Principal Investigator

Ian Dickerson, Ph.D. University of Rochester work Box 603 601 Elmwood Ave Rochester NY 14642 office: MC 5-8106 p (585) 273-1040

Research Projects

Receptors for the calcitonin family of neuropeptides.

Work from a number of labs has elucidated the receptors for the calcitonin family of neuropeptides. Calcitonin (CT) can bind to the calcitonin receptor, but in the presence of RAMP1 the calcitonin receptor becomes a high-affinity amylin (AMY) receptor. When the calcitonin-like receptor (CLR) is expressed with RAMP1, a high-affinity CGRP receptor is formed. When CLR is expressed with RAMP2 or RAMP3 it binds adrenomedullin (AM) with high affinity. Additionally, intermedin (IM) can bind to CLR in the presence of either RAMP1,2 or 3. RCP is required for signaling at the CLR/RAMP receptor, and work in our lab is focused on determining the function and mechanism of RCP in CLR signaling and as a possible regulator of receptor function in vivo.

  • Cloning of RCP

    Cloning of RCP

    We discovered RCP while conducting expression-cloning studies to identify the CGRP receptor. CGRP binding had been reported to result in elevated levels of intracellular cAMP, and the CGRP receptor was therefore thought to be a GCPR. However, standard expression cloning strategies did not yield a functional receptor, so we tried a method that did not rely on knowledge of receptor type for identification. We instead used a screen that used the cystic fibrosis transmembrane conductance regulator (CFTR) to detect elevated levels of cAMP. More info...

  • Function of RCP

    Function of RCP

    RCP co-immunoprecipitated with RAMP1 and CLR, suggesting that the functional CGRP receptor was a trimer of CLR/RAMP1/RCP proteins. RCP is highly conserved between species, yet does not contain obvious motifs that suggest how it might work to enable CGRP receptor function. Furthermore, RCP is expressed in all immortalized cell lines we have examined, even in those that do not express CGRP receptors and in most tissue, making gain-of-function experiments difficult. More info...

  • CGRP Biosynthesis

    CGRP Biosynthesis

    Most neuropeptides are synthesized as large, biologically inactive precursors that must undergo a series of post-translational modifications to produce the smaller biologically active peptides. Modifications include endoproteolysis at pairs of basic amino acids, removal of the basic residues that constitute the cleavage site, carboxyl amidation and amino acetylation and cyclization. Endoproteolysis can exhibit tissue and developmental specificity, and is a key step in regulating peptide hormone secretion. More info...