

Congratulations University of Rochester Neurology!

 Since its origins in 1966 with six faculty members, the department has grown to include over 100 faculty members, 24 adult neurology residents, 6 child neurology residents, 14 fellows, 15 advanced practice providers and over 100 staff members.

Goldberg Lecture

Investments in Research at University of Rochester

Actively Funded Investments:

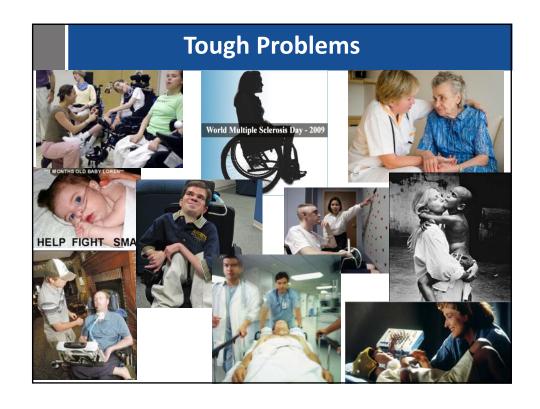
• NIH Funding: \$197.6 M

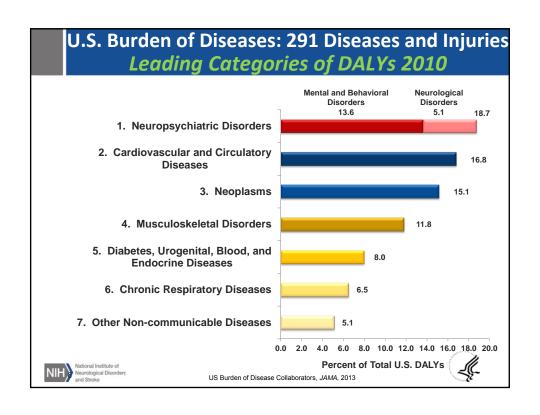
• NINDS Funding: \$13.3 M

NINDS supports a range of basic and applied research projects, including:

- Parkinson's Disease
- **Epilepsy**
- Muscular Dystrophy
- Spinal Cord Injury
- Glial Biology
- Ischemic Injury
- **Neural Circuits**
- Neuroinflammatory Response to HIV
- **Blood Brain Barrier**

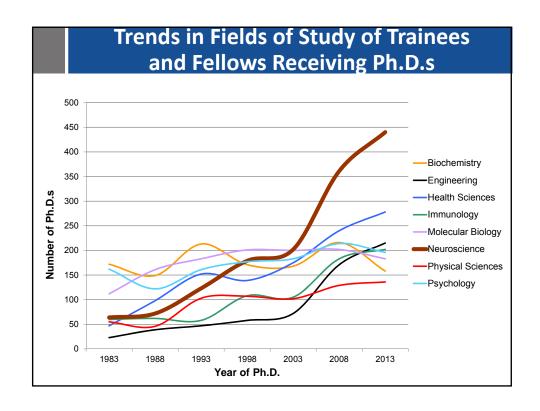
Emanuel and Nathalie Goldberg

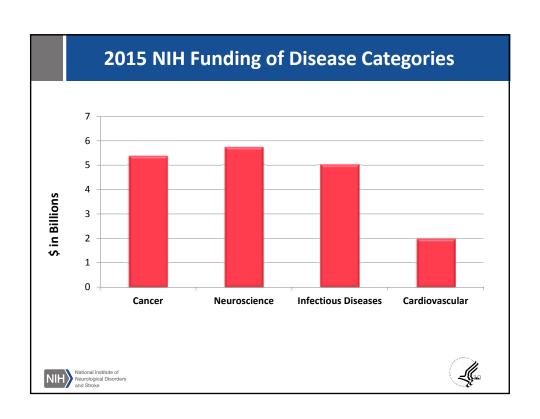


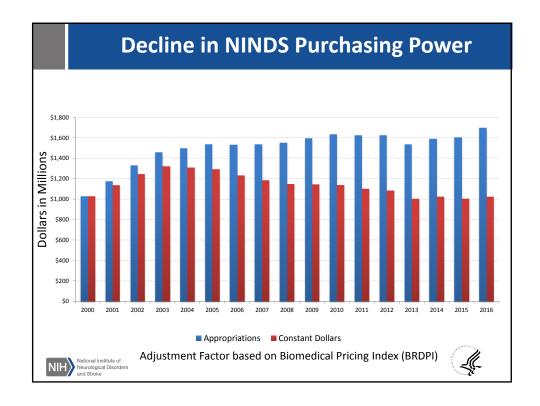


- Nathalie Levey Goldberg, Class of 1939
- Emanuel Goldberg, Class of 1932
 - M.S. in Chemistry 1933
 - Developed the first plastic pipet jars
 - Founded Nalge Company (currently Nalgene Nunc) in 1949 in Rochester, **New York**
 - Trustee of the University of Rochester, Eastman Dental Center until his death in 1999

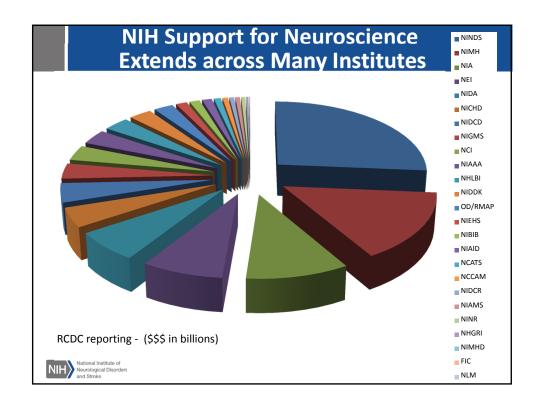
The Challenge for the 21st Century

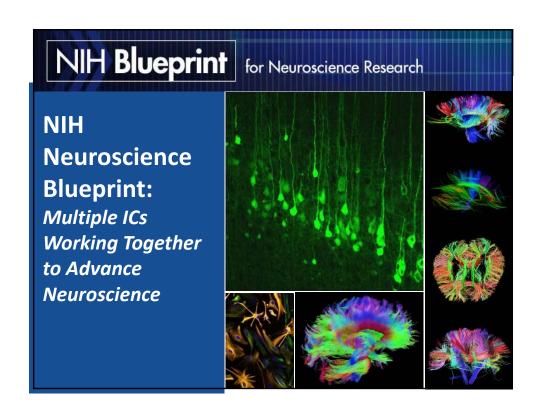

Brain disorders – both neurodevelopmental and neurodegenerative – will be the **most disabling** and most costly of the chronic diseases—they will be in the 21st century what infectious diseases were in the 20th century.


We do NOT know enough about how brain circuits function and how they dysfunction to cause disability for persons with neuro/mental/substance abuse disorders.



Senate L-HHS-Ed Appropriations Subcommittee Hearing:


"NIH: Investing in a Healthier Future"



- October 7, 2015
- Witnesses: NIH Director; directors from NINDS, NIGMS, NCI, NIDDK, NIDA
- Chairman Blunt asked witnesses to talk about their research programs and how to increase opportunities and training for young investigators
- Several broad themes emerged
 - What would you do if you had \$2-3 billion more money?
 - Ramifications of a Continuing Resolution (e.g. on PMI, BRAIN)
 - Importance of increasing opportunities for young scientists to ensure future discoveries and sustain economic benefits of biomedical research
 - Balance of funding across various diseases at NIH (e.g. HIV)

Appropriation History (Dollars in Billions)

						FY 2017	FY 2017
	FY 2013	FY2014	FY 2015	FY 2016	PB	House	Senate
NINDS	\$1.534	\$1.589	\$1.605	\$1.695	\$1.695	\$1.751	\$1.803
NINDS % Change	-5.6%	3.6%	1.0%	5.6%	0.0%	3.3%	6.4%
NIH	\$29.2	\$30.2	\$30.3	\$32.3	\$33.1	\$33.3	\$34.1
NIH % Change	-5.5%	3.4%	0.5%	6.6%*	2.6%	3.1%	5.5%

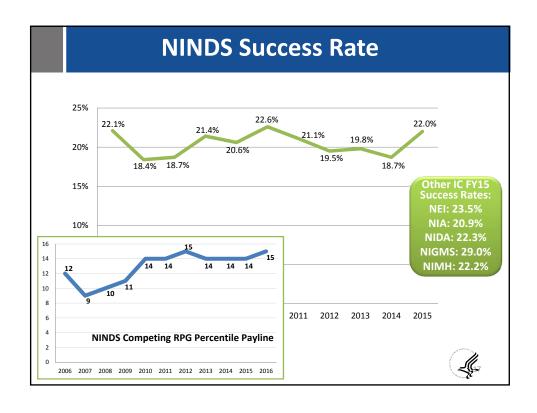
^{*}minus the BRAIN funds = 3.9% for IC budget

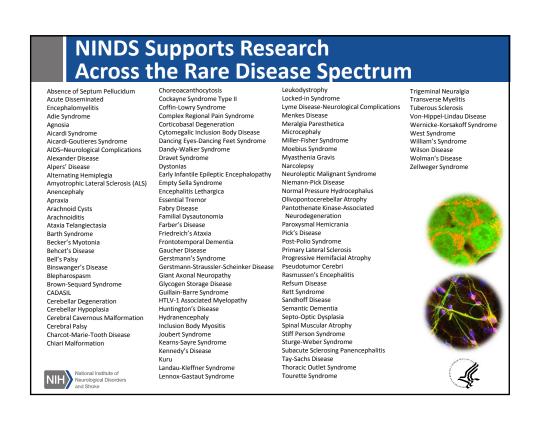
FY2017 President's Budget includes:

