On the Reproducibility of Biomedical Research

Sixth Annual Lecture on Biomedical Ethics

April 15, 2016

Lawrence A. Tabak, DDS, PhD
Principal Deputy Director, NIH
Department of Health and Human Services
Reproducibility

No, not that kind of reproducibility...
The Growing Challenge

- Noted by research community and beyond in several publications
 - Across research areas
 - Especially in preclinical research
Science is “self-correcting”

“In experimental philosophy we are to look upon propositions inferred by general induction from phenomena as accurately or very nearly true...till such time as other phenomena occur, by which they may either be made more accurate, or liable to exception.”

Isaac Newton, *Mathematical Principles of Natural Philosophy*
Science is “self-correcting”

“the really valuable part of the Fourth Rule is that which implies that a constant verification, and, if necessary, rectification, of truths discovered by induction, should go on in the scientific world. Even when the law is, or appears to be, most certainly exact and universal, it should be constantly exhibited to us afresh in the form of experience and observation.”

William Whewell, *On the Philosophy of Discovery*
Science is “self-correcting”
So what has gone awry?
Challenges to Ensuring Rigor and Transparency in Reporting Science: Underlying Issues

- Publish or perish!
- Need for grant support
- Misuse of impact factors
- Misaligned Incentives
- Your work must be “novel”
- No negative data
- Poor training

Publish or perish!
Challenges to Ensuring Rigor and Transparency in Reporting Science: Underlying Issues

- Publish or perish!
- Need for grant support
- Misuse of impact factors
- Your work must be “novel”
- Misaligned Incentives
- No negative data
- Poor training
Challenges to Ensuring Rigor and Transparency in Reporting Science: Underlying Issues

- Publish or perish!
- Need for grant support
- Misuse of impact factors
- Misaligned Incentives
- Your work must be “novel”
- No negative data
- Poor training
Challenges to Ensuring Rigor and Transparency in Reporting Science: Underlying Issues

- Publish or perish!
- Need for grant support
- Misuse of impact factors
- Your work must be “novel”
- Misaligned incentives
- No negative data
- Poor training
Challenges to Ensuring Rigor and Transparency in Reporting Science: Underlying Issues

Publish or perish!

Misuse of impact factors

Misaligned Incentives

Need for grant support

Your work must be “novel”

No negative data

Poor training
Deficiencies in Experimental Procedures

- Insufficient Reporting in publications – blinding, replication & randomization, sample size outliers and exclusion criteria
Insufficient Reporting of Methodological Approaches is Evident for Pre-Clinical Studies

| Table 3. Prevalence of selected quality characteristics in other experimental models |
|---|-----------------|-----------------|-----------------|-----------------|
| | Number of | Randomisation (%)| Blinded assessment | Sample-size |
| | publications | | of outcome (%) | calculation (%)|
| Transgenic stroke studies | 157 | n/a | 3 | 0 |
| Stroke pathophysiology studies | 166 | 5 | 18 | 0 |
| Parkinson’s disease | 118 | 12 | 15 | 0 |
| Multiple sclerosis | 183 | 2 | 11 | 0 |

Trends Neurosci 2007; 30: 433-439

Adapted from Dr. S. Silberberg, NINDS
Design, power, and interpretation of studies in the standard murine model of ALS

Figure 4. Survival analysis. Control and treated SOD1^{G93A} mice from one publication compared to all of our 2241 control animals (acquired over four years – data from Table S2) that died of ALS.
Deficiencies in Experimental Procedures (cont.)

- Insufficient Reporting in publications – blinding, replication & randomization, sample size outliers and exclusion criteria
- “P-Hacking”

Commentary

Common Misconceptions about Data Analysis and Statistics

Harvey J. Motulsky

GraphPad Software Inc., La Jolla, California

Received August 8, 2014; accepted August 8, 2014

1) P-hacking, which is when you reanalyze a data set in many different ways, or perhaps reanalyze with additional replicates, until you get the results you want; 2) overemphasis on P values rather than on the actual size of the observed effect; 3) overuse of statistical hypothesis testing, and being seduced by the word “significant”; and 4) overreliance on standard errors, which are often misunderstood.
Deficiencies in Experimental Procedures (cont.)
Researcher’s “Degrees of Freedom”

Likelihood of obtaining a false-positive result when data collection ends upon obtaining significance (p ≤ .05, highlighted by the dotted line).

Deficiencies in Experimental Procedures (cont.)
Researcher’s “Degrees of Freedom”

Simulation of p values obtained by a researcher who continuously adds an observation to each of two conditions, conducting a t test after each addition

More isn’t always better!

Deficiencies in Experimental Procedures (cont.)

