

Aortic Stenosis Challenges

Krishna Rao, MD FACC

Associate Professor of Cardiology

URMC Strong Memorial Hospital

Nov. 5, 2015

MEDICINE *of* THE HIGHEST ORDER

No disclosures

Aortic Stenosis- Management Challenges

- 1. True or a mistaken diagnosis?**
- 2. The asymptomatic patient with severe AS**
- 3. Low flow-low gradient aortic stenosis**
- 4. Indications for TAVR**

CASE #1

- ❖ 72 year white male with a cardiac murmur
- ❖ Recent onset of dyspnea
- ❖ Suspected severe valvular aortic stenosis
- ❖ Referred for AV surgery
- ❖ Echocardiogram was repeated

PHILIPS

10/20/2014 01:19:38PM TIS0.5 MI 1.2

40164298

X5-1/RGH ECHO

FR 50Hz

15cm

2D

67%

C 50

P Low

HGen

M4

- 0

5

- 5

- 10

JPEG

- 15
77 bpm

1.6 3.2

PHILIPS

10/20/2014 01:21:44PM TIS0.5 MI 0.8

40164298

X5-1/RGH ECHO

FR 12Hz
15cm

2D
77%
C 50
P Low
HGen

CF
63%
2.5MHz
WF High
Med

PHILIPS

10/20/2014 01:22:34PM TIS0.3 MI 0.9

40164298

X5-1/RGH ECHO

FR 50Hz

17cm

2D

74%

C 50

P Low

HGen

M4

- 0

- 5

- 10

- 15

JPEG

77 bpm

P

X

1.6 3.2

PHILIPS

10/20/2014 01:24:07PM TIS0.5 MI 1.2

40164298

ROCHESTER GENERAL

X5-1/RGH ECHO

FR 78Hz
14cm

2D
74%
C 50
P Low
HGen

M4

Area 1.97 cm²

78bpm

PHILIPS

10/20/2014 01:25:07PM TIS0.5 MI 1.2

40164298

X5-1/RGH ECHO

FR 50Hz

18cm

2D

71%

C 50

P Low

HGen

M4

- 0

- 5

- 10

- 15

P

JPEG

76 bpm

PHILIPS

10/20/2014 01:27:00PM TIS0.3 MI 0.9

40164298

X5-1/RGH ECHO

FR 132Hz
20cm

2D
82%
C 50
P Low
HGen

M4

JPEG

- 24 bpm

PHILIPS

10/20/2014 01:26:14PM TIS0.5 MI 0.8

40164298

X5-1/RGH ECHO

FR 18Hz
20cm

2D
85%
C 50
P Low
HGen

CF
63%
2.5MHz
WF High
Med

G
P 1.6 R 3.2

JPEG

- 79 bpm

40164298

ROCHESTER GENERAL

X5-1/RGH ECHO

FR 18Hz

20cm

2D

85%

C 50

P Low

HGen

CF

63%

2.5MHz

WF High

Med

- 10

- 15

- 20

- 25

- 30

- 35

- 40

- 45

- 50

- 55

- 60

CW

50%

1.8MHz

WF 225Hz

M4 M4

+53.5

-53.5

cm/s

- m/s

- 1.0

- 2.0

- 3.0

- 4.0

- 5.0

- 6.0

- 7.0

Vel 652 cm/s
PG 170 mmHg

75mm/s

76bpm

Hypertrophic Obstructive Cardiomyopathy

TREATMENT:

- ❖ No AVR
- ❖ Beta blockers
- ❖ Calcium channel blockers
- ❖ Avoid Hypovolemia
- ❖ Surgical Myectomy or Percutaneous Alcohol Septal Ablation

Aortic Stenosis- Management Challenges

1. True or a mistaken diagnosis?
2. The asymptomatic patient with severe AS
3. Low flow-low gradient aortic stenosis
4. Indications for TAVR

The natural history of aortic stenosis, emphasizing a long presymptomatic period and the dismal outcome once symptoms begin.