- IC budget is unchanged from FY16
- NCI receives Cancer Moonshot \$680m
- BRAIN increase of \$45m in Office of the Director

NIH National Institute of Neurological Disorders and Stroke

Precision Medicine increase \$100m in Office of Director

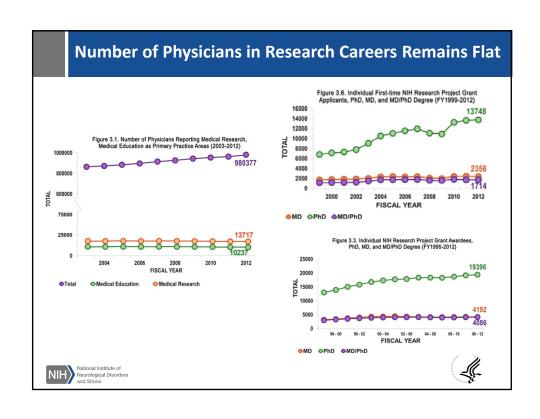

Competing RPG Trends

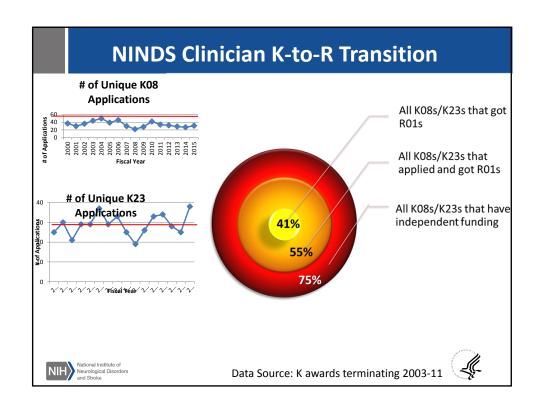

	2010	2011	2012	2013	2014	2015
Competing Awards	699	749	701	702	750	819
Number of Applications	3,097	3,549	3,588	3,551	4,002	4,007
Success Rate	22.6%	21.1%	19.5%	19.8%	18.7%	20.5%
Average Cost	\$405K	\$392K	\$378K	\$378K	\$396k	\$379k
Payline (Percentile)	14	14	15	14	14	14

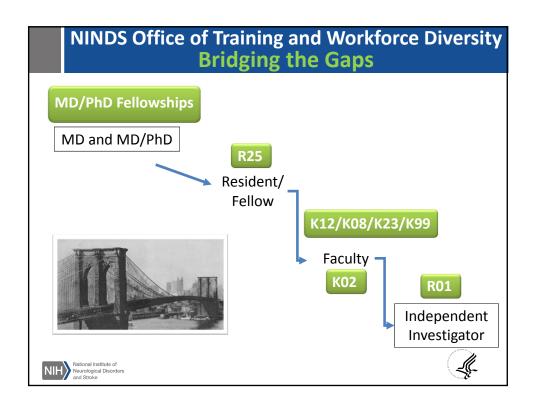
Data includes complete RPG portfolio of Unsolicited Announcements, RFAs, PAs, PASs Increase in applications led to increase in outyear commitments With continuing resolution looming for FY'17 payline reduced to 12%-tile.

The National Institute of Neurological Disorders and Stroke (NINDS)

The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.


Strategies:


- Invest across the <u>full spectrum</u> of basic, translational, and clinical research
- Establish a <u>data-driven process to identify unmet scientific opportunities</u> and public health needs within and across neurological diseases
- Support research resources and technical advances that <u>catalyze new discoveries</u>
- <u>Communicate and collaborate</u> with the public and with others involved in biomedical research
- Train a robust and diverse neuroscience research workforce
- Adopt a <u>culture of evaluation and continuous improvement</u> across all NINDS programs


http://www.ninds.nih.gov/about ninds/plans/NINDS strategic plan.htm

Ų

Key Policy Issues

Reproducibility of Research Results

- NIH to stress the importance of experimental rigor and transparency of reporting research findings to enhance ability of others to replicate them.
- We think that needs to be shift from emphasis on "statistical significant P-value" to "effect size".

Early Investigators

- NINDS to provide 10 percentile point advantage to early stage new investigators.
- NIH is directed to develop a new approach with actionable steps to reduce the average age at which an investigator first obtains R01 funding.

Basic Biomedical Research – urges continued focus on basic biomedical research.

Burden of Disease – urges NIH to consider burden for research investments. NIH must include the number of Americans affected by each category listed in the RCDC database.

The Growing Challenge

Beware the creeping cracks of bias Believe it or not: how much can we

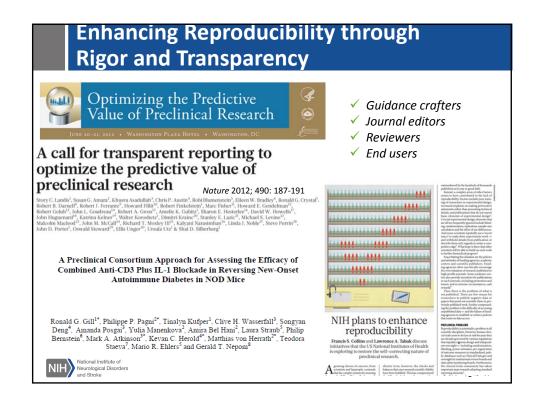
- Noted by research cracks of bias

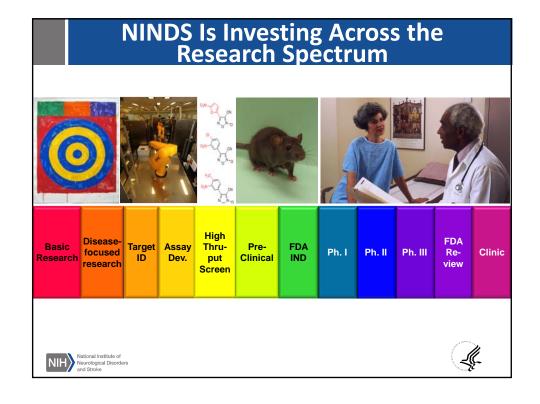
 Evidence is mounting that research is rid
 unchecked, this could erode public trust,

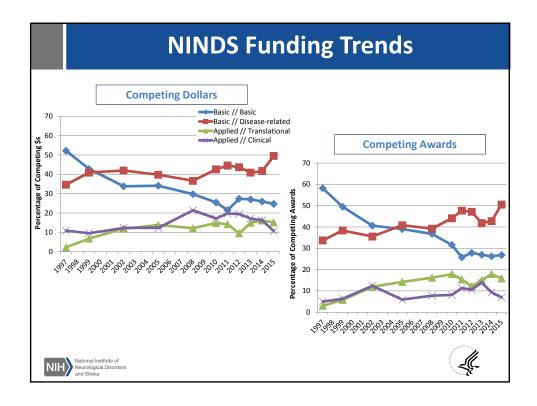
 community; in multiple
 publications

 Tro
 - Across research areas
 - Especially in preclinical research

False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant


Drug targets slip-sliding away


that research is riddled to errode public trans, ware rely on published data on potential errode public trans, ware rely on published data on potential translation of the grade public transl


The starting point for many drug discovery programs is a published report on a new drug target. Assessing the reliability of such papers requires a nuanced view of the process of extentific discovery and publication.

NIH National Institute of Neurological Disorders

Reforming Science: Methodological and Cultural Reforms

- Goal advance promising therapies to hand off to biotech/pharma companies
 - Innovation Grants to Nurture Initial Translational Efforts (IGNITE)
 - Early-stage therapy development
 - Four separate opportunities from assay development to platform technology development
 - Blueprint Neurotherapeutics Network (BPN) for small molecules
 - Development of small molecules
 - Provides investigators with access to consultants and contracts that provide discovery, preclinical development, and clinical trial support
 - Cooperative Research to Enable and Advance Translational Enterprises (CREATE) Bio and Devices
 - Development of biologics (including proteins, peptides, nucleic acids, gene and cell therapies)
 - Development of devices (including implants, stents, and prosthetics)
- These programs:
 - Are milestone driven
 - Offer multiple entry points and seamless path of support across the therapy development pipeline http://www.ninds.nih.gov/funding/areas/translational_research/

NeuroNEXT: Network for Excellence in Neuroscience Clinical Trials

The NeuroNEXT program aims to:

- Provide a robust, standardized, and accessible infrastructure to conduct studies of treatments for neurological diseases
- Create and leverage partnerships with academia, private foundations, and industry
- Increase the efficiency of clinical trials
- Support scientifically sound, possibly biomarker-informed, exploratory clinical trials that provide data for clear go/no-go decisions
- Expand the pool of experienced clinical investigators and research staff

NINDS Funding Opportunity Announcement

Clinical Trial Readiness for Rare Neurological and Neuromuscular Diseases (U01) PAR-16-020

- <u>Purpose</u>: to support clinical studies that will fill gaps in the design of upcoming clinical trials in rare neurological and neuromuscular diseases by validating clinical outcome measures or biomarkers, or by characterizing cohorts of relevant patients.
- Appropriate trial readiness projects can be "stand alone" studies, or they
 can be ancillary to other, ongoing clinical studies.
- Higher priority will be given to diseases/conditions that currently or soon
 will have multiple candidate therapeutics or devices ready for testing in
 clinical trials, but that lack critical components of trial readiness that are
 needed for moving forward.
- NINDS expects this will accelerate the initiation of clinical trials for rare diseases and increase the likelihood of success in those trials.
- Upcoming application due dates: Feb 17, 2017; Aug 17, 2017; Feb 15, 2018 and Aug 17, 2018
- Expiration date: Aug 18, 2018

