Advances in Neurostimulation for Pain
Joshua M. Rosenow, MD, FAANS, FACS
Director, Functional Neurosurgery
Associate Professor, Departments of Neurosurgery, Neurology and Physical Medicine and Rehabilitation
Feinberg School of Medicine, Northwestern University

Disclosures
Corporate Ownership, Equity, Stocks, Bonds
None
Corporate Consultant Contracts – Boston Scientific Neuromodulation
Yes
Corporate Fiduciary or Board Positions
None
Corporate research - Boston Scientific, SanBio/Sunovion, SPR Therapeutics
Yes
Non-Profit Board Positions – Medical Advisory Board, Epilepsy Foundation of Greater Chicago
Grants – Co-investigator on grants from NIH, Brain Research Foundation, NMH Dixon Fund, DoD, NIDRR, VA
Patents
None

1965 – Melzak and Wall publish Gate Theory of Pain
1967 – Shealy 1st clinical use of SCS
1972 – Shealy stops using SCS after ~500 patients worldwide
1973 – Shealy 1st commercially available RF systems
1981 – First totally implantable stimulator
1982 – First 4-contact electrode RF systems
1984 – First totally implantable stimulator
1987 – Shealy begins SCS modeling
1988 – First 8-contact electrode RF system
1993 – Barolat et al. publish exhaustive map of SCS coverage pattern
1995 – Matrix: 8-contact 2-channel RF system
1999 – Synergy: 8-contact 2-channel totally implantable stimulator
2000 – Genesis II: 2-contact 3-channel totally implantable stimulator
2001 – Synergy II: 6-column paddle electrode
2004 – First rechargeable IPG with 16 independent current sources
2009 – IPG with position-sensitive adjustments
2010 – 5-column paddle electrode
2013 MRI compatible IPG and percutaneous leads
2015 MRI compatible IPG with upgradeable firmware
2015 – HF10 therapy approval
2015 – Small RF SCS system approval
2016 – Fully MRI compatible paddle system
2016–2013 – Small RF SCS system approval
2015 – Genesis II: 2-channel totally implantable stimulator
2014 – IPG with upgradeable firmware
2013 – Small RF SCS system approval
2013 – MRI compatible IPG and percutaneous leads

History of SCS

Recent Developments

Patient selection for Neurostimulation for Chronic Pain

• Most neuropathic pain syndromes
 – CRPS
 – Painful neuropathies (Diabetic, small fiber, post herpetic neuralgia)
 – Neuropathic facial pain/anesthesia dolorosa
 – Nerve injury pain
 – Failed back/neck surgery syndrome
 – Radical pain with the absence of surgical lesions and possible presence of arachnoiditis, fibrosis
• Patients with surgical pathology but predominant neuropathic or burning pain secondary to prolonged nerve compression or injury
• Poor response to conservative treatment
• Remedial surgery inadvisable
• No major psychiatric disorder, including somatization complaints
• Willingness to stop inappropriate drug use before implantation
• Minimized secondary gain
• Patient preference over repeat surgery

SCS Advances

• SCS Evidence
• Stimulation programming
• Stimulation leads
• Stimulation methods
• Stimulation indications
RCT of SCS vs. Reoperation

• North et al 2005, Neurosurgery
• Fifty patients
 – Equipoise between SCS and repeat surgery
 – Allowed to cross over to other therapy at 6 months
 – Followed for a mean of 3 years.
• Crossover rates significantly different
 – 17% of SCS patients opted for repeated operation
 – 67% of reoperation patients opted for crossover to SCS (p = 0.02).
• Success after crossover –
 – 0% (0/4) SCS patients
 – 43% (6/14) repeat surgery patients

SCS vs. Reoperation

Success: combination of ≥ 50% VAS reduction and pt satisfaction

Crossover Rates

SCS Cost effectiveness

• Data from first 42 patients of RCT by North et al. (Neurosurgery 2007)
 – Mean 3.1 year follow up
 – The cost per patient who achieved long-term success with SCS alone was $48,357.
 – The cost per patient who achieved long-term success with reoperation alone was $105,928.
 – Crossovers to SCS achieved success (5/13) at mean cost of $117,901
 – Crossovers to repeat surgery achieved no success despite mean cost of $260,584

