the disease.

  • August 3, 2007

    Spouses Awarded Prestigious Sloan, Pew Fellowships

    This summer the University of Rochester Medical Center boasts winners of two of the most prestigious awards available to young scientists - and the winners are from the same family.

    Edward Brown, Ph.D., has been named a Pew Scholar in the Biomedical Sciences, and his spouse Ania Majewska, Ph.D., has received an award from the Alfred P. Sloan Foundation. Brown, one of just 20 scientists in the nation to be recognized by the Pew Charitable Trusts this year, will receive $240,000 toward his research, while Majewska will receive $45,000 to continue her work.

  • June 4, 2007

    Brain Inflammation may be Friend, Not Foe, for Alzheimer’s Patients

    In the June 1st issue of the Journal of Clinical Investigation, a team of scientists from the University of Rochester Medical Center shows that a key inflammatory regulator, a known villain when it comes to parsing out damage after a stroke and other brain injuries, seems to do the opposite in Alzheimer's disease, protecting the brain and helping get rid of clumps of material known as plaques that are a hallmark of the disease.

  • May 17, 2007

    Commonly Used Drug Offers Promise for Premature Babies

    Scientists have found evidence that the cox-2 inhibitor celecoxib, a common pain reliever used to treat arthritis, may offer a new way to reduce the risk of the most common cause of brain damage in babies born prematurely.

    The work involves shoring up blood vessels in a part of the brain that in premature infants is extremely fragile and vulnerable to dangerous bleeding, which affects an estimated 12,000 children a year, leaving many permanently affected by cerebral palsy, mental retardation, and seizures.

    The laboratory research was done primarily in a laboratory at New York Medical College led by neonatologist Praveen Ballabh, M.D. Ballabh's team worked with Rochester neuroscientists including Maiken Nedergaard, M.D., D.M.Sc., Steven Goldman, M.D., Ph.D., and Nanhong Lou, B.M.

  • October 11, 2006

    Cajal Club Explorer Award

    A couple of weeks ago, Gary Paige, M.D., Ph.D., Chair of the Department of Neurobiology & Anatomy, was informed that Ania Majewska, Ph.D., an Assistant Professor who had recently joined the department, had won the Cajal Club Explorer Award. Receiving such a prestigious award is a cause for recognition and celebration. What make's this all the more special, however, is Ania's personal and professional story.

  • August 25, 2006

    Speedsters’ Traffic Fines Fund New Research on Spinal Cord Injury

    More than a dozen Rochester scientists seeking ways to reverse or lessen the effects of paralysis and other effects of spinal cord injury will begin new projects and continue promising research, thanks to motorists in New York State who push the gas medal a little too far.

    Three research projects at the University of Rochester Medical Center are among the programs funded this year through the Spinal Cord Injury Research Program run by the New York State Department of Health. The program, created in 1998, uses fines paid by speeding motorists to fund research into spinal cord injury, whose number-one cause nationwide is motor vehicle accidents. In Rochester this year the grants are going to Roman Giger, Ph.D.; Maiken Nedergaard, M.D., Ph.D.; and Mark Noble, Ph.D.

  • May 15, 2006

    Flick of Whiskers Helps Tease Out Brain’s ‘Shadow’ Signaling System

    By blowing gentle puffs of air onto a mouse's whiskers and watching how its brain reacts, scientists are discovering that a long-overlooked signaling system in the brain is crucial to our everyday activity.

    The work is the latest in a growing body of evidence that star-shaped brain cells known as astrocytes aren't simply support cells but are stars of the brain in their own right, say researchers at the University of Rochester Medical Center who did the study. The work will be reported in a paper in the June issue of Nature Neuroscience and is now available online.

    Now people have to take astrocytes seriously, said Maiken Nedergaard, M.D., Ph.D., professor in the Department of Neurosurgery and a member of the Center for Aging and Developmental Biology, whose team did the research. In the past few years she has found that the cells, long thought to simply nourish other cells and clean up their wastes, are central to diseases like epilepsy, spinal cord injury, and maybe even Alzheimer's disease.

  • February 23, 2006

    $3.5 Million Grant To Support Research on New Treatment for Severe OCD

    As part of a five-year, $3.5 million grant from the National Institutes of Health (NIH), researchers will look at whether a breakthrough therapy for Parkinson's disease can also treat the worst cases of obsessive compulsive disorder (OCD). A research team led out of the University of Rochester Medical Center will measure whether Deep Brain Stimulation (DBS) can reduce the rampant anxiety that keeps some OCD patients homebound.

    DBS is one of the most promising areas of OCD research because early studies show that it may help many within the approximately 20 percent of OCD patients for whom neither psychological nor drug therapy works, said Suzanne Haber, Ph.D., a professor within the Department of Pharmacology and Physiology at the University of Rochester School of Medicine and Dentistry. Some patients have been able to venture out to work and school for the first time with DBS, said Haber, who is lead investigator for the grant.