Find out more: http://grants.nih.gov/grants/guide/pa-files/PAR-16-020.html

Parkinson's Disease Biomarker's Program (PDBP)

Original PDBP Goals (2012)

- · Support hypothesis-driven, biomarkers discovery research
 - 15 individual projects funded via original and subsequent funding announcements
- Support the collection of Clinical Data and Biospecimens
 - 955 Cases, 534 controls

PDBP Annual Meeting: Areas for focus

- · Replication, and negative results tracking
- Harmonization/standardization (esp. imaging)
- Longitudinal follow-up (wearables? telephone survey?)
- Specific cohorts for discovery (e.g. parkinsonisms, genetic, de novo)

Future PDBP Goals

- Continue PD biomarkers discovery
- · Replicate PD biomarkers
- · Differentiate parkinsonian dementias
- Differentiate PD from parkinsonisms (PSP, CBD,MSA, ET)
- Initiate studies of specific cohorts (genetic, diversity)
- · Integrate wearables

The Accelerated Medicines Partnership (AMP) Framework

Accelerate target validation...

 Defined as the accumulation of evidence that a disease intervention point, "th target", will be an effective point for therapeutic interaction

... with a specific focus on disease deconstruction...

 Defined as the systematic characterization of heterogeneous, poorly understood diseases in human populations, combining clinical and molecular information in order to facilitate rational selection of targets, identification of patients, subpopulations for trials and customized prophylaxis, diagnosis and treatment decisions


... through a collaborative, public-private partnership

- Focusing on "pre-competitive" target validation activities that would not be efficiently done without collective action
- Working collaboratively across government, academia and industry through harmonized efforts that harness collective capabilities & scale
- Initial design led to successful programs in three disease areas (Alzheimer's disease, Type II diabetes, RA & related disorders)
- A new concept was submitted for Parkinson's Disease and design is being developed

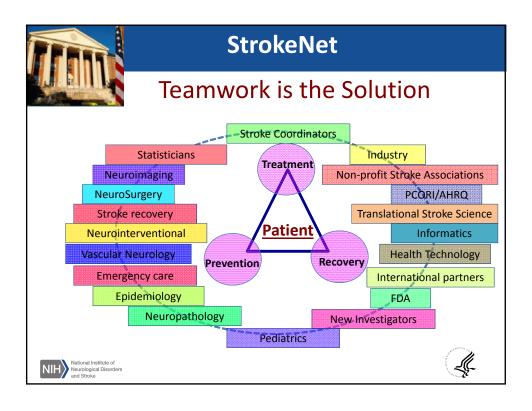
NIH Neurobiobank: Goals

- To increase the availability of human disease and control brains and related biospecimens by increasing public awareness of the value of tissue donation for understanding brain disorders.
- To facilitate the distribution of high-quality, well-characterized humanpost mortem brain tissue for the research community.
- To make available to the research community, a centralized resource of Standard Operating Procedures (SOPs) and protocols used by our networked sites in the acquisition, preparation, and distribution of tissue.
 - Mount Sinai NIH Brain and Tissue Repository. James J Peters VA Medical Center
 - The Human Brain and Spinal Fluid Resource Center UCLA
 - · University of Miami Brain Endowment Bank
 - Brain Tissue Donation Program at the University of Pittsburgh

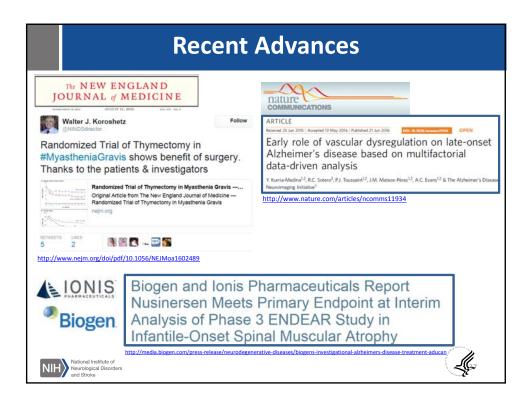
NH Neurological Disorder and Stroke

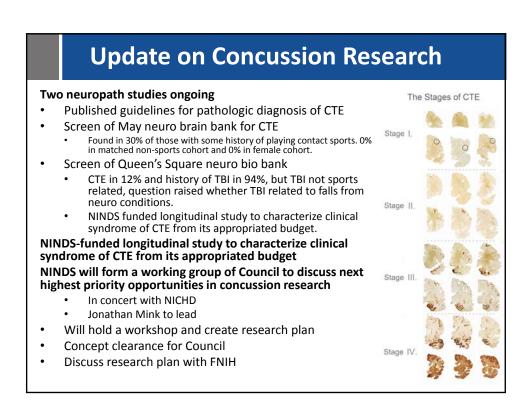
NIH Stroke Network

National and Regional Coordinating Centers

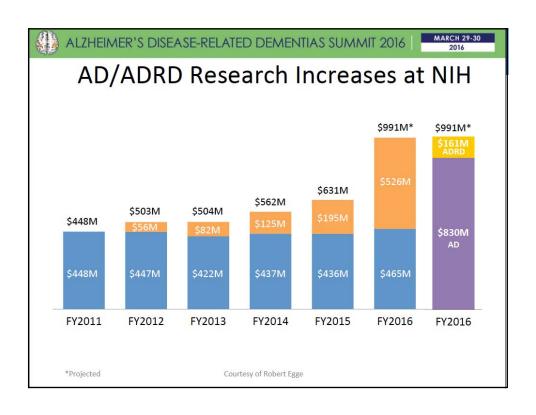


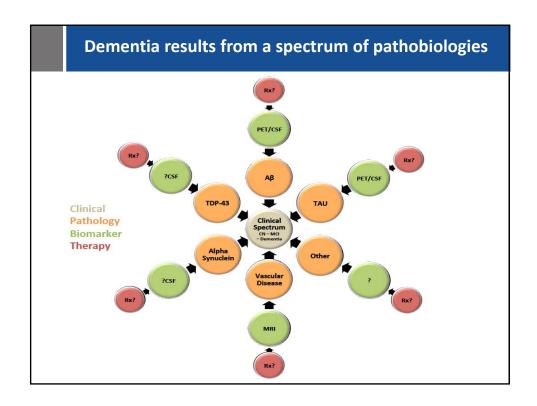
- · Coordinating Center- U of Cincinnati
 - 1 IRB, 1 master contract agreement
- Data Management Center- Medical University of South Carolina
- Coordinated study execution and funding with Canadian Institute of Health Research's stroke sites
- Principal Investigator/Statistician open to all
- 25 clinical hubs, >200 hospitals
- \$50k/year/hub for training
- Infrastructure Total Cost-~\$11million/year

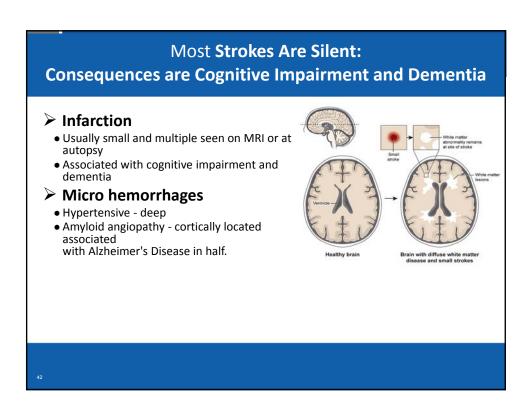


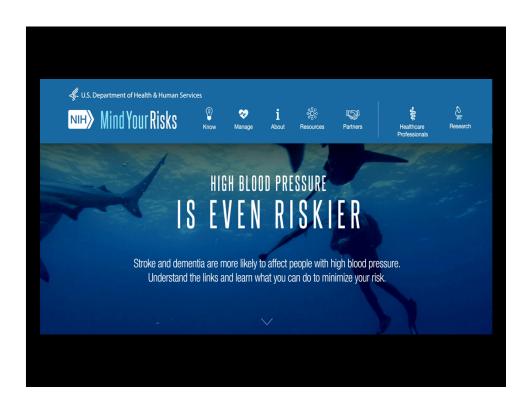

Network for Emergency Care Trials

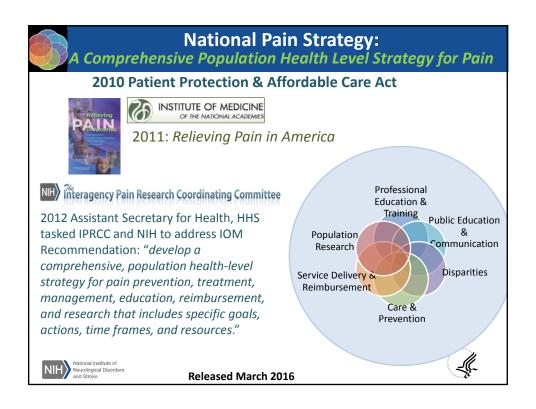
- Strategies to Innovate EmeRgENcy Care Clinical Trials Network (SIREN).
 - Will conduct high-quality, multi-site clinical trials to improve the outcomes for patients with neurologic, cardiac, respiratory, and hematologic, and trauma emergency events
 - SIREN will harness multidisciplinary emergency care expertise to provide scientific leadership and the infrastructure required to conduct large, simple, pragmatic clinical trials to advance knowledge of optimal patient management in the pre-hospital and ED setting
- An NINDS and NHLBI initiative in coordination with Dept. of Defense USAMRC.

