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ABSTRACT:

This dissertation combines psychophysical experimeith computational modeling
efforts in order to help explain how humans desecinds of interest in the presence of
competing background noise. Specifically, tone-aisa detection was examined for low-
frequency tones (500 Hz) in the presence of repmibtkinarrowband masking noises. Both the
NoSo (noise and signal presented at the same phake twd ears) andd$ (noise presented at
the same phase to the two ears and signal prese8@éaut of phase between the two ears)
interaural configurations were tested. Two psyclyspal detection experiments are described
that used prerecorded, @producible masking waveforms in conjunction with multiple-
regression data analyses. These experiments weigndd to determine the dominant stimulus
features used by individual listeners to computed®n cues. Candidate stimulus features
included stimulus energy, temporal fine structerg.( zero crossings, or the stimulus carrier),
temporal envelope, or a linear combination of earand envelope. Results indicated that
listeners used energy cues when they were availabtietection under §$ conditions, but that
they also used temporal processing. Results atBoated that listeners did not separately
process envelope and carrier unde®r NS conditions. Computational modeling efforts
were designed to approximate physiologically plalesstimulus processing along with several
different decision devices. Several recent psycisiphl detection models failed at predicting
detection statistics for individual waveforms, dewhag that new explanatory models for
masked detection be examined. The characterizatidatection cues used by listeners with
normal hearing will lead to improved hearing ai@lsis improvement could occur either through
the preservation of stimulus features found torfiecal for detection in noise, or by mimicking
the types of processing occurring in the healthyitany system.
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CHAPTER 1

General Introduction

The human auditory system’s ability to resolve algmof interest in background noise is
remarkable. A notable and often-described examptki®ability is the cocktail-party effect, a
situation in which a person is able to understapdréicular conversation (“signal’) amongst a
number of competing conversations (“noise”). Thgchephysical experiments and
computational modeling efforts described in thissik were designed to help understand how
the auditory system detects signals in noisy enwirents in the context of masked detection.
Pure tones were used as target stimuli and nareowl-boise waveforms were used as masking
stimuli. The term masking simply refers to the agéhe noise waveform to make the tone
difficult to detect (i.e., the noise is masking flerception of the tone). Here the focus was on
both diotic (in which the noise and signal werespréged in-phase to the two ears, denoted as
NoSo) and dichotic (in which the noise was presentephiase to the two ears, and the signal was
presented 180° out of phase to one ear with respehe other, denoted agd) detection
experiments that used a small setegfroducible or prerecorded, stimulus waveforms.

1.1 Psychophysical Experiments

Traditional studies of auditory masking phenomesedurandomly fluctuating noises and
were concerned with detection thresholds for tomesrious noise bandwidths, levels, and
stimulus configurations (e.g., Diercks and Jeffrd$62; Egan, 1965; Shaat al, 1947). These
studies describe what are now commonly referreabtmasking level differences (MLDs), or
differences in detection thresholds between stiswainfigurations. The largest MLDs are
observed between the,8 andNyS interaural configurations. (As much as a 20-dBugtion in
threshold for NS conditions has been observed with respecty® Bbonditions; Durlach and
Colburn, 1978; Moore, 2003). Durlach and Colbur@7@) provide an excellent review of the
pioneering work of researchers such as Jeffresk|itler, and Hirsh. These studies focused on
obtaining thresholds while varying specific phy$parameters of the stimuli. Summarizing
their results; the MLD is greatest for signals 180t of phase between the ears and noise
maskers presented in phase to the 2 eayS (NS , Jeffresset al, 1952), for noise spectrum
levels above about 40 dB SPL (Diercks and Jeffre382), for narrow noise bandwidths (Metz
et al, 1968), and for signal frequencies below about B2@Hirsh, 1948).

