

Northwestern Medicine

Advances in Neurostimulation for Pain

Joshua M. Rosenow, MD, FAANS, FACS

Director, Functional Neurosurgery
Associate Professor, Departments of Neurosurgery, Neurology and Physical Medicine and Rehabilitation
Feinberg School of Medicine, Northwestern University

Disclosures

Corporate Ownership, Equity, Stocks, Bonds	None
Corporate Consultant Contracts – Boston Scientific Neuromodulation	Yes
Corporate Fiduciary or Board Positions	None
Corporate research - Boston Scientific, SanBio/Sunovion, SPR Therapeutics	Yes
Non-Profit Board Positions – Medical Advisory Board, Epilepsy Foundation of Greater Chicago	Yes
Grants – Co-investigator on grants from NIH, Brain Research Foundation, NMH Dixon Fund, DoD, NIDRR, VA	Yes
Patents	None

Recent Developments

Patient selection for Neurostimulation for Chronic Pain

- Most neuropathic pain syndromes
 - CRPS (RSD)
 - Painful neuropathies (Diabetic, small fiber, post-herpetic neuralgia)
 - Neuropathic facial pain/anesthesia dolorosa
 - Nerve injury pain
 - Failed back/neck surgery syndrome
 - Occipital neuralgia
 - Radiculopathy with the absence of surgical lesions and possible presence of arachnoiditis, fibrosis
- Patients with surgical pathology but predominant neuropathic or burning pain secondary to prolonged nerve compression or injury
- Poor response to conservative treatment
- Remedial surgery inadvisable
- No major psychiatric disorder, including somatization complaints
- Willingness to stop inappropriate drug use before implantation
- Minimized secondary gain
- Patient preference over repeat surgery**

SCS Advances

- SCS Evidence
- Stimulation programming
- Stimulation leads
- Stimulation methods
- Stimulation indications

RCT of SCS vs. Reoperation

- North et al 2005, *Neurosurgery*
- Fifty patients
 - Equipoise between SCS and repeat surgery
 - Allowed to cross over to other therapy at 6 months
 - Followed for a mean of 3 years.
- Crossover rates significantly different
 - 17% of SCS patients opted for repeated operation
 - 67% of reoperation patients opted for crossover to SCS ($p = 0.02$).
- Success after crossover –
 - 0% (0/4) SCS patients
 - 43% (6/14) repeat surgery patients

 Northwestern Medicine

SCS vs. Reoperation

Success: combination of $\geq 50\%$ VAS reduction and pt satisfaction

Success Rate of Neurostimulation vs Re-operation

Chronic Opioid Use

 Northwestern Medicine

North et al 2005

SCS Cost effectiveness

- Data from first 42 patients of RCT by North et al. (Neurosurgery 2007)
 - Mean 3.1 year follow up
 - The cost per patient who achieved long-term success with SCS alone was \$48,357.
 - The cost per patient who achieved long-term success with reoperation alone was \$105,928.
 - Crossovers to SCS achieved success (5/13) at mean cost of \$117,901
 - Crossovers to repeat surgery achieved no success despite mean cost of \$260,584

 Northwestern Medicine

Real World SCS Outcomes

 Northwestern Medicine

Real World SCS Outcomes – Back Pain Only

 Northwestern Medicine

New SCS Programming

- I am not an electrical engineer
- The number of possible anode/cathode combinations with a 16- or 32-contact SCS system is tremendous
- Improved software automates programming

 Northwestern Medicine

New SCS Programming

- Even small lead migration causes loss of pain relief
- The stimulation system can now detect changes in the relative position of contacts
- In the future the stimulator will automatically compensate for this and change contact combinations to maintain a similar charge field

Northwestern Medicine

New SCS Programming

Anode intensity Management transfers some of the cathodal current to a distant location (like the IPG) at subthreshold levels

The theoretical result is increased dorsal column stimulation with reduced dorsal root stimulation

Northwestern Medicine

New SCS IPG

- More power sources in the IPG power more contacts
 - 32-contact paddle leads
 - Multiple 4- 8- or 16-contact leads
 - Allows for addition of more leads in future if pain location changes

Northwestern Medicine

New SCS Electrodes

- More power sources in the IPG power more contacts
 - 32-contact paddle leads
 - Multiple 4- 8- or 16-contact leads

Northwestern Medicine

New Stimulation Paradigms

- Current practice –
 - 40-80 Hz
 - Paresthesia mapping
 - Patient cooperation
 - Back pain relief problematic
- High frequency SCS
 - 10,000 Hz
 - No paresthesia mapping
 - No patient cooperation
 - ?Improved back pain relief