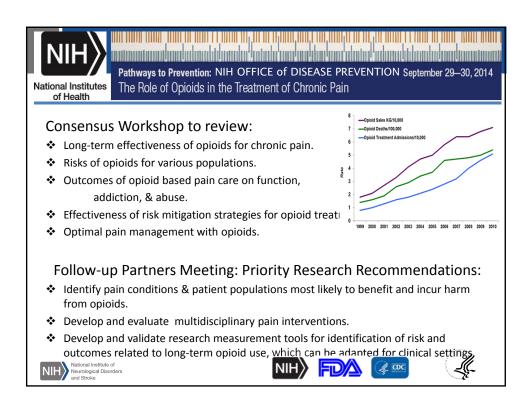


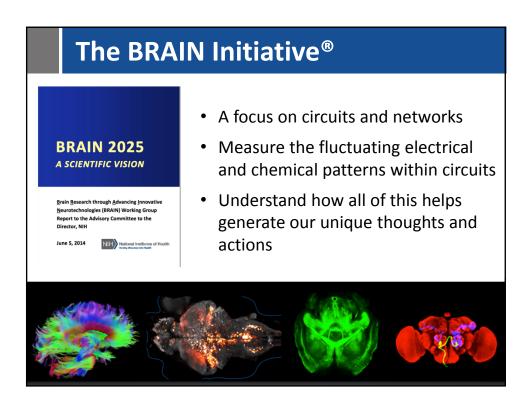

ALZHEIMER'S DISEASE-RELATED DEMENTIAS SUMMIT 2016

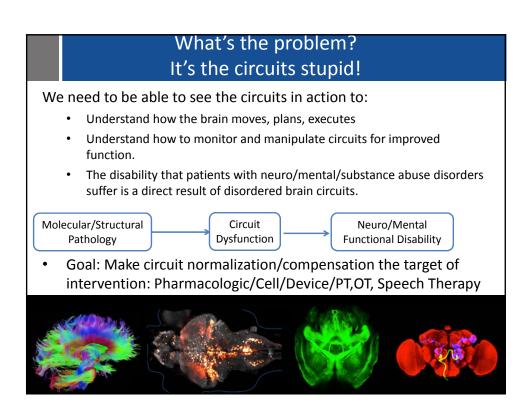

2016

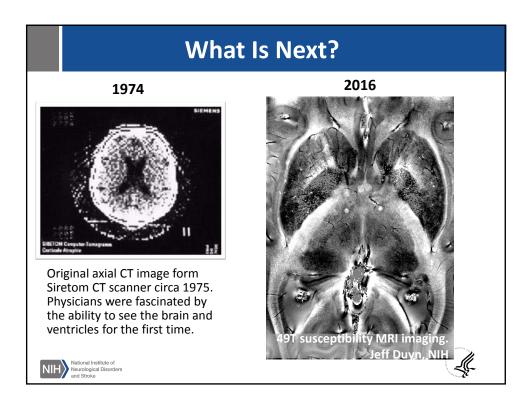

US National Alzheimer's Plan Goals

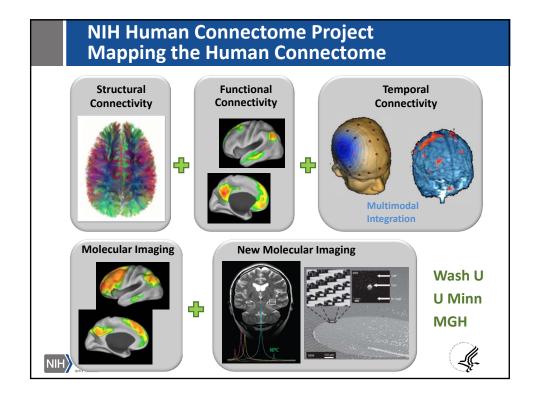

- 1. Prevent and effectively treat AD by 2025
- 2. Enhance care quality and efficiency
- 3. Expand supports for people with AD and families
- 4. Enhance public awareness/engagement
- 5. Improve data to track progress

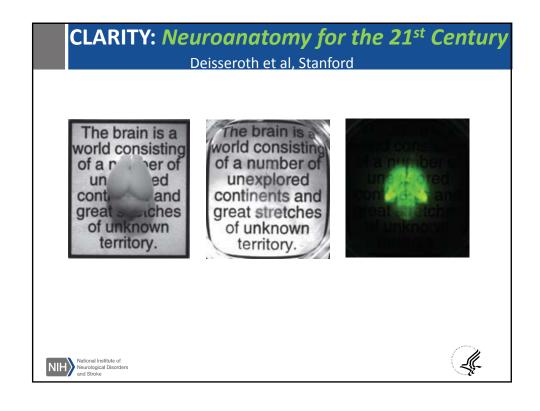


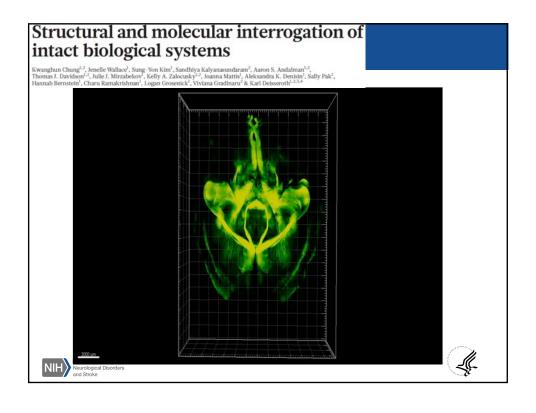


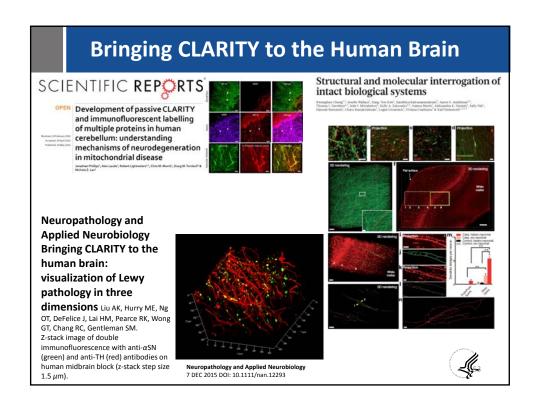

Chronic Fatigue Syndrome


- Affects between 800,000 2.5 million in the US
- 75% affected are women
- Cause unknown but many have distinct onset with flu-like symptoms
- Plans for CFS/Myalgic Encephalitis Research
 - NIH-wide intramural protocol through IRB to begin phenotyping, neuro and immunologic studies
 - Led by Dr. Avi Nath
 - Trans-NIH working group developing an extramural research program
 - · Led by Dr. Vicky Whittemore









Seven High Priority Research Areas

1. **Discovering diversity:** Identify and provide experimental access to the different brain cell types to determine their roles in health and disease.

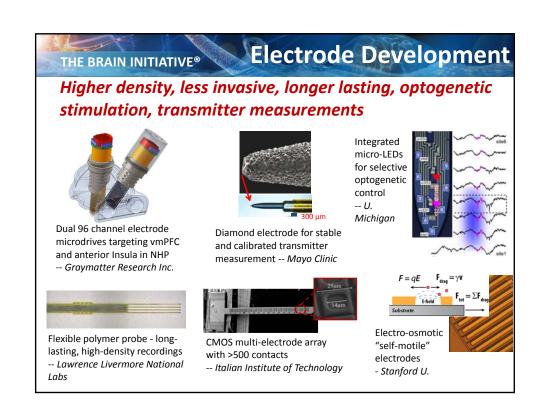
2. Maps at multiple scales: Generate circuit diagrams that vary in resolution from synapses to the whole brain.

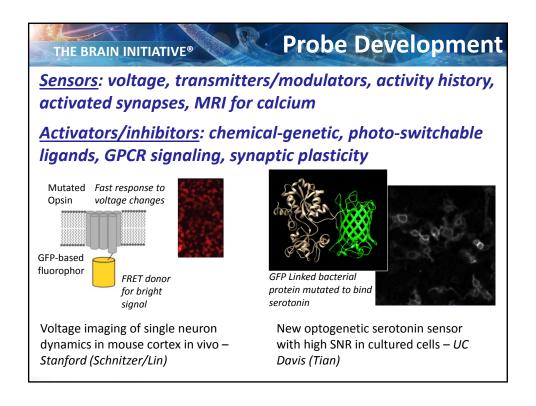
 The brain in action: Produce a dynamic picture of the functioning brain by developing and applying improved methods for large-scale monitoring of neural activity.

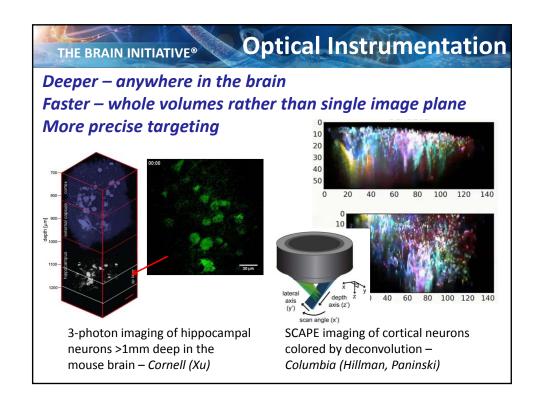
 Demonstrating causality: Link brain activity to behavior with precise interventional tools that change neural circuit dynamics.