More recent masked-detection studies use whatrevek ageproduciblemaskers.
Studies employing reproducible maskers are caplgeecisely characterizing human detection
performance for individual masking waveforms (Afafand Matthews, 1965; Ahumaed#al,
1975; Gilkeyet al.,1985; Siegel and Colburn, 1989; Isabelle and Galbi©91; Evilsizeet al,
2002; and Davidsoet al, 2006). The experiments described in these studiesapeated
presentations of several different masking wavefopnesented in a random order within each
block. On each trial, either a-noise alone (Nadone-plus-noise (T+N) waveform is presented,
and the listener indicates whether the tone waslheaver many trials, reliable detection
statistics are established for each individual@ewmveform (e.g., Siegel and Colburn, 1989).
These statistics include hit rate, [P(Y|T+N), c& ffirobability of responding “yes, tone present”
to a particular tone-plus-noise waveform] and fatsem rate, [ P(Y|N) or the probability of
responding “yes, tone present” to a particular@@®ne waveform]. P(Y|T+N) is calculated for
each individual T+N waveform as the number of ¢riaith “tone present” responses divided by
the total number of trials that particular T+N wkren was presented. P(Y|N) is calculated for



each individual N waveform as the number of tnaih “tone present” responses divided by the
total number of trials that particular N waveforraswpresented.

The group of P(Y|T+N) and P(Y|N) values for allses (computed separately for each
waveform) is referred to as a detection patteri|[W(], or the probability of responding “tone
present” for each \&veform, [i.e., if the P(Y|T+N) values and P(Y|NJues for each waveform
are considered as a single group of probabili¢¥|W) results]. An illustration of a detection
pattern is shown in Fig. 1-1. Hit rates are shawthe upper panel and were computed from
T+N trials. False-alarm rates are shown in theelopanel and were computed from N trials.
Corresponding hit and false-alarm rates for 3 nmagskraveforms are described below to give
the reader an intuitive feel for the data presemtete following chapters. The P(Y|T+N) and
P(Y|N) values for masker 3 are both large, indigathat the listener almost always perceived a
tone, regardless of its actual presence. The PN)B&Ad P(Y|N) values for masker 8 are both
small, indicating that the listener almost neveicpeed a tone, regardless of its presence. The
P(Y|T+N) value for masker 25 is large, indicatihgttthe listener perceived the tone on T+N
trials, but the P(Y|N) value for masker 25 is lomdicating that the listener did not perceive the
tone on N trials. The main findings of experimemgsng reproducible maskers (and thus

Detection Pattern
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Figure 1-1. Schematic illustration of a detectiomattern. Hit rates, or probabilities of “yes,
tone present” responses for each tone-plus-noise wedorm are shown in the upper panel
[P(Y|T+N)]. False-alarm rates, or probabilities of*yes, tone-present” responses for each
noise-alone waveform are shown in the lower paneP[Y| N)]. When both P(Y|T+N) and
P(Y|N) are considered together, the term P(Y|W) iased, or the probability of a “yes, tone
present” response for any waveform.

estimating detection patterns) are summarized helgadeling efforts are described in Sec. 1.2.

Three recent studies describing detection withaepcible noises are summarized
below. Gilkeyet al.(1985) estimated detection patterns with widek@e@-3000 Hz) noises
under both the pBy and NS interaural configurations, and used several diffietone-to-



masker phase values. They found that P(Y|W) vakers correlated between thgyand NS
conditions and that P(Y|T+N) values varied siguifity with the tone-to-masker phase value.

Isabelle and Colburn (1991) performed a similaregixpent with 1/3-octave noise
bandwidths centered at 500 Hz. Using their narrowthaoises, they found small correlations
between P(Y|W) values forgSy and NS conditions, which differed from the wideband résul
of Gilkey et al.(1985). Isabelle and Colburn did find significaiifferences in P(Y|T+N) values
with tone-to-masker phase in thg® condition, which is in agreement with the restilGikey
et al, however, they found negligible differences (Y+N) values with tone-to-masker phase
in the NS condition.

In Evilsizeret al. (2002), both narrowband (100 Hz) and wideband Q299)
reproducible noise waveforms were used to maslOaH&Otone in both the ¢& and NS
interaural configurations using the same set ofesiib. Also, the frequency content of the noise
in the 100-Hz region surrounding the tone freque@d&P-550Hz) was identical for the 100-Hz
and 2900-Hz waveforms. Results were consistett thié previously described studies (Gilkey
et al, 1985; Isabelle and Colburn, 1991). The resulthefEvilsizeret al. (2002) study provide
a detailed template for testing models becauseph®yide detection patterasd information
about the relationships between detection patferngifferent bandwidths and interaural
configurations. This was not possible in previousky because different masking waveforms
and subjects were used across studies and bangwidth

Detection patterns vary depending on noise bantivadd stimulus configuration. In
order to quantify these relationships, correlatibesveen detection patterns for different
stimulus configurations and bandwidths have bedulzded and are summarized below (Gilkey
et al, 1985; Isabelle and Colburn, 1991; and Evilsegeal., 2002). Four relationships are
present in detection patterns: (1) Detection pastésr narrowband $§& and narrowband &
configurations are natorrelated. (2) Detection patterns for narrowblipg and wideband b&
configurations are natorrelated. (3) Detection patterns for widebap8Nnd wideband p6
configurations areorrelated. (4) Detections patterns for narrowhdgeh and wideband p&
configurations are weaklgorrelated.

