Rapid Access Transient Ischemic Attack (TIA) Care

Todd Holmquist, MD

Disclosures

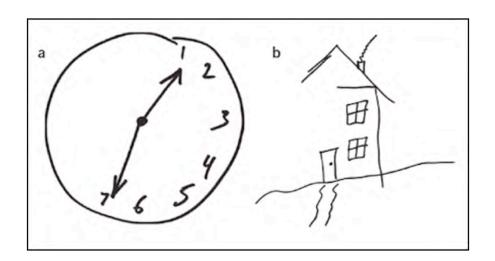
- Financial relationships:
 - Employed by UR Medicine
 - Paid consultant medical expert opinion

"Patients with minor stroke or transient ischemic attack (TIA)... have the least amount of disability and the most to lose should they have a stroke" [1]

Objectives

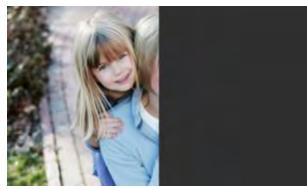
- Definition of TIA
- Topic relevance
- The rise and fall of the ABCD² score
- Prevalence of stroke mimics
- Importance of rapid evaluation and treatment
- Role of a TIA clinic
- Our experience

Definition of a TIA


"A transient episode of neurological dysfunction caused by focal brain, spinal cord, or retinal ischemia, without acute infarction" [2]

AHA/ASA Scientific Statement

Definition and Evaluation of Transient Ischemic Attack



TIA Statistics [3-5]

- Prevalence 5 million
 - Stroke (6.6 million)
 - Myocardial infarction (MI) (7.9 million)
- Incidence variable
 - Upward of 217,000 annually
 - Stroke (795,000)
 - MI (750,000)
- Mortality risk
 - 12% at 1 year

Objectives

- Definition of TIA
- Topic relevance
- The rise and fall of the ABCD² score
- Prevalence of stroke mimics
- Importance of rapid evaluation and treatment
- Role of a TIA clinic
- Our experience

- 68 year old male presented to his primary care provider's (PCP's) office the day after new onset left hand incoordination, numbness, and tingling that lasted upwards of 15 minutes duration
- The patient takes lisinopril for hypertension, low-dose atorvastatin for hyperlipidemia, and was a former smoker
- The patient's blood pressure was 134/86
- The PCP's neurological examination appeared grossly unremarkable, though the patient commented to him that his ability to play the guitar is not quite the same

- The PCP suspects that the patient may have suffered a TIA
- Upon hearing the potential diagnosis, the patient asked his PCP a number of questions:

Am I at risk for further symptoms? What is my risk of stroke?

Could this be anything else other than a TIA?

Do I need to be urgently evaluated?

What tests might I need?

Are there any medications that can reduce my risk?

What is my risk of stroke?

Year of study Type of study	Type of study	Size of study	Stroke Risk			
	Size of Study	2 days	7 days	30 days	90 days	
2000 [6]	Cohort	N=1,707	5.3%			10.5%
2007 [7]	Meta-analysis	N=10,126	3.1%	5.2%		
2007 [8]	Meta-analysis	N=7,238	3.5%		8.0%	9.2%
2013 [9]	RCT	N=5,170				8.2 vs. 11.7%
2015 [10]	Meta-analysis	N=13,766		3.0%		5.2%
2016 [11]	RCT	N=13,199				5.9 vs. 6.8%
2016 [12]	Prospective registry	N=4,789	1.5%	2.1%		3.7%