Northwestern Medicine

High Frequency SCS

- Schecter, et al *Anesthesiology* 2013
 - Rat sensory nerve ligation model of neuropathic pain
 - SCS at 50Hz, 1kHz, 10kHz
 - kHz SCS reduced hypersensitivity better than 50Hz
 - However, 50Hz stimulation better reduced windup in dorsal horn cells

Northwestern Medicine

High Frequency SCS (10Khz)

- van Buyten, *Neuromodulation* 2013
 - 83 trials, 72 successful, 6 month evaluation
 - 11/14 pts who failed prior SCS had successful trial
 - Back pain VAS = 8.4-2.7 – 78% improvement
 - Leg pain VAS 5.4-1.4 – 83% decrease
 - Daily charging needed

Mean Nuisance pain VAS
Baseline (n=72) 6 months (n=72) 12 months (n=64) 24 months (n=50)
*p-value <0.001

Northwestern Medicine

HF SCS 24 month f/u

- Al-Kaisy, *pain med* 2014
 - 24-month prospective f/u
 - 2 explants due to poor pain relief
 - Mean ODI decrease of 15 points (55-40)
 - Significant decrease in opioid use
 - 6% infection rate, 4.8% lead migration

Mean VAS Score (0-10)
Baseline (n=72) 6 months (n=72) 12 months (n=64) 24 months (n=50)
*p < 0.001
**p < 0.05

Northwestern Medicine

10KHz SCS RTC

- 10KHz SCS vs traditional SCS
 - 80% FBSS pts
 - Pts randomized to treatment
 - Not blinded, as HF SCS produces no detectable paresthesias
 - Both treatments significantly reduced pain in a durable fashion, with HF SCS producing a larger VAS decrease in both back and leg pain

Kapurral, *Anesthesiology* 2015

Northwestern Medicine

10KHz SCS vs Surgery for FBSS

- HF SCS RCT –
 - ODI improved average of 16.5 for HF SCS and 13.0 for traditional SCS
 - 65% of HF SCS and 31% of traditional SCS pts had LBP VAS <2.5
 - 76% of HF SCS and 38% of traditional SCS pts had leg pain VAS <2.5
- Review of RCT Spine surgery vs nonop mgmt for FBSS

Procedure	Kilbom et al ^a 1989		Harms et al ^b 2003		Harms et al ^c 2004		Schoen et al ^d 2006	
	n	%	n	%	n	%	n	%
Surgeon (n)	200	40%	26	47%	36	63%	36	26%
Procedure (n)	47 (23)	41	23 (11)	69	65 (14)	57	16 (4)	
First time surgery (n)	23 (12)	24	24 (11)	24	34 (14)	30	12 (3)	
Previous surgery (n)	16 (8)	17	12 (5)	12	20 (9)	22	8 (3)	
Previous reoperation (n)	24 (9)	25	31 (14)	36	36 (16)	36	13 (5)	
Nonoperative group	n = 21	40%	n = 22	40%	n = 12	21%	n = 21	26%
Success (n)	12 (57)	55	15 (68)	34	12 (21)	21	15 (53)	
Failure (n)	6 (29)	28	7 (32)	16	9 (17)	15	6 (21)	
Change (n)	12 (57)	55	18 (82)	40	12 (21)	20	11 (39)	
Failure reoperation (n)	2 (9)	9	3 (14)	13	3 (6)	8	3 (11)	
Success reoperation (n)	1 (5)	5	2 (9)	9	1 (2)	3	1 (4)	

Northwestern Medicine

Mirza Spine 2007;32:816 – 823

Burst SCS

- The thalamus communicates in burst patterns
- Delivers “packets” that have more charge per second than tonic stimulation
- Requires less temporal integration than tonic stimulation
- Often does not produce paresthesias

Northwestern Medicine

Burst SCS

- Thought to involve the “medial pathway” of pain signaling
- Controls affective components of pain

Northwestern Medicine

Burst SCS

- De Ridder, *World Neurosurgery 2013*
- 15 patients
- Each randomly received 1 week burst, tonic and placebo
- Burst and tonic better than placebo
- Burst better than tonic for back and general
- No difference between burst and tonic for leg pain

	Placebo		Tonic		Burst		P value
	ID	%	ID	%	ID	%	
Back pain	1.7	11.4	22.9	30.3	31.8	21.3	0.21*
Leg pain	0.6	11.7	32.9	51.2	32.6	52.7	0.48†
General pain	0.6	11.3	22.9	31.3	42.9	36.0	0.44*

Northwestern Medicine

Burst SCS

- De Vos, *Neuromodulation 2014*
- 48 patients with FBSS and PDN, some who became refractory to tonic SCS
- 2 weeks burst stimulation
- Pain – additional 44% improvement in PDN and 28% in FBSS

Group	Baseline	Tonic	Burst
PDN	~75	~30	~30
FBSS	~80	~40	~40
Poor Responders	~80	~55	~55