Researcher’s “Degrees of Freedom”

Table 2. Simple Solution to the Problem of False-Positive Publications

Requirements for authors
1. Authors must decide the rule for terminating data collection before data collection begins and report this rule in the article.
2. Authors must collect at least 20 observations per cell or else provide a compelling cost-of-data-collection justification.
3. Authors must list all variables collected in a study.
4. Authors must report all experimental conditions, including failed manipulations.
5. If observations are eliminated, authors must also report what the statistical results are if those observations are included.
6. If an analysis includes a covariate, authors must report the statistical results of the analysis without the covariate.

Guidelines for reviewers
1. Reviewers should ensure that authors follow the requirements.
2. Reviewers should be more tolerant of imperfections in results.
3. Reviewers should require authors to demonstrate that their results do not hinge on arbitrary analytic decisions.
4. If justifications of data collection or analysis are not compelling, reviewers should require the authors to conduct an exact replication.

Deficiencies in Experimental Procedures (cont.)

- Insufficient Reporting in publications – blinding, replication & randomization, sample size outliers and exclusion criteria
- “P-Hacking”
- Researcher’s “Degrees of Freedom”
- Lack of Consideration of Sex as a Biological Variable
Biological/Disease Impact of Experimental Design

Real Life

Sex Differences in Animal Models: Focus on Addiction

Jill B. Becker and George F. Koob

Molecular & Behavioral Neuroscience Institute, Department of Psychiatry, Department of Psychology, University of Michigan, Ann Arbor, Michigan (J.B.B.); and Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland (G.F.K.)

Morphine was 2.3-fold more potent in males and buprenorphine produced a 61% effect in males and only a 5% effect in females
Deficiencies in Experimental Procedures (cont.)

- Insufficient Reporting in publications – blinding, replication & randomization, sample size outliers and exclusion criteria
- “P-Hacking”
- Lack of Consideration of Sex as a Biological Variable
- Problems with Authentication of Cell Lines
Reproducibility in Cell Culture Studies

- >400 misidentified cell lines have been cataloged, dating back to the 1960s
- ~70% of researchers surveyed in 2004 had never checked the identity of their cell lines
- Major repositories report that 14-30% of cell lines submitted are contaminated
- In a 2013 survey <50% of cell lines had an unambiguous identifier and source in publications
- Standards for cell line authentication and affordable methods for cell authentication now available
Reproducibility in Cell Culture Studies

New Results

Assessing the prevalence of mycoplasma contamination in cell culture via a survey of NCBI’s RNA-seq archive

Anthony O Olarerin-George, John B Hogenesch

doi: http://dx.doi.org/10.1101/007054

Abstract

Mycoplasmas are notorious contaminants of cell culture and can have profound effects on host cell biology by depriving cells of nutrients and inducing global changes in gene expression. Because they are small, they can escape filtration in culture media. Because they lack cell walls, they are resistant to commonly used antibiotics. Over the last two decades, sentinel testing has revealed wide-ranging contamination rates in mammalian culture. To obtain an unbiased assessment from hundreds of labs, we analyzed sequence data from 9395 rodent and primate

We found 11% of these series were contaminated
Importance of Cell Line Authentication

Esophageal Adenocarcinoma cell line (EAC), SK-GT-5, is in fact the gastric fundus carcinoma cell line SK-GT-2!

- More than 100 scientific publications using SK-GT-5 or two other misidentified EAC cell lines have been identified
- Almost half of these reports were based solely on the use of cell lines not representative for EAC

Principles for Addressing Underlying Issues

- Raise community awareness
- Enhance formal training
- Protect the quality of funded and published research by adoption of more systematic review processes
- Share information/data
- Increase stability for investigators
Principles for Addressing Underlying Issues

- Raise community awareness
- Enhance formal training
- Protect the quality of funded and published research by adoption of more systematic review processes
- Share information/data
- Increase stability for investigators
Raise Community Awareness

NIH Rigor and Reproducibility Web-portal

http://www.nih.gov/science/reproducibility
Raise Community Awareness

- Workshop in Summer 2014 with PhRMA to identify areas of common interest with industry
- Workshop in Summer 2014 with Journal Editors to identify common opportunity areas
- **Over 135 journals** endorsed the principles, which were broadly shared in November 2014 through editorials and other notifications

Raise Community Awareness

Efforts by Other Organizations: Recent Example

"We teach it because it’s what we do; we do it because it’s what we teach."

"The p-value was never intended to be a substitute for scientific reasoning."

http://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108
Principles for Addressing Underlying Issues

- Raise community awareness
- **Enhance formal training**
- Protect the quality of funded and published research by adoption of more systematic review processes
- Share information/data
- Increase stability for investigators
Enhance Formal Training

- NINDS, IRP, and Office of the Director (OD) developed training modules in experimental design, which are being used within the IRP and are available publicly.