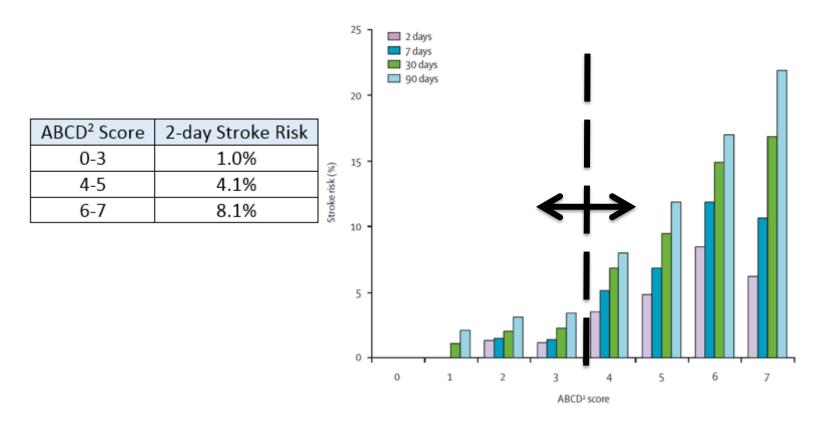
Generally speaking...

2 day risk of 1.5 - 3%

90 day risk of 3 – 6 %

What is my risk of stroke?

- Risk is not uniform
- Depends on patient's clinical characteristics, pathophysiology of TIA, and treatment plan enacted
- 2000 2007 researchers looked into this and began to create risk stratification tools


ABCD² Score

Risk Factor	Points
Age ≥ 60	1
Blood pressure	
SBP ≥140 mm Hg or DBP ≥ 90 mm Hg	1
Clinical features	
Speech impairment without focal weakness	1
Focal weakness	2
Duration	
10 – 59 minutes	1
≥ 60 minutes	2
Diabetes	1
Total ABCD ² Score	0-7

ABCD² Score

2007 – "4 or greater might justify 24 hour admission" [13]

Strength of Evidence

	Class I	Class IIa	Class IIb
	(should)	(is reasonable)	(may consider)
Level A	C4		
(derived from multiple RCTs	Stron	9	
or meta-analyses)			
Level B			
(derived from single RCT			
or non-randomized studies)			
Level C			
(derived from consensus opinion			Wast.
or case studies)			Weak

The Rise of the ABCD² Score

- 2008 2009 several publications re: validation of score
- May 2009 AHA/ASA scientific statement [2] affirmed use of score (class IIa, level of evidence C)
 - Perhaps more importantly, emphasized that the evaluation should include:
 - Neuroimaging (MRI preferred) (class I, level of evidence B)
 - Non-invasive cervical and intracrania (vessel imaging (class I, level of evidence A)
 - EKG (class I, level of evidence B)
 - Echocardiography, routine blood tests (CBC, chemistry panel, PT/aPTT, lipid profile) (class IIa, level of evidence B)

The Fall of the ABCD² Score

- May 2009 SOS TIA cohort
 - Noted 20% of patients with ABCD² score < 4 had a clinical characteristic associated with a high risk for stroke recurrence (9.1% symptomatic carotid stenosis > 50%, 5.9% atrial fibrillation, 5.0% symptomatic intracranial stenosis) [14]
- 2009 2012 further development and validation of scores incorporating imaging

The Fall of the ABCD² Score

- June 2012 Meta-analysis [15] 44 studies, N=16,070
 - The score "performed poorly when used to identify high risk patients in the setting of low overall baseline risk"
 - The score "performed modestly in the setting of high overall baseline risk"
 - The score "slight improved when used by stroke specialists"
 - They cautioned against the use of the score alone to guide decision making

The Fall of the ABCD² Score

- July 2015 Meta-analysis [10] 29 studies, N=13,766
 - Again, the score showed a high sensitivity (87%) though a low specificity (35%), similar to the earlier meta-analysis (89% and 34% respectively)
 - Again, noted a significant number of patients with ABCD² score
 4 had a clinical characteristic associated with a high risk for stroke recurrence

Patients with Probable of Definite TIA or Minor Stroke			
ABCD ² Score	Proportion of patients (%) Carotid stenosis (%) Atrial fibrillation (%)		
≥ 4	63.5	15.4	20.2
< 4	36.5	14.8	12.7