Indications for AVR surgery

Symptomatic Patient with severe AS

Class 1 Indication

...if it is likely that the symptoms are cardiac in origin

Case #2

- ❖ A 52 year white male with known aortic stenosis asymptomatic

PHILIPS

MI 1.3 1/5/2015

KK 6044622 Rochester Cardiopulmonary MOB TIS 0.9 11:20:52 AM

KK
S5-2
32Hz
17.0cm

2D

HPen-HGen
Gn 46
55
7/2/0
50 mm/s

85
BPM

KK
S5-2
50Hz
HD Zoom

2D
HPen-HGen
Gn 38
55
7/2/0
50 mm/s

KK
S5-2
29Hz
17.0cm

2D
HPen-HGen
Gn 38
55
7/2/0
50 mm/s

Color
2.5 MHz
Gn 75
4/4/0
Fltr Med

(P) (G) R
1.5 3.0

79
BPM

PHILIPS

MI 1.3 1/5/2015

KK 6044622 Rochester Cardiopulmonary MOB TIS 0.9 11:30:21 AM

KK
S5-2
50Hz
HD Zoom

2D
HPen-HGen
Gn 38
55
7/2/0
50 mm/s

P G R
1.5 3.0

85
BPM

KK
S5-2
28Hz
20.0cm

2D

HPen-HGen
Gn 53
55
7/2/0
50 mm/s

Adult Echo

86 BPM

The Asymptomatic Patient with Severe AS

What are we waiting for?

Case #2

- ❖ Presented with Sudden Cardiac Death (Unity Hospital)
- ❖ Successfully resuscitated
- ❖ Coronary angiography; Normal coronaries
- ❖ EPS; Negative
- ❖ Underwent AVR surgery

Kaplan-Meier life-table analysis showing survival without valve replacement for 123 subjects with initially asymptomatic valvular aortic stenosis.

Catherine M. Otto et al. Circulation. 1997;95:2262-2270

Aortic jet velocity (top) and aortic valve area (bottom) in subjects who developed symptoms requiring aortic valve replacement or died (AVR/Died) are compared with those who remained asymptomatic for the baseline and final studies ($P < 0.01$ for asymptomatic vs those with an end

Catherine M. Otto et al. Circulation. 1997;95:2262-2270

Cox regression analysis showing event-free survival in groups defined by aortic jet velocity at entry ($P < .0001$ by log-rank test).

Catherine M. Otto et al. Circulation. 1997;95:2262-2270

Asymptomatic Aortic Stenosis Indications for AVR

ACC/AHA

Very severe AS (Vmax >/ 5 m/s) **Class 2a**

Rapid progression (low surgical risk) **Class 2b**

ESC

Very severe AS (Vmax >5 m/s) **Class 2a**

Very severe calcification with rapid progression
. (0.3 m/s per year) **Class 2a**

Markedly elevated BNP and exercise induced rise
in gradient >20 mmHg **Class 2b**

Excessive LVH **Class 2b**

**EUROPEAN
SOCIETY OF
CARDIOLOGY®**

EACTS
European Association For Cardio-Thoracic Surgery

Aortic Stenosis- Management Challenges

1. True or a mistaken diagnosis?
2. The asymptomatic patient with severe AS
3. Low flow-low gradient aortic stenosis
4. Indications for TAVR

Case#3

- ❖ An 83 old male with asymptomatic severe aortic stenosis
- ❖ Routine follow up 6 months ago
- ❖ Echocardiogram was repeated