- NIGMS (with 9 other ICs) is supporting the development of training modules to enhance reproducibility:
 - Funded 6 awards, supported by 8 ICs
 - Planning to re-issue the RFA

- IRP workshops on data interpretation considerations for various experimental techniques – “potentials and pitfalls”

Principles for Addressing Underlying Issues

- Raise community awareness
- Enhance formal training
- Protect the quality of funded and published research by adoption of more systematic review processes
- Share information/data
- Increase stability for investigators
Application and Review Processes

- The NIH Office of Extramural Research (OER) clarified and revised application instructions and review criteria to enhance reproducibility of research findings.

- Enhancing reproducibility through rigor and transparency:
 - Scientific premise of proposed research
 - Rigorous experimental design
 - Consideration of sex and other relevant biological variables
 - Authentication of key biological and/or chemical resources

- Considering sex as a biological variable in NIH-funded research

- Applies to application submitted Jan. 25, 2016 and beyond

[Link to NIH reproducibility website](http://grants.nih.gov/reproducibility)
Principles for Addressing Underlying Issues

- Raise community awareness
- Enhance formal training
- Protect the quality of funded and published research by adoption of more systematic review processes
- **Share information/data**
- Increase stability for investigators
Share Information/Data

PubMed Commons: Catalyzing Scientist-To-Scientist Interactions

Posted on August 5, 2014 by Dr. Francis Collins

Today's scientists find it tough to keep up with all of the latest journal articles, innovative methods, and interesting projects of colleagues in their fields. That's understandable, because there are tens of thousands of journals, hundreds of conferences in major fields, dozens of emerging technologies, and huge geographic distances separating researchers who may share common interests. But science is increasingly a team sport—and it's important to provide scientists with as many avenues as possible through which to interact, including commenting on each other's work.
Share Information/Data

NIH Data Commons: Findable, Accessible, Interoperable and Reusable (FAIR)

- A computing environment, such as the cloud or High Performance Computing (HPC) resources, which supports access, utilization, and storage of digital objects
- Publicly available datasets that adhere to a Commons digital object compliance model
- Software services and tools to facilitate access to and use of data, both the data in the Commons or elsewhere
- A digital object compliance model that describes the properties of digital objects that enable them to be findable, accessible, interoperable, and reproducible (FAIR)

http://datascience.nih.gov/commons
Share Information/Data

Efforts by Other Organizations: Recent Example

bioRxiv

THE PREPRINT SERVER FOR BIOLOGY

Subject Areas

All Articles
Animal Behavior and Cognition, Biochemistry, Bioengineering, Bioinformatics, Biophysics, Cancer Biology, Cell Biology, Clinical Trials, Developmental Biology

Ecology, Evolutionary Biology, Genetics, Genomics, Immunology, Microbiology, Molecular Biology, Neuroscience, Paleontology

Pathology, Pharmacology, Physiology, Plant Biology, Scientific Communication, Synthetic Biology, Systems Biology, Zoology

View by Month
Share Information/Data

Team up with industry

Combining commercial and academic incentives and resources can improve science, argues Aled Edwards.
Share Information/Data

Efforts by Other Organizations: Recent Example

http://f1000research.com/channels/PRR
Principles for Addressing Underlying Issues

- Raise community awareness
- Enhance formal training
- Protect the quality of funded and published research by adoption of more systematic review processes
- Share information/data
- Increase stability for investigators
In these times of tight budgets and rapidly evolving science, we must consider new ways to invest biomedical research dollars to achieve maximum impact—to turn scientific discoveries into better health as swiftly as possible. We do this by thinking strategically about the areas of research that we support, as well as the process by which we fund that research.
NIH plans to enhance reproducibility

Francis S. Collins and Lawrence A. Tabak discuss initiatives that the US National Institutes of Health is exploring to restore the self-correcting nature of preclinical research.

A growing chorus of concern, from scientists and laypeople, contends that the complex system for ensuring the reproducibility of biomedical research is failing and is in need of restructuring. As leaders of the US National Institutes of Health (NIH), we share this concern and here explore some of the significant interventions that we are planning.

Science has long been regarded as ‘self-correcting’, given that it is founded on the replication of prior work. Over the long term, that principle remains true. In the shorter term, however, balances that once have been hobbled the ability of today’s researchers to replicate others’ findings.

Let’s be clear: there is no evidence that reproducibility is about to return to normal. In 2011, the Office of the US Department of Health and Human Services pursued a process, even if this represents the actual problem at hand.

“Efforts by the NIH alone will not be sufficient to effect real change in this unhealthy environment.”
Role for Individual Scientists

What you can do:

- Stimulate discussion amongst societies/organizations
- Increase transparency
- Promote training in experimental design
- Encourage data and material sharing
- Consider publication of refutations
NIH... Turning Discovery Into Health

Lawrence.Tabak@nih.gov