New Approach

- November 2016 Pooled analysis of cohort studies 16 studies, N=2,176
 - Compared the validity and prognostic utility of <u>imaging-based</u>
 <u>stroke risk scores</u> in patients after TIA
 - The study showed the ABCD³ I score [16,17] had better predictive value than ABCD² and ABCD² I
 - The researchers concluded that the study "provides the strongest evidence so far that the <u>combination of brain MRI</u>, <u>vascular imaging</u>, <u>and clinical features</u> can distinguish patients at highest risk of early stroke after TIA" and that the ABCD³ I score should now be considered [18]

ABCD³ – I Score

ABCD ³ – I Score	90-day Stroke Risk
0-3	0%
4-7	7.5%
8-13	40.9%

Risk Factor or Data	Points
Age ≥ 60	1
Blood pressure	
SBP ≥ 140 mm Hg or DBP ≥ 90 mm Hg	1
Clinical features	
Speech impairment without weakness	1
Unilateral weakness	2
Duration	
10 – 59 minutes	1
≥ 60 minutes	2
Diabetes	1
Dual TIA (two TIAs within preceding 7 days)	2
Imaging – Ipsilateral carotid stenosis ≥ 50%	2
Imaging – DWI positive	2
Total ABCD ³ – I Score	0-13

Could this be anything else other than a TIA?

TIA/Stroke Mimics

Year of Study	Type of Study	Location	Size of Study	Cerebrovascular
				Diagnosis (%)
2013[19]	Cross-sectional survey	UK	102 respondents	40-59%
				(half of respondents)
2015 [20]	Retrospective study	UK	N=1067	50%
2015[10]	Meta-analysis		N=13,766	55%
2016[21]	Prospective study	Australia	N=405	62%

Generally speaking...

45 – 50% of TIA clinic referrals will be mimics

TIA/Stroke Mimics [20]

Anxiety	Myasthenia gravis (MG)
Bell's palsy	Neuropathy
Brain tumor	Partial seizure
Labyrinthitis	Presyncope or syncope
Migraine	Subdural hemorrhage (SDH)

Do I need to be urgently evaluated?

What tests might I need?

Are there any medications that can reduce my risk?

Rapid Evaluation is Key

- Urgent assessment and early initiation of a combination of existing preventive treatments can reduce the risk of early recurrent stroke after TIA or minor stroke by about 80% [22]
- Patients with suspected TIA should be evaluated as soon as possible after an event (class I, level of evidence B) [2]

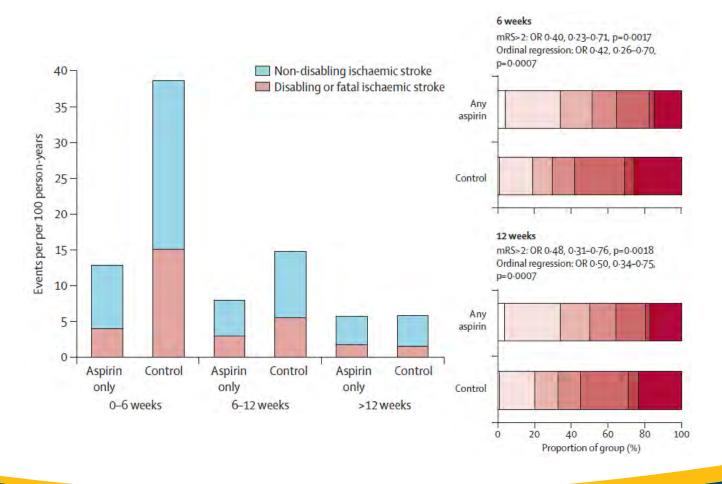
What tests might I need?

