FSHD Disease Mechanisms and Models

Silvère M. van der Maarel, Ph.D.
Leiden University Medical Center
An Integrative Approach

THANK YOU!
Modern Research is Teamwork!

FSHD AND CHROMATIN DISEASE
Richard Lemmers
Judit Balog
Yvonne Krom
Peter Thijsse
Lucia Clemens-Daxinger
Amanda Mason
Marlinde van den Boogaard
Bianca den Hamer
Kirsten Straasheijm
Patrick van der Vliet
Modern Research is Teamwork!

friends of FSH research

fsh society

STICHTING FSHD

NATIONAL INSTITUTES OF HEALTH

Muscular Dystrophy Association

SEVENTH FRAMEWORK PROGRAMME

Prinses Beatrix Fonds VOOR SPIERZIEKTEN

Geraldi Norton Foundation & the Eklund Family

George & Jack Shaw & the Shaw Family Foundation
FSHD and the Fields Center

- Fields Center was established in 2007:
 - Strategic Alliance to create a clinical/scientific network between Rochester-Leiden-Seattle-Nijmegen-Nice
 - Expedite Research and Therapy Development
 - Non-exclusive
 - Protocols freely available
 - Sharing resources
 - Standards for Registries
 - Standards of care, diagnosis
 - 50+ publications

- www.urmc.rochester.edu/fields-center/
FSHD at the LUMC

• Long tradition of:
 – Genetic research
 – Molecular and cellular biology
 – DNA diagnosis
 – Assistance in diagnosis
FSHD Genetics

For most families, FSHD is an **autosomal dominant** disorder with **incomplete penetrance**.

- 23 pairs
- 25,000 genes
- 3.2 billion elements

Genetic error

Transmission
The Central Dogma of Biology

DNA → RNA → Proteins

replication → transcription → translation

NUCLEUS → CYTOPLASM
How much DNA?

Each cell contains DNA, how much?

6.5 ft of DNA in each nucleus!
Gene regulation: on/off switch
Breakthrough in 2010

- FSHD is caused by the inappropriate production of the DUX4 protein in muscle of FSHD individuals (Lemmers et al., Science 2010)

The New York Times

Reanimated ‘Junk’ DNA Is Found to Cause Disease

By GINA KOLATA
Published: August 19, 2010

…”If we were thinking of a collection of the genome’s greatest hits, this would go on the list,” said Dr. Francis Collins, a human geneticist and director of the National Institutes of Health.
D₄Z₄, at the heart of FSHD

- Most individuals with FSHD have a contraction of a repeated DNA structure on chromosome 4
- This structure is called D₄Z₄
- Contraction leads to a change in the 3D organization and regulation of D₄Z₄
- Some patients have a similar change in 3D structure and regulation of D₄Z₄ in the absence of contraction (FSHD2)
- These changes lead to the production of a protein called DUX₄ which should not be expressed in skeletal muscle.
Primary disease mechanism in FSHD1
Mutations in \textit{SMCHD1} cause FSHD2

- For a long time the existence of contraction-independent FSHD was questioned
- We showed that changes in 3D chromatin structure of D4Z4 seen in FSHD1 patients can segregate in FSHD2 families
- This led to the identification of mutations in \textit{SMCHD1} underlying 85% of FSHD2
Mutations in SMCHD1 explain 80% of FSHD2
SMCHD1 binds to D4Z4 and represses DUX4
SMCHD1 binds to D_{4}Z_{4} and represses DUX_{4}

Genome-wide effects?

(D macrosatellite) repeat DNA: silenced chromatin

Repeat length dependent epigenetics?
D_{4}Z_{4} contraction (FSHD1): impaired silencing

Chromatin structure: establishment and maintenance?

Transcription?

DNMT3B (ICF1)

? (ICF3)

ZBTB24 (ICF2)

SMCHD1 (FSHD2)

? (FSHD2)
Clinical Variability

- Large variability in onset, progression and severity;
- Between families and within families;
- What protects gene-carriers from becoming affected?;
 - Environmental factors?
 - Genetic modifiers of D4Z4?
 - Role for SMCHD1?
The FSHD2 gene is a modifier for FSHD1

Families with FSHD1 and FSHD2
Sacconi et al., Am J. Hum. Genet. 2013
Consequences of DUX4 in muscle

- DUX4 activates germline and early stem cell programs in skeletal muscle;
- DUX4 induces elements that create an inflammatory reaction to muscle;
- At the same time, DUX4 suppresses some pathways of our immune system;
- These pathways and programs lead to muscle atrophy and cell death.
What is next?

- Translational research:
 - Increase our understanding of disease mechanism;
 - Translate our findings to models that allow validation of the mechanism;
 - Identify potential targets for therapy;
 - Apply disease models for drug screens;
 - Validate hits from drug screens;
 - Clinical trials
Disease Models for FSHD

Any disease model for FSHD should take into account the bursts of expression pattern of DUX4.
Models for Translational Research

• Cellular and Animal Models:
 – Isogenic myoblast clones with or without mutation (coll. G. Butler-Browne and V. Mouly);
 – Mouse models with normal-sized and FSHD-sized D4Z4 arrays;

![Graph and images showing DUX4-positive nuclei in affected clones only](De Krom et al., Am J. Path. 2012)

![Graph and images showing DUX4-positive nuclei in FSHD mouse](De Krom et al., PLoS Genet, in press)
Towards Therapy

• Current knowledge of disease mechanism already gives leads to intervention:
 – Can we prevent the change in 3D structure and regulation of D4Z4?
 – Can we prevent the production of DUX4 at RNA or protein level?
 – Can we prevent the action of DUX4?
 – Can we treat the downstream pathways of DUX4?
There are at least two genetic forms of FSHD
- The common form FSHD1 (1-10 D4Z4 units)
- The rare form FSHD2 (mostly mutations in SMCHD1)

Both forms can be genetically confirmed with great accuracy

Both forms have an identical disease mechanism
- Expression of DUX4 in skeletal muscle

Some individuals have FSHD1 and FSHD2
- Individuals have more variable disease severity

We have uncovered the mechanistic basis of FSHD
How much longer?

• Not possible to predict, but we have the essentials:
 – We have a plausible disease mechanism
 – We know the target
 – We have (animal) models to test the therapeutic molecules

• The DMD gene was identified in 1987 and only now there is some hope, but:
 – We have learned from the past: translational research
 – In the meantime the life expectancy for DMD has dramatically increased: quality of care

THANK YOU!