These relationships indicate several featuresrad-in-noise detection. The processing
strategies used for wideband3y and NS detection tasks, although yielding different oVlera
thresholds, produce relatively similar P(Y|T+N) &('|N) for each waveform, indicating that
some components of diotic and binaural procesgiagiailar. The relatively weak correlation
between detection patterns for narrowband and aiaelstimuli (Evilsizeet al.,2002;
Davidsonet al, 2006) indicates that either additional energyhimita critical band (in the filter
skirts) or in adjacent critical bands affects tleéedtion patterns.

Several factors motivate the further study of terapoontributions to tone-in-noise
detection: Green (1983) has shown that in a 2vateR-alternative tone-in-noise detection task,
when level$ of stimuli are roved within a trial and acrossinals, critical-band model
thresholds increase by about ¥ of the rove rangil &t al. (1989) provides psychophysical
data that differs from the threshold increase ptediby the critical band model. Additionally,
the work of Eddins and Barber (1998) has shownttivasholds differ for stimuli of equal

! Note that throughout this document, “level” widfer to the overall energy present in a stimulusef@m, while
“energy” refers to the energy present at the outpat 75-Hz BW auditory filter, corresponding t&RB at 500 Hz
(Glasberg and Moore, 1990). If the bandwidth ofstieulus is narrow relative to the bandwidth of uditory
filter, level and overall energy are virtually ideal.



energy but differing envelope fluctuations, phenoathat the critical band model cannot
explain.

One of the goals of this dissertation was to bagsygstematic exploration of cues that
may be used for tone-in-noise detection. Ratham tomparing detection patterns estimated at
different noise bandwidths (such as in the worlcdbsed above), stimulus features were altered
in specific ways to observe the effect of thoserations on the detection patterns. This concept
is illustrated in Fig. 1-2 A. If the stimulus feads altered were substrates for detection cues, the
detection pattern was expected to change. If ihukis features altered were not substrates for
detection cues, no change in the detection paiasexpected.

Figure 1-2 B illustrates the method for comparing patterns before (ordinate) and after
(abscissa) the stimulus features were altered, Eissores were computed for each probability
value in the detection patterns in order to normeaihe data. Then, tlzescores from each
pattern were compared using standard linear reigretechniques. The comparison was
quantified by thevalue, or the square of the correlation coeffigiéor the experiment
described in the Appendix, or by thé Ratistic for the multiple regression procedurscdibed

in Ch. 2. Both of these statistics quantify thegandion of variance explained in the “baseline”
detection pattern by one or more “altered” detecpatterns.

The preliminary experiment described in the Apprrkplored the roles of energy and
temporal structure (using low-noise noise, Pumd#85) in shaping the detection patterns.
Detection patterns that were estimated in condtizith overall energy equalized (within T+N
and N stimuli) were compared to patterns that hHidrdnces in overall energy from stimulus to
stimulus (but had otherwise identical temporalattes). This comparison illustrated the effect
of preserving temporal structure, and was perforasadg both Gaussian and low-noise noise.
Detection patterns with energy differences frormstus to stimulus were compared to sets
having the same energy differences, but differemtpioral structures, testing the effect of
altering the temporal structure of the stimulus @favms while preserving corresponding
waveform energies between conditions.

The experiment described in the Appendix was ayssec of the experiment described
in Ch. 2, which also explored detection under B¢, and NS conditions. However, overall
energies were equalized for all stimuli in thgSjNconditions to prevent the use of energy as a
detection cue. Baseline detection patterns wergigiesl using detection patterns estimated from
sets of stimuli sharing the same temporal enveldipatsdifferent temporal fine structures), or
from sets of stimulus sharing the same temporaldinuctures (but different temporal
envelopes), or from a combination of the two.