- MRI
- Cervical and intracranial vessel imaging
- EKG
- Echocardiography
- Routine blood tests (CBC, chemistry panel, PT/aPTT, lipid profile)

Key Interventions

- Antiplatelets (NNT 53-104)
- Anticoagulants (NNT 13)
- HMG-CoA reductase inhibitors (statins) (NNT 230)
- Antihypertensives (NNT 45-118)
- Carotid revascularization (NNT 6-25)

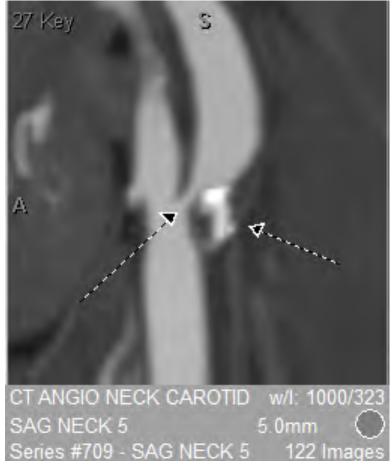
Rapid Treatment is Key


- New evidence that aspirin may be a key intervention
- Previous data reported on 13 28% relative risk reduction
- 2016 Meta-analysis [23] 12 studies, N=15,778
 - Aspirin vs. control in secondary prevention
 - 60% reduction of ischemic stroke within 6 weeks
 - 70% reduction of fatal or disabling stroke within 6 weeks
 - Substantial reduction in disability (seen in mRS shift)

Rapid Treatment is Key

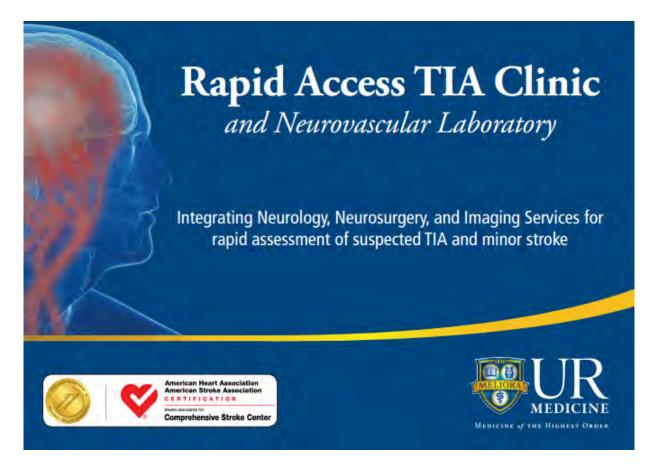
Role of a TIA Clinic

- Policy of admitting all TIA patients leads to inefficient use of health care resources
- Multiple alternative outpatient models are used globally
- All focus on minimizing use of expensive hospital resources on "mimics"
- Data shows that outpatient models are safe and appear to lower event rates [24]
- TIA clinics have shown cost savings [21,25,26]



- The patient's PCP refers and the patient is seen in the neurology clinic the next morning
- Due to continued suspicion that a TIA may have occurred, after being evaluated by the neurologist, further testing is ordered and completed later that morning

- After identifying the symptomatic carotid stenosis...
 - The patient was started on an antithrombotic, changed to a highintensity statin, and subsequently went for carotid revascularization (CEA)
- He has not had any further events