Real World SCS Outcomes

Real World SCS Outcomes – Back Pain Only

New SCS Programming

• I am not an electrical engineer
• The number of possible anode/cathode combinations with a 16- or 32-contact SCS system is tremendous
• Improved software automates programming
New SCS Programming

- Even small lead migration causes loss of pain relief
- The stimulation system can now detect changes in the relative position of contacts
- In the future the stimulator will automatically compensate for this and change contact combinations to maintain a similar charge field

Anode intensity Management transfers some of the cathodal current to a distant location (like the IPG) at subthreshold levels

The theoretical result is increased dorsal column stimulation with reduced dorsal root stimulation

New SCS IPG

- More power sources in the IPG power more contacts
 - 32-contact paddle leads
 - Multiple 4-8- or 16-contact leads
 - Allows for addition of more leads in future if pain location changes

New SCS Electrodes

- More power sources in the IPG power more contacts
 - 32-contact paddle leads
 - Multiple 4-8- or 16-contact leads

New Stimulation Paradigms

- Current practice –
 - 40-80 Hz
 - Paresthesia mapping
 - Patient cooperation
 - Back pain relief problematic
- High frequency SCS
 - 10,000 Hz
 - No paresthesia mapping
 - No patient cooperation
 - Improved back pain relief

High Frequency SCS

- Schecter, et al. Anesthesiology 2013
 - Rat sensory nerve ligation model of neuropathic pain
 - SCS at 50Hz, 1kHz, 10kHz
 - kHz SCS reduced hypersensitivity better than 50Hz
 - However, 50Hz stimulation better reduced windup in dorsal horn cells
High Frequency SCS (10Khz)

- van Buyten, Neuromodulation 2013
 - 83 trials, 72 successful, 6 month evaluation
 - 11/14 pts who failed prior SCS had successful trial
 - Back pain VAS − 8.4 ± 2.7 – 78% improvement
 - Leg pain VAS 5.4 ± 1.4 – 83% decrease
 - Daily charging needed

10KHz SCS RTC

- 10KHz SCS vs traditional SCS
- 80% FBSS pts
- Pts randomized to treatment
- Not blinded, as HF SCS produces no detectable paresthesias
- Both treatments significantly reduced pain in a durable fashion, with HF SCS producing a larger VAS decrease in both back and leg pain
Kapural, Anesthesiology 2015

HF SCS 24 month f/u

- Al-Kaisy, pain med 2014
 - 24-month prospective f/u
 - 2 explants due to poor pain relief
 - Mean ODI decrease of 15 points (55-40)
 - Significant decrease in opioid use
 - 6% infection rate, 4.8% lead migration

10KHz SCS vs Surgery for FBSS

- HF SCS RCT
 - ODI improved average of 16.5 for HF SCS and 13.0 for traditional SCS
 - 69% of HF SCS and 51% of traditional SCS pts had LBP VAS <2.5
 - 76% of HF SCS and 38% of traditional SCS pts had leg pain VAS <2.5

Burst SCS

- The thalamus communicates in burst patterns
- Delivers "packets" that have more charge per second than tonic stimulation
- Requires less temporal integration than tonic stimulation
- Often does not produce paresthesias

Burst SCS

- Thought to involve the “medial pathway” of pain signaling
- Controls affective components of pain

Review of RCT Spine surgery vs nonop mgmt for FBSS

Burst SCS

- De Ridder, World Neurosurgery 2013
- 15 patients
- Each randomly received 1 week burst, tonic and placebo
- Burst and tonic better than placebo
- Burst better than tonic for back and general
- No difference between burst and tonic for leg pain

<table>
<thead>
<tr>
<th>Feature</th>
<th>Tonic</th>
<th>Burst</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test 1</td>
<td>6.4%</td>
<td>8.1%</td>
<td>5.2%</td>
</tr>
<tr>
<td>Test 2</td>
<td>7.3%</td>
<td>7.5%</td>
<td>6.8%</td>
</tr>
<tr>
<td>Test 3</td>
<td>6.3%</td>
<td>7.1%</td>
<td>5.8%</td>
</tr>
<tr>
<td>Mean</td>
<td>6.9%</td>
<td>7.6%</td>
<td>6.2%</td>
</tr>
</tbody>
</table>