1.2 Modeling Efforts

Several models for masked detection have beeneabtalipsychophysical data collected
with reproducible maskers (Ahumada and Lovell, 1%Gilkkey and Robinson, 1986; Isabelle,
1995; Colburret al, 1997). A black-box representation of the modepngcedure is shown in
Fig. 1-2 C. The challenge for modeling data co#éectvith reproducible maskers is prediction of
psychophysical detection patterns, which is accaigtl by producing sets of model decision
variables for the reproducible stimuli. If the da@on variables resulting from the model and data
correlate perfectly, a particular noise waveforia thffectively masks the tone for the listener
will also effectively mask the tone for the modebnversely, if a listener responds to a
particular noise waveform by consistently indicgtthat the tone is present (regardless of its
actual presence), then model should produce aideaiariable indicating tone presence.



Predicting the detection pattern is a more critieat than predicting an average threshold (which
the model must do as well).

A Estimate “baseline” Estimate new
detection pattern detection pattern
S #E pattern
o o
|| ||| |‘ L Alter I ||I|| |“||| change?
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B =
=3
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Figure 1-2. A. Simplified schematic illustrating tre general strategy of the experiments in the
Appendix and in Ch. 2. If the stimulus features akred were used in the detection process,
the pattern is expected to change. B. Example ibtration of a quantitative comparison
between two detection patterns. The scores of the individual probabilities in each defction
pattern are used to normalize the data. The scores of the “baseline” condition (1) are on the
ordinate and thez scores of the “new” condition (2) are on the abss$a. Ther® value is
calculated as the square of the correlation coeffient. C. Schematic illustrating the modeling
procedures in Ch.3. In the NS, case, the model produces a single decision varialdbr each
reproducible noise waveform. Inthe NS case, the model produces a single decision
variable for each pair of left and right stimulus waveforms.

Initial attempts to predict §& detection patterns were based on a linear combmat
energy at the output of a series of band-passdi{humada and Lovell, 1971 and Ahumada
al., 1975). These studies used a weighting schemendatesl by fitting model detection patterns
to human detection patterns collected using widélwaproducible noises. Gilkey and Robinson
(1986) extended this work using a multiple-deteatodel that could explain about 71 percent of
the variance in b5, detection patterns. Multiple-detector models aseatially multi-channel



extensions of the critical-band model (Fletched@?9 Chapter 3 will examine the abilities of a
multiple-detector style model to predict theiresults from the experiments in the Appendix
and Ch. 2, as well as those from Evilsigeal. (2002) and will present comparisons of these
predictions to those from a basic energy modelt¢Rtr, 1940) and predictions from more
recent psychophysical models (Detual, 1996a, b and Breebaattal, 2001a, b, c).

Few have attempted to predicgIN detection patterns. Isabelle (1995) and Collatral.
(1997) tested several stimulus-based binaural msoslith narrowband reproducible noises.
These included models based on the normalized caysslation of the stimulus waveforms,
interaural time and level differences (ITDs and #.@spectively), combinations of ITD and
ILD, lateral position, time-deviation and the eqeation-cancellation (EC) model (Durlach,
1972; Colburret al,, 1997). The overall conclusion from these studigbat none of the models
examined predicted more than about 50 percenteofdhiance in 5 detection patterns.
Goupell and colleagues (e.g., Goupell, 2005; Gdwgmel Hartman, 2005, 2006) modeled data
from a related group of experiments using modifietsions of decision variables described by
Isabelle (1995). The task in these experimentstwagtect interaural coherence using a set of
reproducible noises. (It should be noted thattédsk is very different from tone-in-noise
detection in that there is no specific signal pnése be detected or modeled.) Results from those
studies were more promising [i.e., a larger prapardf variance in subjects’ responses was
explained in Goupell (2005) than in Isabelle (1995)