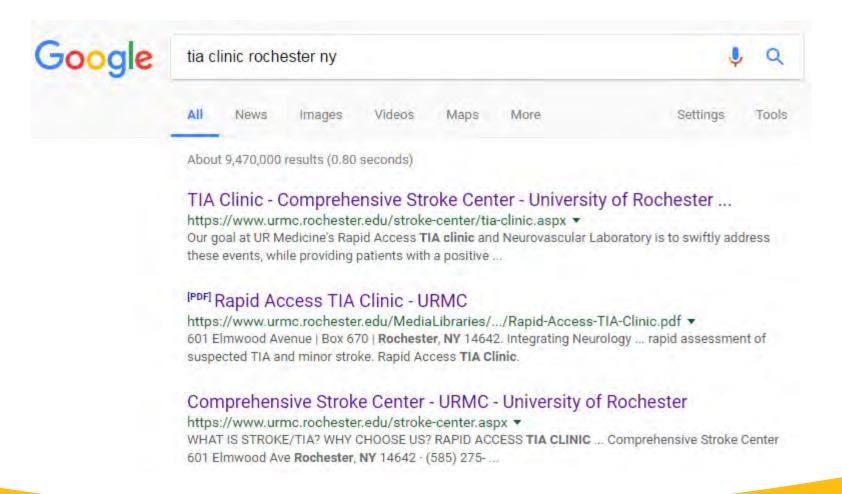

Objectives

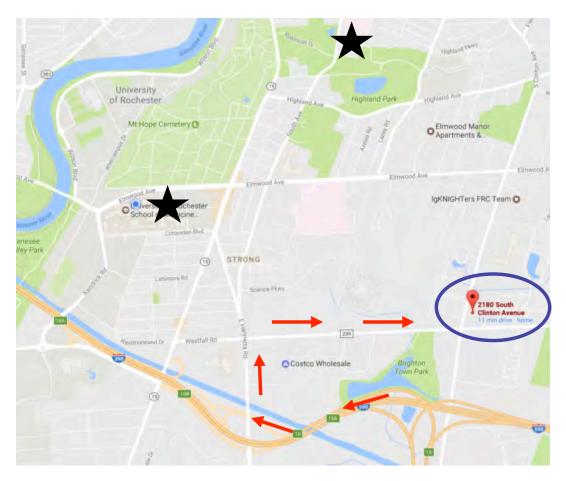
- Definition of TIA
- Topic relevance
- The rise and fall of the ABCD² score
- Prevalence of stroke mimics
- Importance of rapid evaluation and treatment
- Role of a TIA clinic
- Our experience

Our Experience

Launched January 2015

Our Vision


- Build a flagship program for our region that...
 - Provides a comprehensive, cost-effective ambulatory evaluation
 - Integrates the clinical evaluation and diagnostic studies
 - Fosters collaboration
 - Offers a convenient office location with co-located providers
 - Offers a comfortable environment for patients
 - Simplifies the referral process
 - Provides education opportunities for trainees
 - Reduces PCP referrals to ED


Regional Presence

Our Location

2180 South Clinton Avenue

Patient Centered Care

Our Team

Our Experience

Demographics:

Average age = 68 years old Referred by PCP = 77%

Risk factors:

Hypertension 67%
Hyperlipidemia 56%
Diabetes 21%
Smoker, former 17%
Smoker, current 14%
Prior TIA/stroke 14%
Atrial fibrillation/flutter 14%
Coronary artery disease 13%
Peripheral vascular disease 1%

Evaluation:

Seen within 24 hours = 62%

Seen within 48 hours = 74%

Average BP = 139/73

Average ABCD2 score = 2.5

Cerebrovascular Diagnosis = 56%

Infarct on MRI = 21%

Carotid stenosis (>50%) = 12%

Treatment:

Antiplatelet initiated = 25%
Anticoagulant initiated = 3%

Carotid revascularization = 3%

126 patient encounters through January 2017

Future Directions

Continue to increase access

- Incorporate on-site EKG into evaluation
- Develop a triage system for area EDs and Urgent Care facilities
 - To facilitate same or next day access to our TIA clinic for those patient's who present to their facilities initially