Northwestern Medicine

Dorsal Root Ganglion Stimulation

- Located in neural foramen
- Contains A-beta, C fibers and A-delta fibers
- Physiologic changes in these neurons in chronic pain states
- Stimulation here may exert different effects than DCS
- Stimulation produces very selective distribution of paresthesias
 - Can selectively target foot, groin, etc without overflow

Northwestern Medicine

Dorsal Root Ganglion Stimulation

- Eldabe, *Neuromodulation, 2015*
 - 8 pts with PLP, 14mo avg f/u, all with successful trials, prospective
 - 5/8 with pain relief ranging from 28-100%
- Liem, *Neuromodulation, 2015*
 - 51 trials, 32 implants, variety of pain etiologies, 1 year prospective f/u
 - Overall pain VAS improvement from 77.6 to 33.6 at 1 year (similar for back and leg pain)
 - Motor stimulation in 14%, infection 8.5%, CSF leak 8.5%
- Schu, *Pain Practice 2015*
 - 29 patients, total 49 leads,
 - 25 successful trials, avg 27 wks f/u, retrospective
 - Etiologies – herniorrhaphy (13), vascular access (2), other surgery (7) and others
 - VAS improved from mean 74.5 to 20.7 (71.4%)

Northwestern Medicine

Craniofacial Pain

- Occipital nerve stimulation
 - Greater occipital nerve
 - Lesser occipital nerve
 - Third occipital nerve
- Supraorbital nerve stimulation
- Infraorbital nerve stimulation
- Auriculotemporal nerve stimulation
- Sphenopalatine ganglion stimulation

Northwestern Medicine

Trigeminal Branch

- Supraorbital or infraorbital
- Mandibular stim usually avoided due to lead mobility
- Target – 1cm above supraorbital rim or below infraorbital notch
- Percutaneous trial

Northwestern Medicine

Craniofacial Pain

- Papers mostly case series
 - Retrospective, small, VAS-based
 - Many corporate funded trials not published
- Hardware not designed for this indication
- Complication rate high
 - Migration as high as 40%
 - Tip erosion

Craniofacial Pain

- Bilateral occipital neuralgia with tinel's signs, allodynia and good transient response to ONB

Craniofacial Pain

- Chronic bifrontal migraine headache

Craniofacial Pain

- Chronic holocranial pain following meningitis

ONSTIM Trial

Saper, Cephalgia 2011

- Corporate-funded trial of ONS for migraine
 - US, Canada and UK centers
 - Old hardware - Pisces quads and Synergy/Versitrel
- Randomized 2:1:1 between adjustable stim:preset stim:medical
 - Preset stim - 1 min per day only, no titration
 - Positive temporary response to ONB
 - No trial - full implant if coverage achieved in OR
- 110 subjects enrolled, 75 randomized, 67 completed 3 month f/u

ONSTIM Trial

- VAS change
 - AS - 1.5 ± 1.6
 - PS - 0.5 ± 1.3
 - MM - 0.6 ± 1.0
- SF-36 and other functional measures not significantly improved

Individual subjects Treatment mean

ONS RCT for Migraine

Silberstein, *Cephalgia* 2012

- Corporate-funded trial of ONS for migraine
- Only trial successes (>50% pain reduction) randomized
- Randomized 2:1 between active and sham stim
 - 12 week phase
- 268 subjects trialed over 5 years
 - 157 implanted and randomized
 - 105 active, 52 control
- "Responder" – reduction of pain of >50% with no increase in avg headache duration

ONS RCT for Migraine

- Lead migration – 16.6%
- Infection – 6.4%
- IPG site pain/discomfort – 17.8%
- 51 pts (32%) required 93 additional surgical procedures
- IPGs in the abdomen and buttocks were associated with a significantly higher percentage of AEs
- AEs decreased with increasing implanter experience

ONS RCT for Migraine

- ITT analysis
 - 18 responders in active group (17.1%)
 - 7 responders in control group (13.5%)
 - P=0.55
- Significantly more pts in active group achieved 10%, 20%, and 30% improvement
- MIDAS significantly improved in active group c/w control group (p=0.001)
- Active group – 27.2% reduction in headache days
- Control group – 14.9% reduction in headache days

SPGS Implant

Microstimulator lead within the pterygopalatine fossa
Stimulator fixed to maxilla with lead extending into pterygopalatine fossa

41

Cluster Headache and Sphenopalatine Ganglion

- Cluster headache involves autonomic responses of the trigeminal system
- SPG innervated by parasympathetics from nervus intermedius via the greater petrosal n.
- SPG projects to lacrimal glands, nasal mucosa
- Postganglionic parasympathetics also travel with trigeminal n
- Postganglionic fibers sympathetics from superior cervical ganglion also pass through
- Innervates eye, nose, soft palate, pharynx
- Via the trigeminal system SPG has connections to dura