Chapter 3 examines several signal-processing-dgtiection models. Models were tested
under both the p§ and NS interaural configurations with both narrowband andeband
stimuli. Energy-related diotic models included tnitical-band (Fletcher, 1940) and multiple-
detector models (e.g., Gilkey al, 1986). The envelope-based models included theeDaly
(19964a,b), Breebaaet al. (2001a, b, c) and envelope-slope (Richards, 16%it)els. A temporal
phase-opponency model (Carretyal, 2002) was also examined. Binaural models included
of the Isabelle (1995) decision variables and adspGoupell (2005) decision variables based on
temporal interactions of interaural time and ledifferences. A relatively modern excitatory-
inhibitory processing strategy was also examinethénform of the Breebaagt al. (2001a)
model. The utility of decision devices based ongletes was also considered. [Here templates
are defined as averages of stored peripherallgeptrally- transformed representations of the
stimulus waveforms as described in Cdual. (1996a,b) and Breebaaet al (20014, b, c).]
Symmetrical processing strategies incorporatingraniral mismatches of frequency and delay
channels were examined, as well as a model inspiyede results of McAlpinet al. (2001) and
Marquardt and McAlpine (2001), using the outpuboly 4 interaural delay channels, with delay
dependent on the best frequency of the channel.

1.3 Relevant Physiology

No physiological detection studies have used miyeible-noise stimulus paradigms
similar to the psychophysical studies mentionedvab®his is not surprising, given the number
of complications such a study would create, thetranigcal of which is the question of how to
construct ensembles of reproducible stimuli fotscef differing center frequencies. One study
has attempted to examine an ensemble of repro@usidveforms in order to compare
neurological responses within and across wavef@¢8hackelton and Palmer, 2006). The
primary conclusion from that study was that onlyg&rcent of the variance in responses could
be explained by across-stimulus variability. Thigling is at odds with the results of the
psychophysical detection studies using reproducibises as described above (e.g., Siegel and
Colburn, 1989; Isabelle and Colburn, 1991), whieheagally find very reliable (and different)



detection statistics for individual waveforms. Tdvare some notable differences between the
studies that may explain this discrepancy. FiregcRelton and Palmer’s stimuli were noises of
varying interaural correlation or interaural timéetences only, neither of which have been
shown to predict P(Y|W) measured in psychophysma-in-noise detection experiments.
Second, they used the average rates of individeiaams for their computations, which neglect
the use of temporally-varying cues. Third, theyoreled from anesthetized Guinea pig inferior
colliculus (IC). If animals had been attendinghede stimuli, the results may have differed.
Finally, the psychophysical studies involving reguroible noise used stimuli 100 ms in duration
or longer, generally with 10-ms onset and offsetps, whereas Shackelton and Palmer used 50-
ms stimuli with 2-ms onset and offset ramps. Suirhudi would be considered too distracting to
be used in a psychophysical task due to the spspir@ad of energy at the onsets and offsets
causing perceptual clicks.
1.4 Significance

Overall, this combination of psychophysical expenntation and modeling work will
help us understand how humans extract signald@efast from the environment. Such an
understanding will be achieved by identifying andmpulating cues present in carefully
constructed stimuli and using these cues to preeizction patterns. Understanding how the
detection process is performed on a waveform-byefaam basis is fundamentally different
from predicting average thresholds. Such a wavefgpatific model allows for an
understanding of cues that may also be employedoicessing more complicated stimuli such as
amplitude-modulated tones and eventually speecbe @rese cues are more completely
characterized, better hearing aids, cochlear imgleotessors, and noise-reduction systems may
be developed by either better preserving or enhgritie cues used by the brain to understand
signals in noise.



CHAPTER 2

Diotic and dichotic detection with chimaeric stimul

ABSTRACT

Hit rates and false-alarm rates were estimated &arosed set of reproducible tone-
plus-noise and noise-alone waveforms under seddfatent conditions in order to identify the
components of sound waveforms from which deteatioes were derived. Two sets of
corresponding waveform envelopes and fine strustwmere combined to form four sets of
stimuli. Two of the sets shared the same envelbpebad different fine structures, and two sets
shared the same fine structures but had diffenevelepes. Detection patterns estimated for each
of the four sets were compared to reveal the kstEmeliance on either fine structure or
envelope for stimuli presented under both thi&MNnd NS interaural configurations. Results
varied across listeners, but in general suggebtddietection cues were based on a combination
of both waveform envelope and fine structure. Iogtions for computational models are
discussed.

