Participants:

<table>
<thead>
<tr>
<th>Autism Spectrum Disorder (ASD; n=20)</th>
<th>Typically Developing (TD; n=18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>IQ</td>
</tr>
<tr>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>13.3</td>
<td>2.0</td>
</tr>
</tbody>
</table>

ADOS Calibrated Severity derived from Autism Diagnostic Observation Schedule (ADOS); 1 (least severe) - 10 (most severe)

Methods

Participants:

- Autism Spectrum Disorder (ASD; n=20)
- Typically Developing (TD; n=18)

Participants:

- Autism Spectrum Disorder (ASD; n=20)
- Typically Developing (TD; n=18)

Tasks:

1. Time
 - 16.7ms
 - 8 external noise levels, 480 trials total
 - Measured contrast threshold (%)
 - Fit the Perceptual Template Model (PTM) to estimate level of internal additive noise

2. Fixation
 - Moving Object
 - Ocluder

Invisible Time

Results cont.

- 70% increase in internal additive noise in ASD
- 13% worse external noise filtering in ASD

Conclusions

- Individuals with ASD have higher internal additive noise
- Higher internal additive noise is associated with greater ASD symptom severity
- Individuals with ASD have higher response variability under prediction demands, which may be due to more general response variability in motion tasks
- Higher response variability is not related to either internal noise or ASD symptom severity

Future Directions

- More fully characterize response variability without prediction demands
- Investigate how this measure of internal additive noise relates to other perceptual tasks in ASD

References

2. Park et al. (2016). Evidence for elevated internal noise in autism spectrum disorder. VSS abstract
4. Di Martino et al. (2010). Increased internal additive noise in autism spectrum disorder (ASD) is associated with higher internal additive noise

Acknowledgements & Contact

We would like to thank Julia Yarkoni for assistance with data collection, and Oh-Sang Kwon and Ruyuan Zhang for providing the task codes.

This project was supported in part by a University of Rochester Pump-Primer II Grant to LB and DT, R01 NS050532 (to LB), R01 EY019295 (to DT), and Autism Science Foundation Pre-Doctoral Fellowship to WP. The Center for Integrated Research Computing at University of Rochester provided computing resources.

Contact Info: kimberly.schauder@rochester.edu