KK 1177476

Rochester Cardiopulmonary MOB

TIS 0.9 12:01:13 PM

KK
S5-2
32Hz
17.0cm2D

HPen-HGen

Gn 98

55

7/2/0

50 mm/s

PHILIPS

MI 1.3 6/19/2015

KK 1177476

Rochester Cardiopulmonary MOB

TIS 0.9 12:03:57 PM

KK
S5-2
52Hz
HD Zoom

2D

HPen-HGen
Gn 85
55
7/2/0
50 mm/s

69
BPM

KK 1177476

Rochester Cardiopulmonary MOB

TIS 1.4 12:05:40 PM

KK
S5-2
30Hz
17.0cm2DHPen-HGen
Gn 85
55
7/2/0
50 mm/sColor2.5 MHz
Gn 75
4/4/0
Fltr MedP G R
1.5 3.068
BPM

PHILIPS

MI 1.3 6/19/2015

KK 1177476

Rochester Cardiopulmonary MOB

TIS 0.9 12:08:57 PM

KK
S5-2
52Hz
HD Zoom

2D

HPen-HGen
Gn 87
55
7/2/0
50 mm/s

66
BPM

KK
S5-2
29Hz
19.0cm

2D
HPen-HGen
Gn 61
55
7/2/0
50 mm/s

MF 1177476 Rochester Cardiopulmonary MOB TIS 1.7 11:19:32 AM

DOBUT STRI

S5-2 + LVOT VTI 21.4 cm
18.0cm LVOT Vmax 77.8 cm/s
2D LVOT Max PG 2.42 mmHg
HPen-HGen LVOT Vmean 52.3 cm/s
Gn 89 LVOT Mean PG 1.26 mmHg
52 SV (LVOT) 77.1 ml
7/2/0 1.5 3.0

Color

2.5 MHz
Gn 70
4/4/0
Fltr Med

PW

1.7 MHz
Gn 50
11.0 cm
Angle 0°
Fltr 200Hz
75 mm/s

MF 1177476 Rochester Cardiopulmonary MOB TIS 0.6 11:21:05 AM

DOBUT STRI

S5-2 + AV Vmax 0.000 cm/s
18.0cm AV Max PG 0.000 mmHg
2D x AV VTI 91.5 cm
HPen-HGen AV Vmax 343 cm/s
Gn 89 AV Max PG 47.2 mmHg
52 AV Vmean 237 cm/s
7/2/0 AV Mean PG 25.6 mmHg
AV Vmax 343 cm/s
AV Max PG 47.2 mmHg
AV VTI 88.5 cm
AV Vmax 348 cm/s
AV Max PG 48.4 mmHg
AV Vmean 243 cm/s
AV Mean PG 25.7 mmHg
AV Vmax 346 cm/s
AV Max PG 47.8 mmHg
AV (VTI) 0.872 cm²
AV (Vmax) 0.810 cm²

CW

1.8 MHz
Gn 56
10.8 cm
Angle 0°
Fltr 400Hz
75 mm/s

MF 1177476 Rochester Cardiopulmonary MOB TIS 0.6 12:01:49 PM

DOBUT STRI

S5-2

18.0cm

2D

HPen-HGen

Gn 72

52

7/2/0

+ AV VTI	96.6 cm
AV Vmax	415 cm/s
AV Max PG	68.8 mmHg
AV Vmean	282 cm/s
AV Mean PG	36.4 mmHg
AV Vmax	415 cm/s
AV Max PG	68.8 mmHg
AVA (VTI)	0.799 cm ²
AVA (Vmax)	0.675 cm ²

DOBUTABINE

15 MCG

69 BPM

- 200

- 100

- 0

+ 100

m

- 200

- 300

- 400

- 500

CW

1.8 MHz

Gn 56

10.2 cm

Angle 0°

Fltr 400Hz

75 mm/s

MF 1177476 Rochester Cardiopulmonary MOB

TIS 0.6 12:01:50 PM

DOBUT STRI

S5-2	+ AV VTI	98.1 cm
	AV Vmax	408 cm/s
18.0cm	AV Max PG	66.6 mmHg
	AV Vmean	303 cm/s
<u>2D</u>	AV Mean PG	41.2 mmHg
HPen-HGen	\times AV Vmax	402 cm/s
Gn 72	<u>AV Max PG</u>	<u>64.5 mmHg</u>
52	AVA (VTI)	0.786 cm ²
7 / 2 / 0	AVA (Vmax)	0.697 cm ²

DOBUTAMINE

15 MCG

70 RPM

- 200

100

1

+

100

200

3

500

Low flow, Low Gradient Aortic Stenosis

- ◆ The symptomatic patient with LV dysfunction and low gradient stenosis.
- ◆ The symptomatic patient with normal LV function and paradoxical low flow, low gradient stenosis.