  • January 6, 2006

    Blood Flow in Brain Takes a Twist, Affecting Views of Alzheimer’s

    New findings that long-overlooked brain cells play an important role in regulating blood flow in the brain call into question one of the basic assumptions underlying today's most sophisticated brain imaging techniques and could open a new frontier when it comes to understanding Alzheimer's disease.

    In a paper to appear in the February issue of Nature Neuroscience and now available on-line, scientists at the University of Rochester Medical Center demonstrate that star-shaped brain cells known as astrocytes play a direct role in controlling blood flow in the brain, a crucial process that allows parts of the brain to burst into activity when needed. The finding is intriguing for a disease like Alzheimer's, which has long been considered a disease of brain cells known as neurons, and certainly not astrocytes.

    For many years, astrocytes have been considered mainly as housekeeping cells that help nourish and maintain a healthy environment for neurons. But it's turning out that astrocytes may play a central role in many human diseases, said neuroscientist Maiken Nedergaard, M.D., Ph.D., who has produced a string of publications fingering astrocytes in diseases like epilepsy and spinal cord injury.

  • August 15, 2005

    Roots of Epilepsy May Lie in Oft-Ignored Brain Cells

    Star-shaped brain cells that are often overlooked by doctors and scientists as mere support cells appear to play a key role in the development of epilepsy, researchers say in a study published on-line August 14 in Nature Medicine. It's one of the first times scientists have produced firm evidence implicating the cells, known as astrocytes, in a common human disease.

    Scientists found that astrocytes can serve as ground zero in the brain, setting off a harmful cascade of electrical activity in the brain by sending out a brain chemical that triggers other brain cells to fire out of control.

    While it's impossible to tell at this early stage what effect the finding will have on treatment, the investigators at the University of Rochester Medical Center are hopeful the results will give doctors and pharmaceutical firms a new target in efforts to treat and prevent the disease.

    This opens up a new vista in efforts to treat epilepsy. It might be possible to treat epilepsy not by depressing or slowing brain function, as many of the current medications do, but by targeting brain cells that have been completely overlooked, says Maiken Nedergaard, M.D., Ph.D., professor in the Department of Neurosurgery and a researcher in the Center for Aging and Developmental Biology, who led the research. We are hopeful that someday, this will be very beneficial to patients.

  • July 28, 2004

    Scientists Finger Surprise Culprit in Spinal Cord Injury

    ATP, the vital energy source that keeps our body's cells alive, runs amok at the site of a spinal cord injury, pouring into the area around the wound and killing the cells that normally allow us to move, scientists report in the cover story of the August issue of Nature Medicine.

    The finding that ATP is a culprit in causing the devastating damage of spinal cord injury is unexpected. Doctors have known that initial trauma to the spinal cord is exacerbated by a cascade of molecular events over the first few hours that permanently worsen the paralysis for patients. But the finding that high levels of ATP kill healthy cells in nearby regions of the spinal cord that were otherwise uninjured is surprising and marks one of the first times that high levels of ATP have been identified as a cause of injury in the body.

    While the work opens up a promising new avenue of study, the work is years away from possible application in patients, cautions Maiken Nedergaard, M.D., Ph.D., the researcher who led the study. In addition, the research offers promise mainly to people who have just suffered a spinal cord injury, not for patients whose injury is more than a day old. Just as clot-busting agents can help patients who have had a stroke or heart attack who get to an emergency room within a few hours, so a compound that could stem the damage from ATP might help patients who have had a spinal cord injury and are treated immediately.

  • March 28, 2002

    New Findings About Brain's 'Compass' Offer Clues About Alzheimer's

    A tiny section of the brain that is ravaged by Alzheimer's disease is more important for our ability to orient ourselves than scientists have long thought, helping to explain why people with the disease become lost so easily. The findings by neuroscientists at the University of Rochester Medical Center are reported in the March 29 issue of Science.

    Neurologist Charles Duffy, M.D., Ph.D., previously discovered that a small section of brain tissue slightly above and behind the ear - known as the medial superior temporal area (MST) - acts much like a compass, instantly updating your mental image of your body's movements through space. In new research, Duffy and graduate student Michael Froehler show that the MST acts not only as a compass but also as a sort of biological global positioning system, providing a mental map to help us understand exactly where we are in the world and how we got there.

  • January 31, 2002

    Road Skills Hint At "Motion Blindness" Of Alzheimer's

    Doctors have added to the evidence that patients with Alzheimer's disease lose their way not simply because their memory is failing but because they are subject to a unique form of brain damage that causes symptoms doctors call "motion blindness." Some of the new data comes from driving tests of a small number of patients, where researchers have linked the condition to the loss of one specific driving skill: the ability to stay in one's lane while driving.

    While it's obvious that people with Alzheimer's disease are losing their memory, that's only part of the reason why they become lost, says neurologist Charles Duffy, M.D., Ph.D., who leads the research team at the University of Rochester Medical Center. These patients also lose their ability to perceive their own motion. That's ultimately what puts them at much greater risk than others of becoming lost.

Stay Up-To-Date

Stay up to date with the Neuroscience Graduate Program (NGP) by subscribing to our RSS news feed

Subscribe to the Neuroscience Graduate Program LISTSERV to receive news and events via email.