Burst SCS

- De Vos, Neuromodulation 2014
- 48 patients with FBSS and PDN, some who became refractory to tonic SCS
- 2 weeks burst stimulation
- Pain—additional 44% improvement in PDN and 28% in FBSS

Dorsal Root Ganglion Stimulation

- Located in neural foramen
- Contains A-beta, C fibers and A-delta fibers
- Physiologic changes in these neurons in chronic pain states
- Stimulation here may exert different effects than DCS
- Stimulation produces very selective distribution of paresthesias
 - Can selectively target foot, groin, etc without overflow

Dorsal Root Ganglion Stimulation

- Eldabe, Neuromodulation, 2015
 - 8 pts with PLC, 14mos avg f/u, all with successful trials, prospective
 - 5/8 with pain relief ranging from 26-100%

- Lim, Neuromodulation, 2015
 - 51 trials, 32 implants, variety of pain etiologies, 1 year prospective f/u
 - Overall pain VAS improvement from 77.6 to 33.6 at 1 year (similar for back and leg pain)
 - Motor stimulation in 14%, infection 8.5%, CSF leak 8.5%

- Schu, Pain Practice 2015
 - 29 patients, total 49 leads, avg 27 week f/u, retrospective
 - Etiologies—herniorrhaphy (13), vascular access (2), other surgery (7) and others
 - VAS improved from mean 74.5 to 20.7 (71.4%)

Craniofacial Pain

- Occipital nerve stimulation
 - Greater occipital nerve
 - Lesser occipital nerve
 - Third occipital nerve
- Supraorbital nerve stimulation
- Infraorbital nerve stimulation
- Auriculotemporal nerve stimulation
- Sphenopalatine ganglion stimulation

Trigeminal Branch

- Supraorbital or infraorbital
- Mandibular stim usually avoided due to lead mobility
- Target – 1cm above supraorbital rim or below infraorbital notch
- Percutaneous trial
- Craniofacial Pain
 - Papers mostly case series
 - Retrospective, small, VAS-based
 - Many corporate funded trials not published
 - Hardware not designed for this indication
 - Complication rate high
 - Migration as high as 40%
 - Tip erosion

- Craniofacial Pain
 - Bilateral occipital neuralgia with tinel's signs, allodynia and good transient response to ONB

- Craniofacial Pain
 - Chronic bifrontal migraine headache

- Craniofacial Pain
 - Chronic holocranial pain following meningitis

- ONSTIM Trial
 - Corporate-funded trial of ONS for migraine
 - US, Canada and UK centers
 - Old hardware – Pisces quads and Synergy/Versitrel
 - Randomized 2:1:1 between adjustable stim:preset stim:medical
 - Preset stim – 1 min per day only, no titration
 - Positive temporary response to ONS
 - No trial – full implant if coverage achieved in OR
 - 110 subjects enrolled, 75 randomized, 67 completed 3 month f/u

- ONSTIM Trial
 - VAS change
 - AS – 1.5 ± 1.6
 - PS – 0.5 ± 1.3
 - MM – 0.6 ± 1.0
 - SF-36 and other functional measures not significantly improved
ONS RCT for Migraine

- Corporate-funded trial of ONS for migraine
- Only trial successes (>50% pain reduction) randomized
- Randomized 2:1 between active and sham stim
- 12 week phase
- 268 subjects trialed over 5 years
- 157 implanted and randomized
- 105 active, 52 control
- “Responder” – reduction of pain of >50% with no increase in avg headache duration

ONS RCT for Migraine

- ITT analysis
- 18 responders in active group (17.1%)
- 7 responders in control group (13.5%)
- P=0.55
- Significantly more pts in active group achieved 10%, 20%, and 30% improvement
- MIDAS significantly improved in active group c/w control group (p=0.001)
- Active group – 27.2% reduction in headache days
- Control group – 14.9% reduction in headache days

ONS RCT for Migraine

- Lead migration – 16.6%
- Infection – 6.4%
- IPG site pain/discomfort – 17.8%
- 51 pts (32%) required 93 additional surgical procedures
- IPGs in the abdomen and buttocks were associated with a significantly higher percentage of AEs
- AEs decreased with increasing implanter experience