Seven High Priority Research Areas

5. Identifying fundamental principles: Produce conceptual foundations for understanding the biological basis of mental processes through development of new theoretical and data analysis tools.

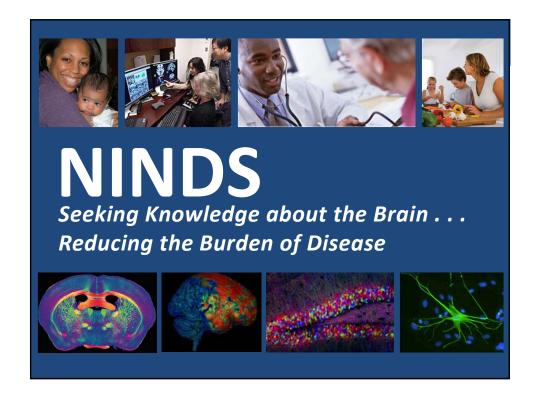

6. Advancing human neuroscience: Develop innovative technologies to understand the human brain and treat its disorders; create and support integrated human brain research networks.




7. From BRAIN Initiative to the brain: Integrate new technological and conceptual approaches produced in goals #1-6 to discover how dynamic patterns of neural activity are transformed into cognition, emotion, perception, and action in health and disease.

THE BRAIN INITIATIVE®

BRAIN Neuroethics


BRAIN Neuroethics Workgroup

- A consultative ethics group to work with BRAIN leadership and BRAIN investigators
 - · Co-chaired by Dr. Christine Grady and Hank Greely
- First meeting was on Feb 9, 2016 with BRAIN PIs conducting invasive human studies
- · Second meeting was Aug 3
 - Considered workshops on privacy, ethics of research with invasive neurotechnologies
 - Discussion topics: data sharing; long-term obligations to patients with invasive neural devices
- Request for Information (RFI): Guidance for Opportunities in Neuroethics closed July 29
- New funding opportunity planned for FY 2017, informed by RFI input

Exciting New Discoveries THE BRAIN INITIATIVE® Dr. Arnold Kriegstein and colleagues identify candidate entry receptor for Zika virus in neural stem cells Single cell RNA-seq analysis of Single Cell mRNA-seq **Candidate Viral Entry Factors** different cell types during early development (Cell Stem Cell) Examined expression of several candidate entry receptors for Zika Candidate AXL is highly expressed in several cell types, including human radial glial cells · Loss of radial glia founder populations leads to microcephaly AXL expression pattern is conserved in mice, ferrets, and human iPSCs - models for infectivity and developmental effects of Zika virus National Institutes of Health Zika Entry Candidate AXL Enriched in Neural Stem Cells

The Precision Medicine Initiative® Cohort Program

- The Program will start by collecting a limited set of standardized data
 - Participant questionnaires
 - · Electronic health records
 - A baseline physical evaluation
 - Biospecimens (blood and urine samples)
 - Mobile/wearable technologies
 - Geospatial/environmental data

Scientific Opportunities

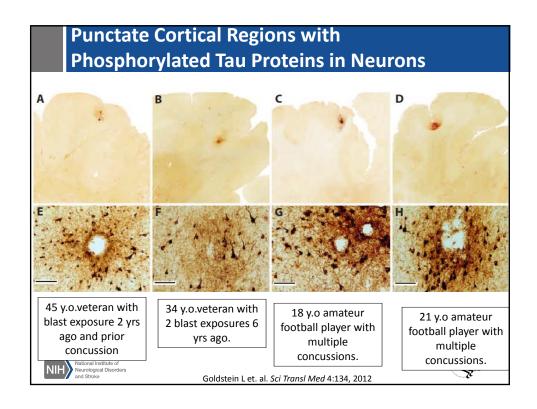
- Develop quantitative estimates of risk for a range of diseases by integrating environmental exposures and genetic factors
- Identify the causes of individual variation in response to commonly used therapeutics = pharmacogenomics
- Discover biological markers that signal increased or decreased risk of developing common diseases
- Develop solutions to health disparities
- Use mobile health technologies to correlate activity, physiological measures, and environmental
 exposures with health outcomes
- . Empower study participants with data and information to improve their own health
- Create a platform to enable trials of targeted therapies

Approach to Assembling the PMI Cohort

- One million or more U.S. volunteers
 - Broadly reflect the diversity of America (including family members of all ages, health statuses, geographic areas, etc.)
 - Strong focus on underrepresented groups
- Longitudinal cohort, with continuing interactions, recontact for secondary studies
 - Collect EHR data, provide biospecimen(s) and survey, and complete a baseline exam
- Two methods of enrollment
 - Direct volunteers: anyone can sign up
 - Healthcare provider organizations (incl. FQHCs): diverse participants, robust EHRs, participant follow-up
- Substantial participant engagement in development, implementation, governance

Sign up for updates at: https://www.nih.gov/precisionmedicine

What is the NeuroBioBank?


NINH National Institute of Montal Hoofs

- A federated brain and tissue repository network integrated by an IT system (https://neurobiobank.nih.gov)
- Brain and tissue repositories are now being supported with contracts (NIMH, NINDS and NICHD)
- Focus on quality management, sharing, outreach

11

NINDS Research Program Award (R35)

Program Goals

- Provide freedom for investigators to pursue longer range, innovative, or highrisk research
- Reduce pressure to generate results quickly to renew short-term grants
- Allow investigators flexibility to follow up on serendipitous findings and explore new areas
- Reduce amount of time spend writing and administering multiple grant awards

First Round of Awards

- Awards will be made in the coming months
- > 31 grants, ~\$24-25M

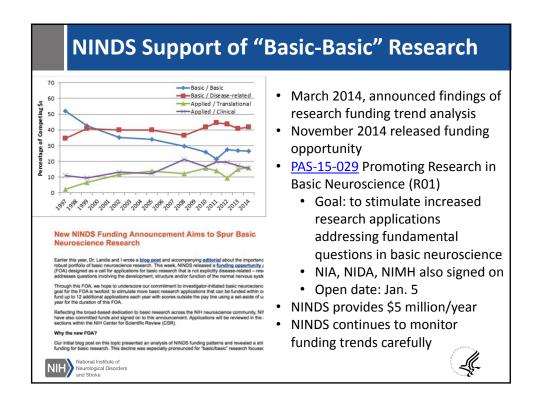
National Institute of Neurological Disorders and Stroke

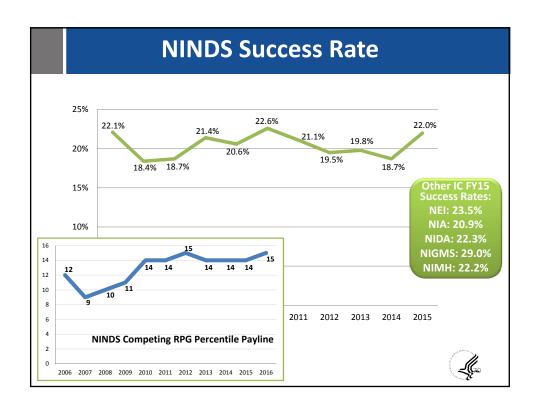
Criteria for Pathological Diagnosis of CTE

Supportive criteria for a diagnosis of CTE:

To complement the required criteria, the group also defined supportive pathological features that were frequent in CTE brains, especially in the more severely affected cases. These include:

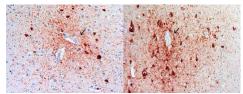
- Macroscopic abnormalities in the septum pellucidum (cavum, fenestration), disproportionate dilatation of the Illrd ventricle or signs of previous brain injury;
- 2. Abnormal tau immunoreactive neuronal lesions affecting the neocortex predominantly in superficial layers 2 and 3 as opposed to layers 3 and 5 as in AD;
- Abnormal tau (or silver-positive) neurofibrillary lesions in the hippocampus, especially in CA2 and CA4 regions, which differ from preferential involvement of CA1 and subiculum in AD;
- Abnormal tau immunoreactive neuronal and astrocytic lesions in subcortical nuclei, including the mammillary bodies and other hypothalamic nuclei, amygdala, nucleus accumbens, thalamus, midbrain tegmentum and substantia nigra, and
- $5. \quad \text{Tau immunoreactive in thorny astrocytes in subpial periventricular and perivascular locations}.$

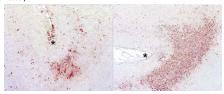

http://www.ninds.nih.gov/research/tbi/ReportFirstNIHConsensusConference.htm


National Institute of Neurological Disorders and Stroke

| Section | Section

In 1031 the pathologist Herions Stanford Lettered described the clinical features of a distinct enemocyclinitic profession is being as office and the profession and the control to the clinical features of a distinct endough as dismertial publishtics; reflecting a belief that it was a disease allmost exclusive to them become, the cerest investigation placed and the law bedieffed this condition is promose with a breader range of exposure to hear injury, modified attributes and the control to th

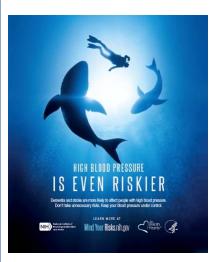

Newtheles, despit his passage of time, his condition, nor called drown traumitic exceptionises of time to the condition of th



Criteria for Pathological Diagnosis of CTE

- NIH Consensus Conference (Boston, Feb 2015)
- In CTE, the tau lesion considered pathognomonic was an abnormal perivascular accumulation of tau in neurons, astrocytes, and cell processes in an irregular pattern at the depths of the cortical sulci.