- Sacco, R.L. and T. Rundek, The Value of Urgent Specialized Care for TIA and Minor Stroke. N Engl J Med, 2016. 374(16): p. 1577-9.
- Easton, J.D., et al., Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke, 2009. 40(6): p. 2276-93.
- Johnston, S.C., et al., Prevalence and knowledge of transient ischemic attack among US adults. Neurology, 2003. 60(9): p. 1429-34.
- Benjamin, E.J., et al., Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association. Circulation, 2017.
- Kleindorfer, D., et al., Incidence and short-term prognosis of transient ischemic attack in a population-based study. Stroke, 2005. 36(4): p. 720-3.
- Johnston, S.C., et al., Short-term prognosis after emergency department diagnosis of TIA. Jama, 2000. 284(22): p. 2901-6.
- Giles, M.F. and P.M. Rothwell, Risk of stroke early after transient ischaemic attack: a systematic review and meta-analysis. Lancet Neurol, 2007. 6(12): p. 1063-72.
- Wu, C.M., et al., Early risk of stroke after transient ischemic attack: a systematic review and meta-analysis. Arch Intern Med, 2007. 167(22): p. 2417-22.
- Wang, Y., et al., Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med, 2013. 369(1): p. 11-9.
- Wardlaw, J.M., et al., ABCD2 score and secondary stroke prevention: meta-analysis and effect per 1,000 patients triaged. Neurology, 2015. 85(4): p. 373-80.
- Johnston, S.C., et al., Ticagrelor versus Aspirin in Acute Stroke or Transient Ischemic Attack. N Engl J Med, 2016. 375(1): p. 35-43.
- Amarenco, P., et al., One-Year Risk of Stroke after Transient Ischemic Attack or Minor Stroke. N Engl J Med, 2016. 374(16): p. 1533-42.
- Johnston, S.C., et al., Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet, 2007. 369(9558): p. 283-92.

- Amarenco, P., et al., Does ABCD2 score below 4 allow more time to evaluate patients with a transient ischemic attack? Stroke, 2009. 40(9): p. 3091-5.
- Sanders, L.M., et al., Performance of the ABCD2 score for stroke risk post TIA: meta-analysis and probability modeling. Neurology, 2012. 79(10): p. 971-80.
- Merwick, A., et al., Addition of brain and carotid imaging to the ABCD(2) score to identify patients at early risk of stroke after transient ischaemic attack: a multicentre observational study. Lancet Neurol, 2010. 9(11): p. 1060-9.
- Song, B., et al., Validation of the ABCD3-I score to predict stroke risk after transient ischemic attack. Stroke, 2013. 44(5): p. 1244-8.
- Kelly, P.J., et al., Validation and comparison of imaging-based scores for prediction of early stroke risk after transient ischaemic attack: a pooled analysis of individual-patient data from cohort studies. Lancet Neurol, 2016. 15(12): p. 1238-1247.
- Brazzelli, M., et al., Clinical and imaging services for TIA and minor stroke: results of two surveys of practice across the UK. BMJ Open, 2013. 3(8).
- Dutta, D., E. Bowen, and C. Foγ, Four-year follow-up of transient ischemic attacks, strokes, and mimics: a retrospective transient ischemic attack clinic cohort study. Stroke, 2015. 46(5): p. 1227-32.
- O'Brien, E., et al., Rapid access point of care clinic for transient ischemic attacks and minor strokes. J Clin Neurosci, 2016. 23: p. 106-10.
- Rothwell, P.M., et al., Effect of urgent treatment of transient ischaemic attack and minor stroke on early recurrent stroke (EXPRESS study): a prospective population-based sequential comparison. Lancet, 2007. 370(9596): p. 1432-42.
- Rothwell, P.M., et al., Effects of aspirin on risk and severity of early recurrent stroke after transient ischaemic attack and ischaemic stroke: time-course analysis of randomised trials. Lancet, 2016. 388(10042): p. 365-75.
- Ranta, A. and P.A. Barber, Transient ischemic attack service provision: A review of available service models. Neurology, 2016. 86(10): p. 947-53.
- Martinez-Martinez, M.M., et al., Transient ischaemic attacks clinics provide equivalent and more efficient care than early in-hospital assessment. Eur J Neurol, 2013. 20(2): p. 338-43.
- Paul, N.L., et al., Feasibility, safety and cost of outpatient management of acute minor ischaemic stroke: a population-based study. J Neurol Neurosurg Psychiatry, 2013. 84(3): p. 356-61.