2.1 INTRODUCTION

Over the past few years, many researchers, usmgety of different approaches, have
investigated the question of whether the auditgsyesn processes envelope and fine structure
separately (e.g. van de Par and Kohlrausch 199Blr&laschet al, 1997; Eddins and Barber,
1998; Breebaamtt al, 1999; Smitret al. 2002, Joris, 2003; and Zeergal, 2004). It has long
been known that auditory-nerve (AN) responses pluseto individual cycles and to the
envelope of stimuli with low-frequency carriers éikget al., 1965) and to the envelopes of
stimuli with high-frequency carriers (Joris and Y1992; Kay, 1982). Thus the auditory system
codes both cycle-by-cycle information and envelmermation at low frequencies, and
information based only on the stimulus envelopleigh frequencies, raising the question: Which
type of processing is used for detecting a lowdeswy tone in a narrowband noise waveform:
envelope or fine timing? This dichotomous thinkhrags produced a variety of psychophysical
models that rely on envelope (e.g., Bdw@l, 1996a, b, Eddins and Barber, 1998) or on fine
structure (e.g., Moore, 1975). Models that relytlm entire stimulus waveform have also been
described (e.qg., Durlach, 1963; Colburn, 1977; Bagaetet al, 2001a).

Several relatively recent studies have examineddles of stimulus envelope and fine
structure in perception using chimaeric stimulir Egample, Smitlet al. (2002) define the
concept of chimaeric stimuli as a stimulus credtgdombining the envelopes of certain sounds
(music, speech, noise etc.) with the fine strugfeother sounds. They tested speech
recognition and sound localization using variousnaeras and suggested that speech
identification appeared to be based on envelopereas sound localization appeared to be based
on fine structure. Zengt al (2004) later showed, by creating chimaeras withctionally
conflicting interaural-time differences (ITDs; whigvere embedded in the fine structure) and
interaural-level differences (ILDs; which were emted in the envelope), that sound
localization was not based entirely on signal Btreicture. In the present study, chimaeric
stimuli will be used in a tone-in-noise detectioperiment to examine the use of cues based on
stimulus fine-structure and stimulus envelope.

If the discussion is restricted to low-frequermkgtic stimuli, the concept of basing
detection cues on stimulus fine structure or erpelis simply a question of whether the cue is
computed from fast or slow fluctuations in the stins waveform. However, this concept



requires some clarification falichotic stimuli that are processed binaurally. Previous
researchers (e.g., Davidsenal, 2006; Isabelle, 1995; and Richards, 1992) hay#emented
signal-processing-style detection models that dpera signal envelopes extracted from the
narrowband analytic signal using the Hilbert transf. For binaural processing, such models
compute ITDs from the stimulus fine structure anBd from the stimulus envelope, while
neglecting the possible use of ITDs based on thaukis envelope.

Results from several physiological studies helpstilate more realistic binaural
processing of envelope and fine structure. Thasties have focused on the medial-superior
olive (MSO; e.g., Goldberg and Brown, 1969; Yin &itan, 1990), where ipsilateral and
contralateral excitatory inputs converge (EE);ldteral-superior olive (LSO; e.g., Boudreau and
Tsuchitani, 1968; Joris and Yin, 1995; Joris, 19896re ipsilateral excitatory inputs and
contralateral inhibitory inputs converge (IE); a&hé inferior colliculus (IC; e.g., Hindt al,

1963, Kuwadaet al, 1987, Fitzpatriclet al, 2000, and Joris, 2003) where cell responses show
many characteristics of both the MSO and LSO gpks.

In general, the MSO is biased toward low frequenaied is commonly described as a
center where cells are sensitive to ITDs presetitarstimulus fine structure (e.g., Yin and Chan,
1990). Joris (1996) found using amplitude-moduld#ed) binaural-beats, that the relatively
few high-frequency MSO cells also have weak enveldD sensitivity. Joris and Yin (1995)
found that high-frequency cells in the LSO encdded and ITDs in stimulus envelopes.
Further, they showed that LSO cells sensitive tith b®Ds and ILDS had smaller dynamic
ranges (i.e., change in rate) for coding ITD thancoding ILDs (if only the physiologically-
relevant range of possible ITDs was considered@y®diso found that low-frequency IE-type
LSO cells encode ITDs in the stimulus fine struetdrollin and Yin (2005) describe the
responses of several low-frequency (<1.5 kHz) nesimo the LSO that were sensitive to both to
ITDs and ILDs.

Joris (2003) shows, for cells in the IC, that pHas&ing to the stimulus envelope occurs
with higher gain and at wider bandwidths for célised to high frequencies than to low
frequencies. The lowest frequency for which theabmal processing of stimulus envelope
applies is not entirely clear. For the purposethisfstudy, we will consider ITDs based on either
stimulus fine structure or stimulus envelope anddlbased on stimulus envelope to be plausible
cues for detecting a 500-Hz tone in noise.