Tau antibody staining of neurons and neurites in perivascular pattern (arrow pointing to blood vessel).

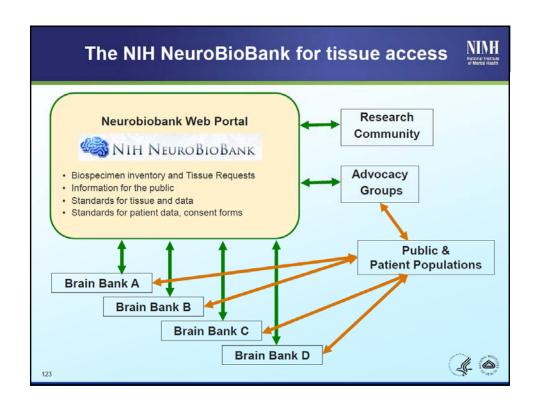


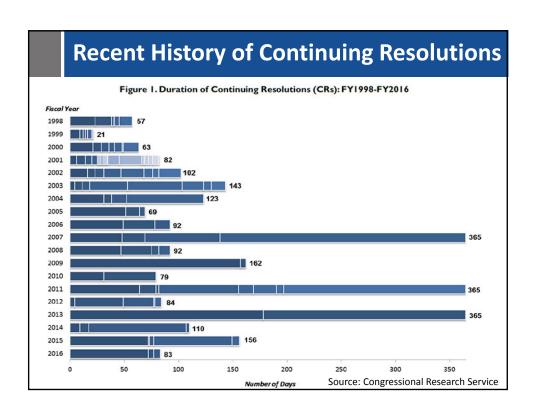
Lower field photo illustrating the focal nature of the tau staining at depth of sulci (asterisk at hottom of sulcus).

Mind Your Risks A New NINDS Public Education Campaign

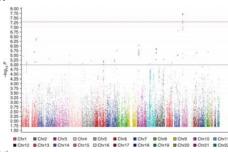
- Raise awareness among middle-aged people with hypertension that controlling blood pressure may decrease risk for dementia, as well as stroke, in later life
- Provide scientific evidence for doctors who wish to discuss this topic with their patients
- Campaign launched with PSA placement in Stroke Belt States
- NINDS-led campaign in partnership with Million Hearts*, NHLBI and NIA

Neuroscience Training: What's Changed?


- · Neuroscience is expanding in multiple directions
- Numbers of graduate students increased dramatically
- · Time to independence increased dramatically
- Tools have become more sophisticated, and an increased degree of sophistication is needed for data analysis
- · New emphasis on attracting scientists from outside biology
- New emphasis on rigor in experimental design and statistical analysis
- Funding climate became much more competitive during the 12 flat budget years and concern that associated pressures led to decline in career mentoring
- Early movement within BRAIN initiative to adapt a more "physics-like" model to engage team science to attack problems
 - · Data platforms and data sharing
- Concern that attempts to increase diversity in trainees not translating as well as hoped into diversity in the academic science workforce


Increase Access to Human Tissues for Neuroscience Research

- Need ability to secure donations throughout the country via network of donors
- Increase public awareness/prospective donation
- Partner with disease advocacy communities and local medical examiners (ME) to increase donation
- Increase diversity of donor pool

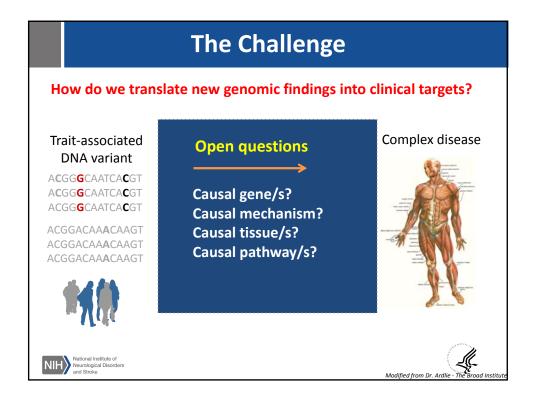


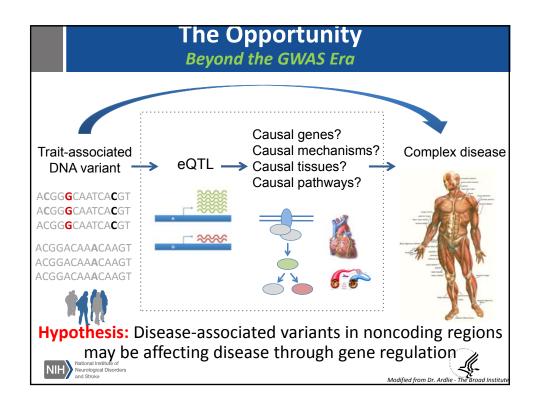
The GWAS Era

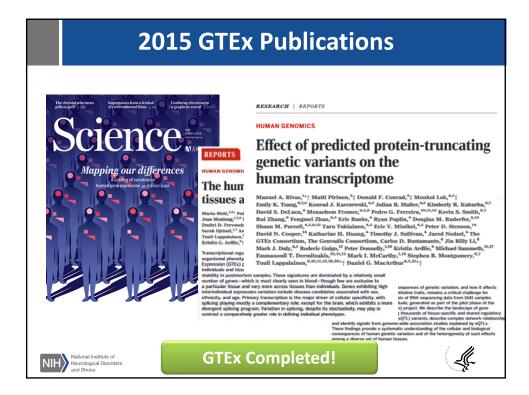
Genome-wide association studies (**GWAS**) have identified **hundreds of common DNA variants** associated with multiple **complex diseases and traits**.

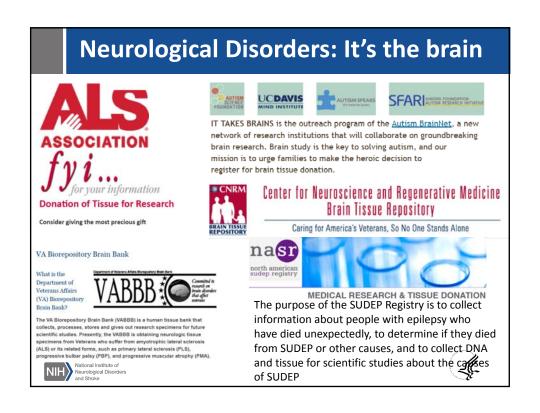
>2/3 GWAS SNPs lie in noncoding regions (e.g. intergenic, introns).

Causal mechanism? Causal gene/s?


Neurological Disorders and Stroke


StrokeNet: Decreasing the Burden of Stroke


- Increase trial efficiency
 - Decreases time to finish studies
- Balanced, prioritized set of early phase 2 and phase 3 trials in <u>prevention</u>, <u>treatment and recovery</u>
- Improved research man/woman power in stroke research.
 - Provides stable funding for research effort, fellowship training
- Improved data sharing
 - Single data center with uniform governance for data access
- Stable infrastructure enables improved team research among different subspecialties
- Improved ability to work in public-private partnerships with non-profits, industry and international partners



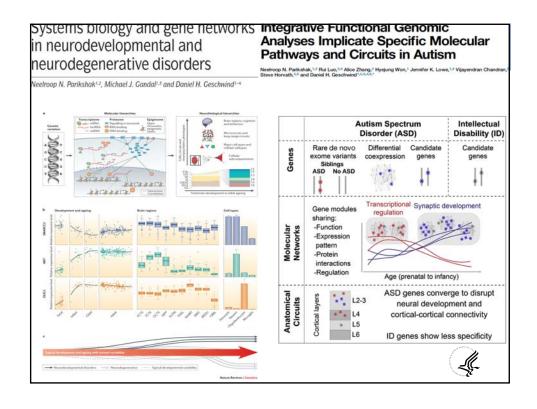
What is Concussion?

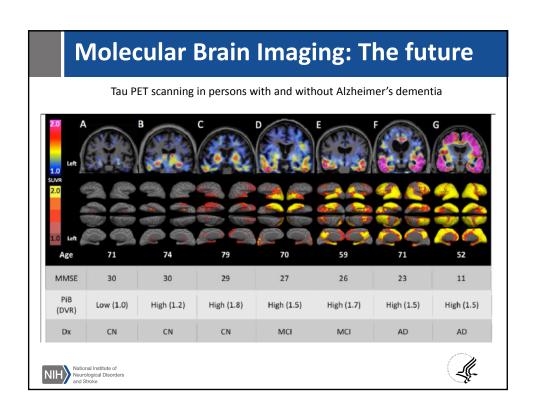
"TBI is defined as an alteration in brain function, or other evidence of brain pathology, caused by an external force."