Cluster Headache and Sphenopalatine Ganglion

- Cluster headache involves autonomic responses of the trigeminal system
- SPG innervated by parasympathetics from nervus intermedius via the greater petrosal n.
- SPG projects to lacrimal glands, nasal mucosa
- Postganglionic parasympathetics also travel with trigeminal n
- Postganglionic fibers sympathetic from superior cervical ganglion also pass through
- Innervates eye, nose, soft palate, pharynx
- Via the trigeminal system SPG has connections to dura

SPGS Implant

- Schoenen, Cephalgia 2013
- 28 patients
- Corporate-funded trial
- 4wk baseline, 6 wks titration, 3-8 wks randomized, open label out to 1 yr
- Randomized period – shortest period needed to treat 30 attacks
- Full stim vs sub perception stim vs sham (remote randomized stims)
- Paresthesias felt in the nose
- Stim used on demand
- Avg 20 attacks treated per patient
SPGS Trial

- Pain judged on 0-4 scale
- Pain relief (0-1) achieved in 15 mins in 67% of full stim treated attacks vs 7.4% sham stim attacks
- Pain freedom (0) achieved in 15 mins in 34% of full stim treated attacks vs 1.5% sham stim attacks

<table>
<thead>
<tr>
<th>Full stimulation</th>
<th>Submaximal stimulation</th>
<th>Sham stimulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb%</td>
<td>Hb%</td>
<td>Hb%</td>
</tr>
<tr>
<td>median</td>
<td>median</td>
<td>median</td>
</tr>
<tr>
<td>0.74%</td>
<td>0.74%</td>
<td>0.74%</td>
</tr>
<tr>
<td>0.72-1.00%</td>
<td>0.72-1.00%</td>
<td>0.72-1.00%</td>
</tr>
<tr>
<td>Global comparison</td>
<td>p < 0.001</td>
<td>= 0.001</td>
</tr>
<tr>
<td>Global comparison</td>
<td>p < 0.001</td>
<td>= 0.001</td>
</tr>
</tbody>
</table>

Motor Cortex Stimulation

- Tsubokawa – 1991
 Deafferentation pain best treated with stimulation above level of deafferentation
 Where to stimulate for thalamic pain?

- Post-central cortical stimulation failed
- PRE-central cortical stimulation succeeded!

MCX Stim: Technique

- Must understand homunculus organization
- Target craniotomy and electrode localization

MCX Stim: Electrodes

MCX Stimulation Problems

- No uniformity in results reporting
- Optimal stimulation parameters?
- Optimal hardware?
- Seizures
- Tachyphylaxis

MCX Stimulation Tachyphylaxis

- Affects almost all patients
- Reprogramming time-intensive
- Higher risk of seizure
- Rarely permanent
- ?Cortical plasticity
DBS for Pain

- Vc Sensory Thalamus (VPM / VPL)
- Paresthesia producing
- PVG
- Endorphin release
- Pain pathway modulation

DBS for Pain

- Levy 1987
 - 141 patients average F-U 80 mo.
 - 84 with deafferentation pain and 57 with nociceptive pain
 - Deafferentation pain treated predominantly with VPM/VPL stimulation and nociceptive pain with PVG stimulation
 - 83 (59%) implants following the trial
 - At 80 mo, 31% maintained significant pain relief

DBS for Pain

- Coffey 2001
 - Multi-center trial of DBS with 2 phases, the second using the modern 3387 DBS electrode
 - 15 diagnosis: Thalamic (11) accident (6) and post laminectomy (8)
 - 50 implants / 37 internalizations
 - 22% of internalized with >50% at 3 mo and 14% at 24 mo
 - No correlation between efficacy and electrode location
 - Sponsor did not pursue DBS FDA labeling for chronic pain

DBS for Pain

Owen and Aziz 2006:

- 15 patients with post-stroke pain
- 24 mo FU
- A implanted initially with PVG and Vc for trial
- 12 implanted following trial (7 PVG/4 PVG/Vc/ 1 Vc)
- 2 patients with >50% relief
- 7 with >40% relief
- Cortical strokes with better outcomes than subcortical

Thank you for coming!

E-mail: jrosenow@nm.org
Phone: 312-695-0495
Come to Chicago in 2016!

April 30, 2016

June 2016