The present study is related to a psychophysigadmxent completed by van de Par and
Kohlrausch (1998) using multiplied-noise maskerkicW are created by modulating a sinusoidal
carrier with a low-pass noise. The resulting nevs@eform is centered at the carrier frequency
and has twice the bandwidth of the low-pass nddyecarefully manipulating the phases of the
signal waveforms, van de Par and Kohlrausch (1888ted binaural stimuli haviranly ITDs
oronlyILDs (that is, having the same fine structureams envelopes, respectively; envelope
ITDs were ignored). They found similap8! thresholds for ITD-only and ILD-only stimuli at
low frequencies (<1000 Hz) using 25-Hz masker badths, supporting the notion that either
fine-structure based or envelope-based cues cawie Ibeen used by subjects in the detection
task. However, they also found that some listehatsmasking-level differences (MLDs) for
ITD-only stimuli at high frequencies (4000 Hz) fohich physiological coding of fine-timing
information is weak. These MLDs were attributeghéipheral transformations that may have
converted frequency modulations to amplitude mdéhria (Blauert, 1981).

At low frequencies, the question of whether envelopfine-structure based decision
variables can be separated, and if so, which ddesrthe detection process remains. The study
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described here was designed to “passively” invagtighe use of cues for low-frequency tone-in-
noise detection based directly on stimulus envetop&timulus fine structure, or a linear
combination of both, using chimaeric stimuli. Therd “passively” is used to remind the reader
that no stimulus modificatioAsvere performed in order to prevent the use ofinteaural cue
over another (i.e., as in van de Par and Kohlrause®3; and). Both p& and NS stimuli will
be considered.
2.2 METHODS
2.2.1 General Design

This experiment was designed to investigate thériborion of cues based on stimulus
fine-structure and cues based on stimulus envedspgmitative decision variables for a tone-in-
noise detection task. Four sets of reproduciblaigtiwere created, two pairs of which shared
stimulus fine structures (or carriers) and two $aif which shared stimulus envelopes. The two
primary conditions, EC; and EC; (E denoting envelope; and C denoting carrier) enseeated
first. The third and fourth sets of stimuli;& and EC,, were created by recombining the
envelopes and carriers of the first two sets. ([Betagarding the construction of stimuli will be
discussed below.) Detection patterns were estinfategiach of the four sets of stimuli. The
detection patterns were compared within and agoisgcts using standard regression
techniques.

Experimental procedures were adapted from thoSgweidson.et al. (2006), Evilsizelet
al. (2002) and Gilket al.(1985). As in the previous experiments, listeqeEndormed tone-in-
noise detection under diotic and dichotic cond#ioising reproducible noises. Training and
testing procedures were preformed in a double-@atrind attenuating booth (Acoustic
Systems, Austin, TX). Six subjects completed thgeexnent, all of whom had previous
listening experience. S3 was the author of thegmtgsaper. S2 and S5 had extensive training
with psychophysical tasks.
2.2.2 Stimuli

Stimuli were created and controlled by MATLAB soéire (Mathworks, Natick, MA)
and presented with a TDT System Il (Tucker Dawsinhologies, Gainesville, FL) RP2 D/A
converter.

Initially, two sets of 25 noise waveforms were gaed. Each waveform was created in
the frequency domain by randomly selecting 5 magleis from a Rayleigh distribution and 5
phase values from a uniform distribution on thenwél [-pi, pi]. The inverse Fourier transform
was used to generate the time-domain noise wavsfokthwaveforms were 100 msec in
duration and had 50-Hz bandwidths centered at 30EHch of the noise waveforms was
normalized to the overall level of 57 dB SPL, whadrresponds to a 40-dB SPL spectrum level.
Tones were added at the levels determined duraigitig (see below) for both the,8 and
NoS interaural configurations. For the$ condition, the resulting tone-plus-noise (T+N)
stimuli were once again normalized to the ovemlel of 57 dB SPL to eliminate cues based on
overall level. The S T+N stimuli were not normalized in order to avawroducing static
interaural level differences. The resulting setstohuli are denotedsE; and EC,. A schematic
illustrating these conditions is shown in Fig. 2.1 The waveform shown for each condition is a
representative example. The detection patterrsien@ included for each condition to remind
the reader that the same type of processing oattoreeach T+N and N waveform in botlh3y
and NS conditions.