SPECIAL COMMUNICATION

Position Statement: Definition of Traumatic Brain Injury

David K. Menon, MD, PhD, Karen Schwab, PhD, David W. Wright, MD, Andrew I. Maas, MD, PhD, on behalf of The Demographics and Clinical Assessment Working Group of the International and Interagency Initiative toward Common Data Elements for Research on Traumatic Brain Injury and Psychological Health





Human Tissues and Organs Resource for Research (HTORR)

- Supported by the NIH Office of the Director through the Office of Research Infrastructure Programs
- 2013 NDRI awarded \$6,865,689 (five year award) to continue funding the recovery and distribution of human organs and tissues for medical research.
 - A core grant from the NIH Office of the Director
 - Supplemented with additional funding from:
 - National Center for Advancing Translational Sciences (NCATS)
 - National Eye Institute (NEI)
 - National Heart, Lung, and Blood Institute (NHLBI)
 - National Institute of Allergy and Infectious Diseases (NIAID)
 - National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
 - National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
 - National Institute of Mental Health (NIMH)

34

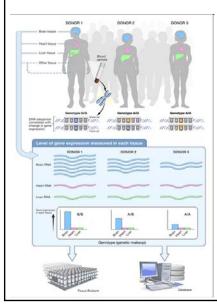
HTORR History

- 1987 NDRI first awarded a grant to support Human Tissues & Organs Resource for Research (HTORR) Program
- Goal: to provide a broad range of normal and diseased human biospecimens to investigators at the NIH and other academic institutions
- 2002 expanded to include dedicated programs to support and advance Rare Disease and HIV research
 - National Rare Disease Biospecimen Resource (NRDBR)
 - Contains over 2,000 tissues representing 101 rare diseases

What Do We Need?

- Consensus diagnosis for CTE.
- Consensus diagnosis for single TBI chronic neurodegeneration
- Promising imaging tools for detection and diagnosis of CTE and/or TBI chronic neurodegeneration
- Estimate of prevalence in selected cohorts
- · Brain donor program for population based study

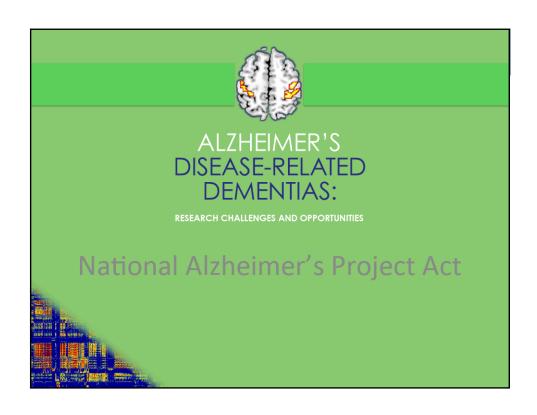
Chronic Pathology of Neurotrauma

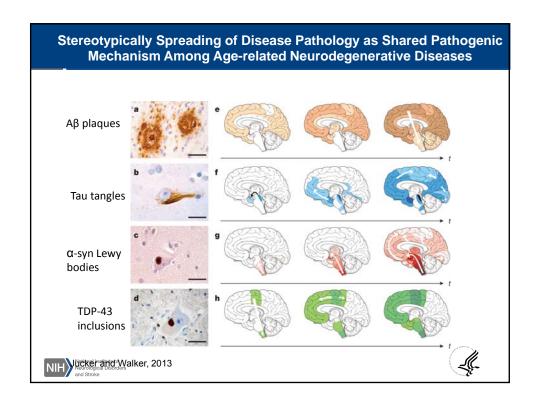

Goals:

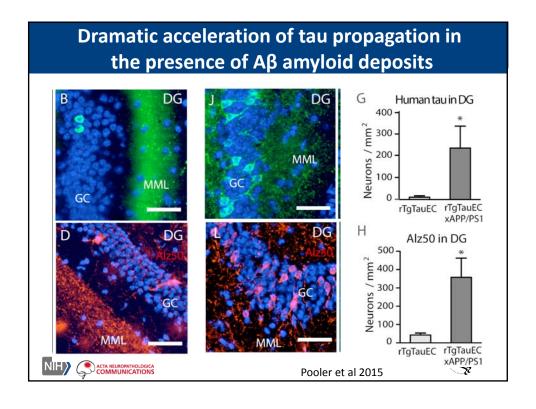
- Define the spectrum of chronic effects of neurotrauma and develop consensus neuropathologic criteria for chronic effects of:
 - · Repetitive concussion
 - Single mild, moderate, or severe TBI
- Search for neuroimaging correlate of chronic neuropathology after TBI by ex vivo imaging.
 - MRI, tau-PET
- Better understand the prevalence of TBI-related chronic pathology in brains of persons with a variety of injury severity and exposures.
- Exploratory studies considered high impact in peer review.

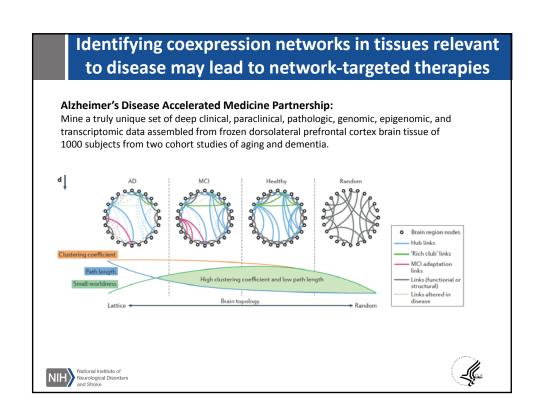
GTEx = Genotype-Tissue Expression

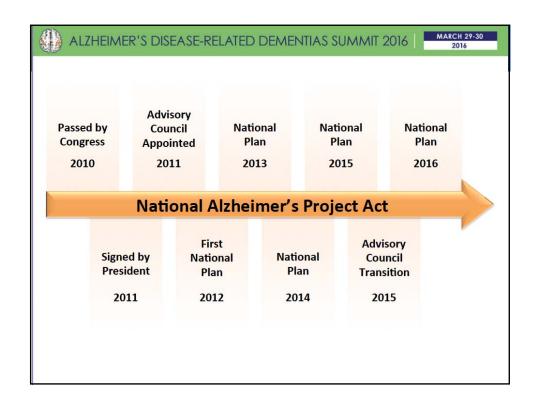
GTEX GOAL:

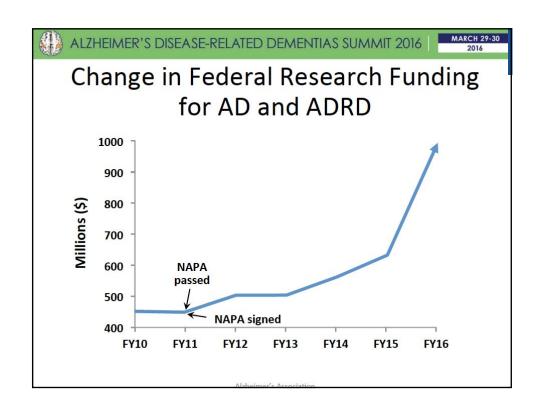

- to help unravel the complex interplay between genetic variation and gene expression across a wide range of nondiseased human tissues.
 - Atlas of gene expression & eQTLs
 - Biobank of tissues, DNA, RNA

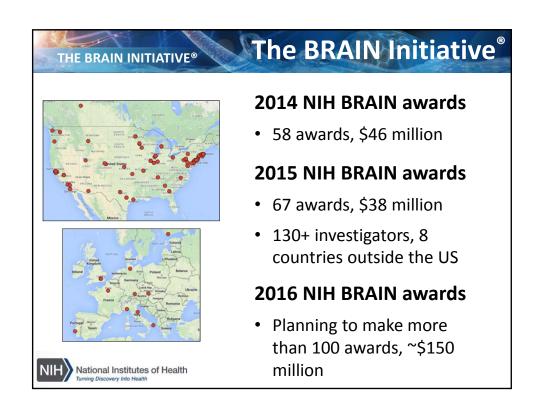

by 1/2016:

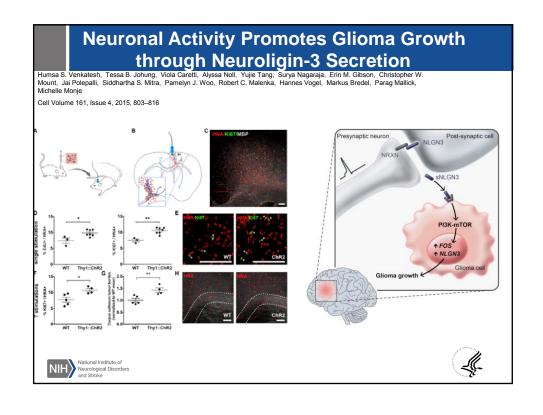

- 900 Postmortem Donors
- WES & WGS
- RNA-Seq of ~30 tissues/donor (>20,000 tissues)
- Beyond Gene Exp

