Principal Investigator

Benjamin L. Miller, Ph.D. University of Rochester work Box 697 601 Elmwood Ave Rochester NY 14642 office: MC 6-6820 p (585) 275-9805

Contact

Benjamin Miller Lab University of Rochester work MC 5-6818 601 Elmwood Ave Rochester NY 14642 p (585) 275-9805

Affiliations

Molecular Recognition & Biosensing

Research in the Miller group focuses on two fundamental areas: the control of biomolecular interactions through the synthesis of new small-molecule probes, and the observation of biomolecular interactions through the development of novel optical sensing technologies. In the area of control, we are particularly interested in the sequence-selective recognition of RNA. New RNA sequences with important functions in basic biology and human health and disease are being discovered at an ever-increasing rate, and yet our ability to target these sequences specifically is still at a rudimentary stage. To address this gap, we are applying techniques of molecular design and a novel combinatorial method of small-molecule evolution called Dynamic Combinatorial Chemistry, which allows us to rapidly prototype sequence-selective RNA binding molecules. Thus far we have used this methodology to RNA targets important in Myotonic Dystrophy and HIV. Protein-targeted small-molecule discovery projects are also of interest, and current projects include the mechanism of tight junction formation and the transport of beta-amyloid across the blood-brain barrier.

To the end of achieving better methods of observing biomolecular interactions, our group has a longstanding program in the use of the optical properties of nanostructured materials as the basis for new biosensors and diagnostic tools. Two examples of current efforts include Arrayed Imaging Reflectometry (AIR) and sensors based on two-dimensional photonic crystals (2-D PhC). AIR relies on the creation of a near-perfect antireflection coating on the surface of a silicon chip; binding of a biomolecular target destroys this antireflective condition and is visible by a change in reflected light. This allows for highly multiplexed (10's to 1000's of targets) and quantitative detection. Photonic crystal sensors, on the other hand, offer the possibility of ultrasensitive detection: for example, a major long-term goal of our work is the production of sensors that can effectively detect one virus in a blood sample.

Recent Publications

    1. Baker JE
    2. Sriram R
    3. Miller BL
    (2015 Feb 03). Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing. Lab Chip. 15, 971-90.
    1. Wang LS
    2. Naj AC
    3. Graham RR
    4. Crane PK
    5. Kunkle BW
    6. Cruchaga C
    7. Murcia JD
    8. Cannon-Albright L
    9. Baldwin CT
    10. Zetterberg H
    11. Blennow K
    12. Kukull WA
    13. Faber KM
    14. Schupf N
    15. Norton MC
    16. Tschanz JT
    17. Munger RG
    18. Corcoran CD
    19. Rogaeva E
    20. Lin CF
    21. Dombroski BA
    22. Cantwell LB
    23. Partch A
    24. Valladares O
    25. Hakonarson H
    26. St George-Hyslop P
    27. Green RC
    28. Goate AM
    29. Foroud TM
    30. Carney RM
    31. Larson EB
    32. Behrens TW
    33. Kauwe JS
    34. Haines JL
    35. Farrer LA
    36. Pericak-Vance MA
    37. Mayeux R
    38. Schellenberg GD
    39. National Institute on Aging–Late-Onset Alzheimer’s Disease (NIA-LOAD) Family Study
    40. Alzheimer’s Disease Genetics Consortium
    41. Albert MS
    42. Albin RL
    43. Apostolova LG
    44. Arnold SE
    45. Barber R
    46. Barmada MM
    47. Barnes LL
    48. Beach TG
    49. Becker JT
    50. Beecham GW
    51. Beekly D
    52. Bennett DA
    53. Bigio EH
    54. Bird TD
    55. Blacker D
    56. Boeve BF
    57. Bowen JD
    58. Boxer A
    59. Burke JR
    60. Buxbaum JD
    61. Cairns NJ
    62. Cao C
    63. Carlson CS
    64. Carroll SL
    65. Chui HC
    66. Clark DG
    67. Cribbs DH
    68. Crocco EA
    69. DeCarli C
    70. DeKosky ST
    71. Demirci FY
    72. Dick M
    73. Dickson DW
    74. Duara R
    75. Ertekin-Taner N
    76. Fallon KB
    77. Farlow MR
    78. Ferris S
    79. Frosch MP
    80. Galasko DR
    81. Ganguli M
    82. Gearing M
    83. Geschwind DH
    84. Ghetti B
    85. Gilbert JR
    86. Glass JD
    87. Graff-Radford NR
    88. Growdon JH
    89. Hamilton RL
    90. Hamilton-Nelson KL
    91. Harrell LE
    92. Head E
    93. Honig LS
    94. Hulette CM
    95. Hyman BT
    96. Jarvik GP
    97. Jicha GA
    98. Jin LW
    99. Jun G
    100. Kamboh MI
    101. Karydas A
    102. Kaye JA
    103. Kim R
    104. Koo EH
    105. Kowall NW
    106. Kramer JH
    107. Kramer P
    108. LaFerla FM
    109. Lah JJ
    110. Leverenz JB
    111. Levey AI
    112. Li G
    113. Lieberman AP
    114. Lopez OL
    115. Lunetta KL
    116. Lyketsos CG
    117. Mack WJ
    118. Marson DC
    119. Martin ER
    120. Martiniuk F
    121. Mash DC
    122. Masliah E
    123. McCormick WC
    124. McCurry SM
    125. McDavid AN
    126. McKee AC
    127. Mesulam MM
    128. Miller BL
    129. Miller CA
    130. Miller JW
    131. Montine TJ
    132. Morris JC
    133. Murrell JR
    134. Olichney JM
    135. Parisi JE
    136. Perry W
    137. Peskind E
    138. Petersen RC
    139. Pierce A
    140. Poon WW
    141. Potter H
    142. Quinn JF
    143. Raj A
    144. Raskind M
    145. Reiman EM
    146. Reisberg B
    147. Reitz C
    148. Ringman JM
    149. Roberson ED
    150. Rosen HJ
    151. Rosenberg RN
    152. Sano M
    153. Saykin AJ
    154. Schneider JA
    155. Schneider LS
    156. Seeley WW
    157. Smith AG
    158. Sonnen JA
    159. Spina S
    160. Stern RA
    161. Tanzi RE
    162. Thornton-Wells TA
    163. Trojanowski JQ
    164. Troncoso JC
    165. Tsuang DW
    166. Van Deerlin VM
    167. Van Eldik LJ
    168. Vardarajan BN
    169. Vinters HV
    170. Vonsattel JP
    171. Weintraub S
    172. Welsh-Bohmer KA
    173. Williamson J
    174. Wishnek S
    175. Woltjer RL
    176. Wright CB
    177. Younkin SG
    178. Yu CE
    179. Yu L
    (2015 Feb 01). Rarity of the Alzheimer Disease-Protective APP A673T Variant in the United States. JAMA Neurol. 72, 209-16.
    1. Kapogiannis D
    2. Boxer A
    3. Schwartz JB
    4. Abner EL
    5. Biragyn A
    6. Masharani U
    7. Frassetto L
    8. Petersen RC
    9. Miller BL
    10. Goetzl EJ
    (2015 Feb 01). Dysfunctionally phosphorylated type 1 insulin receptor substrate in neural-derived blood exosomes of preclinical Alzheimer's disease. FASEB J. 29, 589-96.