Paradoxical Low Flow Low Gradient AS(PLFLG)

- ❖ A recently described entity
- ❖ Pronounced LV concentric remodeling
- ❖ Small LV cavity size
- ❖ Restrictive physiology leading to impaired LV filling
- ❖ Altered myocardial function
- ❖ Worse prognosis
- ❖ Proper diagnosis often require other diagnostic tests

Low Flow, Low Gradient AS with Normal and Depressed LV Function

(Pibarot and Dumesnil ,Quebec City
JACC 2012; 60 ;1850)

- ❖ Underestimation of transaortic flow by Doppler echocardiography,
- ❖ Inconsistency of grading criteria,
- ❖ A small body size must be carefully excluded.
- ❖ MRI and Cardiac Catheterization

Low Gradient Aortic Stenosis Management Algorithm

Low Flow, Low Gradient Aortic Stenosis Indications for surgery

ACC and AHA

Normal LV Function and Severe AS

If clinical, hemodynamic anatomic date support severe AS –

Class 2a

ECA

Normal LV function, Only after careful confirmation of severe

AS

Class 2a

Aortic Stenosis- Management Challenges

1. True or a mistaken diagnosis?
2. The asymptomatic patient with severe AS
3. Low flow-low gradient aortic stenosis
4. Indications for TAVR

TAVR

Figure 1: The Edwards Sapien (A), Sapien XT (B) and Medtronic CoreValve (C)

Indications for TAVR vs Surgical AVR

ACC/AHA

Evaluation by a surgical team **Class 1**

Surgical AVR for patients with low to intermediate risk **Class 1**

TAVR for patients with prohibitive surgical risk and life expectancy >12 months **Class 1**

ESC

TAVR alternative for surgical high risk. **Class 2a**

Balloon valvotomy as a bridge to TAVR or surgical AVR **Class 2b**

Clinical outcomes at 1 year following TAVR

JAMA 2015 313,1019

David Holmes Mayo Clinic

No. at risk

	12 182	9508	7585	6063	4681
Stroke	12 182	9508	7585	6063	4681
Heart failure	12 182	9508	7585	6063	4681

From: Clinical Outcomes at 1 Year Following Transcatheter Aortic Valve Replacement

JAMA. 2015;313(10):1019-1028. doi:10.1001/jama.2015.1474

Figure Legend:

Cumulative **Composite** is the combination of mortality and stroke outcomes. B, Composite is the combination of stroke, heart failure, and AVRI outcomes. C, Composite is the combination of mortality, stroke, heart failure, and AVRI outcomes.

TAVR for severe AS Balancing Benefits, Risks and Expectations.

- ❖ TAVR represents a transformative technology with enormous potential
- ❖ Clinical efficacy and safety must temper with consumer expectations.
- ❖ Surgical AVR represents proven standard with safety, efficacy and durability for majority of patients
- ❖ Broad application of TAVR presents challenges in patient selection, cost effectiveness and need for dedicated heart valve centers.

Challenges in management of aortic stenosis; Have the Guidelines Filled the Gap?

2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary

- ❖ Aortic stenosis is increasing in prevalence
- ❖ Clinical, echo and hemodynamic assessments are essential
- ❖ Improving outcomes of TAVR and AVR

Outcome data discussions with patients undergoing TAVR.

Thank You

MEDICINE *of* THE HIGHEST ORDER