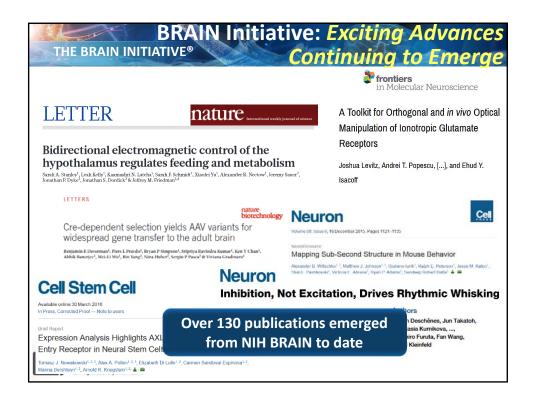


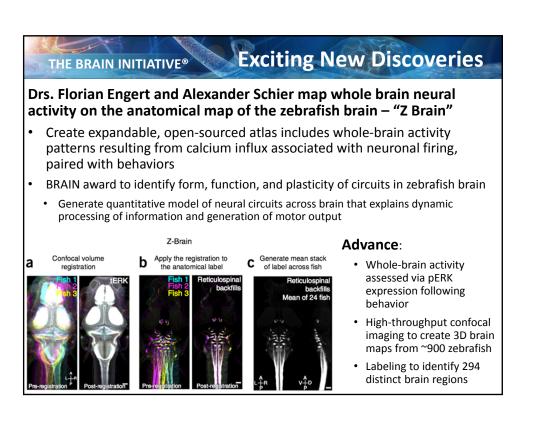




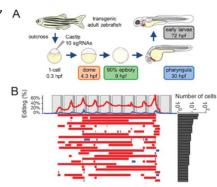






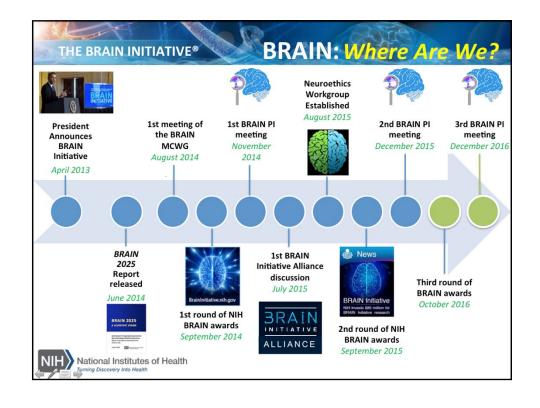

CDC Guideline for Prescribing Opioids for Chronic Pain: Primary Care Clinical Questions Determining when to initiate or continue opioids for chronic pain Opioid selection, dosage, duration, follow-up, and discontinuation Assessing risk and addressing harms of opioid use 12 Recommendations Non-opioid therapy is preferred for chronic pain outside -Opioid Sales KG/10,000 Opioid Deaths/100,000 of active cancer, palliative, and end-of-life care. When opioids are used, the lowest possible effective dosage should be prescribed to reduce risks of opioid use disorder and overdose. Providers should always exercise caution when prescribing opioids and monitor all patients closely.

Bringing CLARITY to the human brain: visualization of Lewy pathology in three dimensions Bringing **CLARITY** to the human brain: visualization of Lewy pathology in three dimensions Z-stack image of double immunofluorescence with anti-αSN (green) and anti-TH (red) antibodies on human midbrain block (z-stack step size 1.5 μm). Neuropathology and Applied Neurobi 7 DEC 2015 DOI: 10.1111/nan.12293 $\underline{\text{http://onlinelibrary.wiley.com/doi/10.1111/nan.12293/full#nan12293-fig-0006}}$ National Institute of Neurological Disorders and Stroke



THE BRAIN INITIATIVE® Exciting New Discoveries

Drs. Jay Shendure and Alexander Schier develop novel tool for studying cell lineages in whole organisms


Genome editing of synthetic target arrays for lineage tracing (GESTALT) tracks cell fate in complex, multicellular organisms (*Science*)

- Method uses CRISPR/Cas9 to edit a unique set of genes, called a "barcode," A to mark individual cells
 - Zebrafish embryos are injected with different barcodes, and cell expression is examined at multiple developmental time points
 - Mutation patterns are used to determine lineage relationships and cell fate
- Improves ability to create a census of cell types in complex organisms
- Powerful new tool in developmental biology to study normal and abnormal development

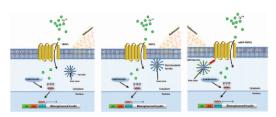
BRAIN: Exciting New Tools Drop-Seq single cell analysis · Steve McCarroll, Joshua) 😚 🏈 Sanes, and colleagues, Cell Rapid, inexpensive method for classifying cells based on gene expression profiles Completes genome-wide gene expression in thousands of individual cells in a single experiment 44,808 retinal cells from mice sorted into 39 distinct populations This technology brings us closer to having a complete parts list for the brain

Questions?

Walter J. Koroshetz, M.D.

Director

National Institute of Neurological Disorders and Stroke


Email: koroshetzw@ninds.nih.gov
Website: http://www.ninds.nih.gov/

Follow me @NINDSdirector

108

Cell and Circuit Manipulation

Remote regulation of TRPV1 channels

Stanley, Mt. Sinai

Remote regulation by radiofrequency waves of ferritin conjugated TRPV1 channels. Stanley, Mt. Sinai

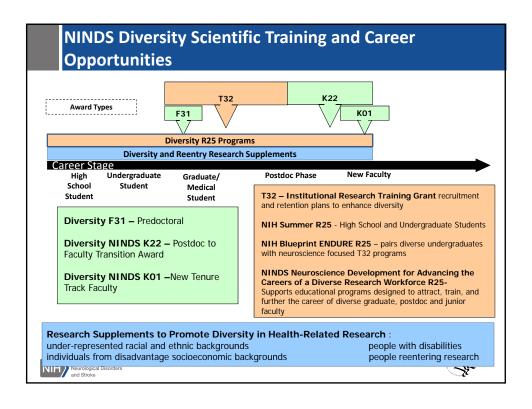
SAFETY VALIDATION OF REPEATED BLOOD-BRAIN BARRIER DISRUPTION USING FOCUSED ULTRASOUND

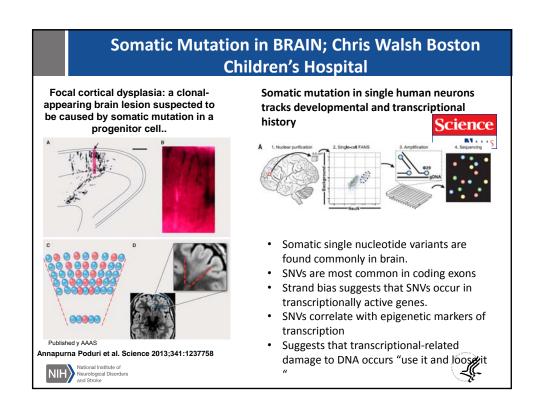
THIELE KOBUS,*† NATALIA VYKHODTSEVA,* MAGDALINI PILATOU,* YONGZHI ZHANG,* and NATHAN McDannold*

*Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; and †Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands

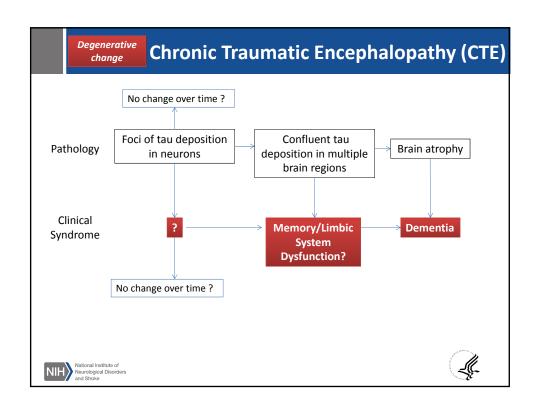
(Received 23 July 2015; revised 29 September 2015; in final form 14 October 2015)

BRAIN Funding in FY2017: New Concepts


Tools for Circuit Diagrams Tech. to Monitor Neural Activity Precise Interventional Tools Theory and
Data
Analysis
Tools

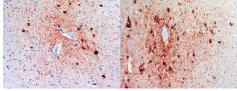

Advance Human Neuroscience

Integrate Approaches

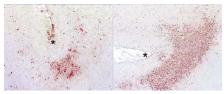

Funding Opportunity Concepts for FY17 Include:

- Comprehensive & Specialized Cell Phenotyping Centers (+ Phase2)
- Selected Cell Phenotyping Projects for Human/Non-human Primate Cell Classification (U01)
- BRAIN Data Centers for Cell Phenotyping, Integrated approaches, and Human recording (U24)
- Development of Next-Generation Human Brain Imaging Tools and Technologies: + Phase II (U01), and Human Recording Consortia with data hubs.
- BRAIN Initiative Fellows Training Grant (F32)
- Research Career Enhancement Award (K18)
- Targeted Integrated Approaches Research Projects Phase 2 (U01)
- Exploratory Targeted Integrated Approaches Research Projects (U01)

Progressive degenerative disease Dementia pugilistica "punch-drunk syndrome" Post-mortem diagnosis Nerve cell loss Accumulation of tau protein/neurofibrillary tangles Repetitive brain injury raises the risk National Institute of Neurological Disorders Image: http://www.bumc.bu.edu/supportingbusm/research/brain/cte/


BIG Questions Remain

- 1. What are the underlying **mechanisms** of post-concussive syndrome?
- 2. What are the underlying mechanisms of increased vulnerability to prolonged post concussive syndrome with repeated concussion?
- 3. What **dose** of TBI (e.g., number, intensity, temporal pattern, regional factors) is associated with foci of tau deposits?
- 4. How does tau deposition **evolve** to affect widespread brain regions. (e.g., spread vs. different regional rates of neurodegenration)?
- 5. Given similar exposures, how can we **predict** an individual's risk for CTE? (e.g., genetics, environmental influences, lifestyle, etc.)



Criteria for Pathological Diagnosis of CTE

- NIH Consensus Conference (Boston, Feb 2015)
- In CTE, the tau lesion considered pathognomonic was an abnormal perivascular accumulation of tau in neurons, astrocytes, and cell processes in an irregular pattern at the depths of the cortical sulci.

Tau antibody staining of neurons and neurites in perivascular pattern (arrow pointing to blood vessel).

ustitute of control to the tau staining at depth of sulci (asterisk at bottom of sulcus).

