Long QT Syndrome in Children

2019 LQTS Patients and Families Seminar

Jeffrey M. Vinocur, MD
Director, Pediatric Electrophysiology Program
Agenda

1. Accurate diagnosis
 1. Symptomatic patients
 2. Family members

2. Risk stratification

3. Treatment
 1. Trigger avoidance & safety plan & impact on sports
 2. Medication
 3. Surgery

4. Planning ahead
Accurate Diagnosis
Accurate diagnosis – symptomatic patients

Symptoms of LQTS

- Fainting, especially with exercise or emotion
- Seizures, especially with exercise or emotion
- Near-drowning
- Cardiac arrest

Rarely symptoms of LQTS

- Chest pain
- Palpitations
- Lightheadedness/fainting upon standing up, etc.
- Symptoms that persist for long periods of time
Accurate diagnosis – symptomatic patients

Education (doctors, nurses, athletic trainers, etc)
- Recognition of symptoms
- Recognition of family history

Accurate interpretation of ECG [EKG]
- Abnormal ECGs are often overlooked
- Normal ECG never excludes LQTS
- Referral if suspicious symptoms

17 yo LQTS type 1 w/SCA, QTc 440
Accurate diagnosis – family members

Extremely important to screen families
- LQTS is dangerous without treatment
- LQTS is usually very manageable with treatment

Testing relatives by ECG is **not** enough
- Genetic testing for the most severely affected person in the family
 - Then chase relatives near & far
- If no clear gene:
 - Contemplate the affected person (QT longer on stress test?)
 - Evaluate relatives appropriately

Families are complicated – but these efforts save lives
Risk stratification

Risk for future event without treatment varies *widely*

- LQTS genetic type (and even specific mutations)
 - Age/gender effect
- QT length
- Other medical issues that can interact

Key principle: treatment intensity should match level of risk

- More risk → more treatment
- Less risk → less treatment

Risk can change over time, always re-evaluate
Risk stratification example #1

6 year old borderline QT on screening ECG
 • No symptoms, no family history

Genetic testing → LQTS type 1
 • Specific mutation common in part of Sweden
 • Known to be mild (SCA 1% untreated)

Options:
 • Trigger avoidance only
 or
 • Non-aggressive beta-blockade

Figures from Winbo et al 2014
Risk stratification example

Father – mildly long QT on routine ECG
 • No symptoms, genetic testing → LQT2
 • Daughter then in preschool
 • Gene positive, mildly long QT
 • Considered low risk, low-dose nadolol

Years later, daughter entering puberty
 • Faints while excited
 • Walks in with QTc>600 +/- Torsades
 • Now very high risk
 • Maximize meds + defibrillator
Treatment

(more on this later in the day)
Treatment – trigger avoidance & safety plan

Lifestyle modification re triggers
- Adrenaline – sports, emotion
- Sudden noises – phones, alarm clocks, fire alarm at school

Avoiding QT-prolonging medications
- CredibleMeds (smartphone app or www.QTdrugs.org)
- Advocate for yourself (*always* double-check)
- Exceptions can be made
 - Need input from EP
 - Some meds are *much* worse than others (even in the same class)

Avoiding electrolyte disturbances, fever
- Overheating/dehydration
- GI illness (“stomach bug”)

Treatment – trigger avoidance & safety plan

Safety plan for home

- CPR training
- AED?
- Adult supervision especially with exercise

Safety plan for school

- CPR training
- Adult supervision
- Written emergency plan (and practice it!) www.heart.org/CERP
- May need 504
Treatment – sports considerations

Adrenaline is a trigger, especially for LQT1

But sports are very important for physical and emotional health

At diagnosis – wait until evaluation complete & treatment plan in place

• Then shared decision with child, parents, doctor

Pick your battles:

• Must have adult supervision and AED
• Where will exercise be? (school gym vs neighbor’s backyard)
• How bad is fainting? (swimming, climbing, skiing)
• How easy is rescue? (track vs cross-country)
Treatment - medications

Beta blockers

- Nadolol most common (strong and long-acting)
- Propranolol also good (but awkward pill sizes)
- Nothing else is reliable
- Most people tolerate nadolol or propranolol if started very slowly

Who needs treatment (in childhood)?

- Depends on risk profile
- High-risk patients definitely
- Low-risk patients
 - Usually try and see if tolerated
 - Carefully chosen patients may be okay with trigger avoidance only
Treatment - medications

Other medications can sometimes be added

- LQT1
 - Not really needed – we have denervation surgery as “plan B”

- LQT2
 - Spironolactone/potassium
 - Mexiletine

- LQT3
 - Mexiletine & others
Treatment - surgery

Left cardiac sympathetic denervation ("sympathectomy")

- Minimally invasive
- Works very well for LQT1 and pretty well for LQT2 when:
 - Beta blocker not tolerated
 - Beta blocker not enough (breakthrough events, high-risk features)

Pacemaker alone

- Very rare now

Defibrillator (w/pacemaker)

- Cardiac arrest survivors (except special cases)
- High-risk LQT2 and LQT3
- For high-risk LQT1, prefer denervation surgery
Planning ahead
Planning ahead

Sports planning
- Sway young kids towards supervisable activities on the ground

Career planning
- Medical clearance issues: police, fire, military, pilot, etc
- Difficult to get help: forestry, marine biology, etc

Reproductive planning
- Usually 50% recurrence risk
 - *Child may have more or less severe case*
- Medical team input prior to reproduction
 - Education for partner who may be new to this
 - Opportunity to optimize mother’s status/meds (if affected)
- Plan in place for fetal monitoring
UNIVERSITY of Rochester MEDICAL CENTER

Medicine of the Highest Order