SPGS Trial

- Schoenen, *Cephalgia* 2013
- 28 patients
- Corporate-funded trial
- 4wk baseline, 6 wks stim titration, 3-8 wks randomized, open label out to 1 yr
- Randomized period – shortest period needed to treat 30 attacks
 - Full stim vs sub perception stim vs sham (remote randomized stim)
 - Paresthesias felt in the nose
- Stim used on demand
- Avg 20 attacks treated per patient

SPGS Trial

- Pain judged on 0-4 scale
- Pain relief (0-1) achieved in 15 mins in 67% of full stim treated attacks vs 7.4% sham stim attacks
- Pain freedom (0) achieved in 15 mins in 34% of full stim treated attacks vs 1.5% sham stim attacks

Full stimulation		Sub-percetorial stimulation		Sham stimulation		
Relief	Freedom	Relief	Freedom	Relief	Freedom	
Probability of pain Relief/freedom (GEE LSM)	67.1%	34.1%	7.3%	1.6%	7.4%	1.5%
95% CI (GEE LSM)	50.2-80.5%	18.5-54.1%	4.0-13.1%	0.5-5.1%	3.1-37%	0.3-4.7%
p value compared to sham (GEE LSM)	<0.0001	<0.0001	0.9%	0.97	—	—

GEE: generalized estimating equation; CI: confidence interval.

Northwestern Medicine

Motor Cortex Stimulation

Tsubokawa – 1991
Deafferentation pain best treated with stimulation above level of deafferentation
Where to stimulate for thalamic pain?

Post-central cortical stimulation failed

PRE-central cortical stimulation succeeded!

Northwestern Medicine

MCX Stim: Technique

- Must understand homunculus organization
- Target craniotomy and electrode localization

Northwestern Medicine

MCX Stim: Electrodes

Northwestern Medicine

MCX Stimulation Problems

- No uniformity in results reporting
- Optimal stimulation parameters?
- Optimal hardware?
- Seizures
- Tachyphylaxis

Northwestern Medicine

MCX Stimulation Tachyphylaxis

- Affects almost all patients
- Reprogramming time-intensive
- Higher risk of seizure
- Rarely permanent
- ?Cortical plasticity

Clinical Paper
Surgery
Volume 142 Number 5
DOI: 10.1016/j.surg.2009.07.007
Published online 10 August 2009

Recovery of Pain Control by Intensive Reprogramming after Loss of Benefit from Motor Cortex Stimulation for Neuropathic Pain
James M. Hendon^a*, Atishgori Boengard^a, Joshua M. Rosenzweig^a,
Eric L. Pfeifer^b, Al R. Bear^b
^aDepartment of Surgery, University of Michigan, Ann Arbor, Michigan, United States
^bDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States

Northwestern Medicine

DBS for Pain

- Vc Sensory Thalamus (VPM / VPL)
 - Paresthesia producing
 - PVG
 - Endorphin release
 - Pain pathway modulation

Northwestern Medicine

DBS for Pain

- Levy 1987
 - 141 patients average F-U 80 mo.
 - 84 with deafferentation pain and 57 with nociceptive pain
 - Deafferentation pain treated predominantly with VPM/VPL stimulation and nociceptive pain with PVG stimulation
 - 83 (59%) implants following the trial
 - At 80 mo, 31% maintained significant pain relief

Northwestern Medicine

DBS for Pain

- Coffey 2001
 - Multi-center trial of DBS with 2 phases, the second using the modern 3387 DBS electrode
 - 15 diagnosis: Thalamic (11) accident (9) and post laminectomy (8)
 - 50 implants / 37 internalizations
 - 22% of internalized with >50% at 3 mo and 14% at 24 mo
 - No correlation between efficacy and electrode location
 - Sponsor did not pursue DBS FDA labeling for chronic pain

Northwestern Medicine

DBS for Pain

Owen and Aziz 2006:

- 15 patients with post-stroke pain
 - 24 mo f/u
 - All implanted initially with PVG and Vc for trial
 - 12 implanted following trial (7 PVG/4 PVG+Vc/ 1 Vc)
 - 2 patients with >50% relief
 - 7 with <40% relief
 - Cortical strokes with better outcomes than subcortical

Northwestern Medicine

Northwestern Medicine

Thank you for coming!

E-mail: jrosenow@nm.org
Phone: 312-695-0495

Northwestern Medicine

Come to Chicago in 2016!

April 30, 2016

 American Association of Neurological Surgeons

June 2016

 ASSFN
AMERICAN SOCIETY FOR STEREOTACTIC AND FUNCTIONAL NEUROSURGERY

