Intraoperative Gonioscopy: A Key to Angle Surgery

Shakeel Shareef, MD
Associate Professor
Flaum Eye Institute
Univ. of Rochester School of Med.
Rochester, NY
Phaco vs. MIGS

<table>
<thead>
<tr>
<th></th>
<th>PHACO</th>
<th>MIGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewing</td>
<td>Full corneal access</td>
<td>Limited AC depth; increased work distance</td>
</tr>
<tr>
<td>Intraocular Surgery</td>
<td>Posterior to dilated iris sphincter</td>
<td>Anterior to iris plane; risk to cornea/iris in narrow space</td>
</tr>
<tr>
<td>Corneal Stimulation</td>
<td>Limited to keratome/side-port incisions</td>
<td>Stimulation sub-epithelial nerve endings entire surface</td>
</tr>
<tr>
<td>Instrument Handling</td>
<td>Bimanual intraocular</td>
<td>Simultaneous extra and intra-ocular manipulation; one handed surgery</td>
</tr>
</tbody>
</table>
Essential Perioperative Steps For Successful Angle Surgery

<table>
<thead>
<tr>
<th>STEPS</th>
<th>DESCRIPTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE-OP</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Office Based Gonioscopy</td>
</tr>
<tr>
<td>2</td>
<td>Angle Anatomy</td>
</tr>
<tr>
<td>3</td>
<td>Anesthesia</td>
</tr>
<tr>
<td>INTRA-OP</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Head/Microscope Rotation</td>
</tr>
<tr>
<td>5</td>
<td>Goniolens Selection</td>
</tr>
<tr>
<td>6</td>
<td>Hand Positioning</td>
</tr>
<tr>
<td>INTRA-OCULAR</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Corneal Incision</td>
</tr>
<tr>
<td>8</td>
<td>Soft Shell Technique</td>
</tr>
<tr>
<td>9</td>
<td>Goniolens Docking and Manipulation</td>
</tr>
<tr>
<td>POST-OP</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Gonioscopy/Goniophotography</td>
</tr>
</tbody>
</table>
Step 1: Office Based Gonioscopy

- **Why?** For surgical planning
- www.gonioscopy.org [Dr. Alward]

1. Gonioscopy documented < 50% charts reviewed of patients undergoing ocular medical therapy

2. Medicare Claims Data: 50% open angle glaucoma patients undergoing surgery had a claim for Pre-Op gonioscopy.

Step 2: Angle Anatomy

- Scleral Spur – Surgical Landmark that separates:
 - Anteriorly: Canal Based surgery via the Trabecular Meshwork
 - Posteriorly: Suprachoroid based surgery via the ciliary body face
Step 3: Anesthesia

- Topical? Involuntary eye movements
- Peri- or Retrobulbar block? Akinesia
- For novice surgeons, not unreasonable to begin with a block. Why?
 1. Builds surgical confidence
 2. Avoids potential intra-ocular complications
Step 4: Head/Microscope Rotation

- Temporal approach to reach nasal angle
- Rotate head 30-40 degrees away nasally
- Rotate microscope temporally same amount
- **End-point:** Align coaxial light along iris plane
- Increase magnification of angle
- Increase light intensity to view structures
Step 4: Head/Microscope Rotation

- Increased working distance between oculars and surgical field
- Phaco: Full access to entire cornea
- Angle surgery: viewing space confined to AC depth [2-3 mm centrally; TM space: 0.77 mm]
INCREASED WORKING DISTANCE: 8 INCHES

PRIMARY PHACO POSITION

ANGLE SURGERY POSITION
Step 5: Goniolens Selection

- All are a modification of Swan-Jacob Lens
- Vary in degree of corneal contact, field of view, magnification and handle length
- Handle contiguous with goniolens
- Exception: Volk Transcend Vold Goniolens:
 1. Free floating lens originates from separate handle
 2. Fixation ring for globe stability
 3. Rotation in x and z axis
Step 6: Hand Positioning

- Hold lens with non-dominant hand
- Place and rest palm on forehead or cheek based upon laterality
- Arch fingers over the nasal bridge
- Phaco: bimanual intraocular surgery
- Angle: extra/intra-ocular simultaneous manipulation – one handed surgery
Step 7: Corneal Incision

Wound Construction:

- Eccentricity
 1. Femtosecond laser incision offset a few millimeters inward from limbus. Potential for friction between overlying goniolens and instrument access via keratome incision
 2. Consider making incision manually
Step 7: Corneal Incision

Wound Construction:

- **Location**
 1. Along 3 – 9 o’clock axis
 2. Use fixation ring to rotate globe nasally and initiate incision just within limbus
 3. Serves as a pivot point/anchor during surgical manipulation of angle structures
 4. Provides equidistant surgical access to supero and inferonasal angle structures
Step 8: Soft Shell Technique

- Angle surgery: Takes place anterior to iris plane
- Phaco: Occurs posterior to dilated pupil
- **Viscodispersive OVD** – protects and coats endothelium from any damage
- A 2nd deeper layer of a **viscocohesive OVD** creates and maintains space in a confined trabecular space
- Helps protect intraocular structures during surgical manipulation
Step 9: Docking of Goniolens

- **Corneal Considerations:**
 1. Phaco: Keratome/Side-port incisions with **minimal surface manipulation**
 2. Angle Surgery: Cornea highly innervated structure in human body:
 a. Sub-epithelial nerve endings
 b. Limbal Plexus
 c. With docking, **entire corneal/limbal surface stimulated by goniolens**
Step 9: Docking of Goniolens

- Tetracaine drops
- Viscoelastic
- Lidocaine Jelly:
 1. Topical analgesic/patient comfort
 2. Coupling medium between cornea/lens
 3. Decreased sensation tissue manipulation
Step 10: Post-Operative Goniophotography

- Self assessment for surgeon of proper anatomic placement of micro-stents
- Builds confidence and trust with patients
- Documentation purposes
- Pre-op counseling of potential surgical candidates