2 with the exception of stimulus energies in th&\onditions, which were all normalized to the sawerall level.
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Figure 2-1. A. Schematic illustration of the stimulis-construction procedure Envelopes (E)
and carriers (C) were separated from the EC; and E,C, stimuli using the Hilbert transform.
The envelopes and carriers were exchanged and recbimed to create chimaeric waveforms
E,C, and E,C;. Detection patterns are present to remind the reaat that each stimulus
waveform is representative of an entire set of stinli. A more detailed description of the
stimuli (including distortion control procedures) is given in the text. B. lllustration of the
multiple-regression procedure for the EC; condition Chimaeric detection patterns sharing
envelopes (Ein the example above) and sharing carries (Cabove) were used to predict the
detection pattern from the baseline condition (EC; above). The b coefficients represent the
slopes of the regression lines used in the lineaasistical model. The ky coefficient is always
equal to zero because variability linearly associad with the baseline condition not in the
model (EC, above) was removed (see text for details). Theerm represents error variance.
R? values were computed for envelope (gray) carrietb{ack) and a linear combination of
envelope and carrier (Rec). If envelope dominated the detection process,\itas expected
that the E;C; and E,C, detection patterns would be the same and thezl%nvelope =1 If
carrier dominated the detection process, it was exggted that the EC; and E,C, detection
patterns be the same and the Rearrier = 1.
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Each T+N and noise-alone (N) stimulus waveform thes decomposed into its complex
analytic function using the Hilbert transform tdrext signal envelope and fine structure
(Oppenheinet al, 1999). The envelopes from the first set of stir(ia]) were combined with
the carriers from the second set of stimuli)(fd produce a third set of stimuli{€). The
envelopes from the second set of stimu}) (Eere combined with the carriers from the firdt se
of stimuli (G) to produce a fourth set of stimuliA&). Thus, four sets of stimuli were created,
with the latter two sets created from combinatiohthe envelopes and carriers from the first and
second sets of stimuli. Stimuli from the latter teeis will be referred to as chimaeric stimuli.
Stimuli from the first two sets will be referred s baseline stimuli. Signal presence and
corresponding waveforms were preserved acrossetbeRor example, the right-ear 9\ T+N
waveform number 1 from the third set of stimuli veasated with the envelope from right-ear,
NoS T+N waveform number 1 from the first set of stimard the carrier from the rightoS
T+N waveform number 1 from the second set of stimul

The process of assembling chimaeric stimuli in soases resulted in waveforms with
spectral splatter and temporal distortions. Bec#lusse distortions had the potential to interfere
with the task and cause unintended interauralreiffees (in the p& condition), the waveforms
were tested for excessive spectral splatter antredted based on specific criteria. If absolutely
no spectral splatter was allowed, the stimulust@ealgorithm would eventually create four
sets of stimuli with identical corresponding wavefs (see below). Chimaeric stimuli were
therefore eliminated if their bandwidth exceededHz0at a magnitude 15 dB below the
waveform’s spectral peak, and a bandwidth of 10@GHz magnitude 25 dB below the
waveform’s spectral peak. (Recall that the baseddtimeuli had a bandwidth of 50 Hz.) In the
event a waveform was eliminated, the correspondizngeforms across all 4 sets of stimuli were
also eliminated. Stimuli that were eliminated tehtie have large frequency modulations in the
carrier that were temporally positioned at reldsivegh envelope values. Such a combination
naturally increased the bandwidth of the waveform.

Two new baseline waveforms were created using ranamse, and corresponding
chimaeric stimuli were created. The stimuli weralsd, tones added, and the resulting
waveforms tested. The process continued for allefcawmns in all 4 conditions. The algorithm
ran for approximately 12 hours on a Pentium M cotep(L.86 GHz), and eliminated thousands
of candidate stimulus waveforms before converginghe set used in the present study (the
exact number of waveforms eliminated was not resdy.d This process resulted in stimuli that
had minimal distortions and spectral splatter,dis produced significant differences in
masking across waveforms.

Blauert (1981) and Zergt al. (2004) have pointed out that when relatively biwzaud
stimuli are filtered with a filter narrower tharettimulus bandwidth, an envelope may be
recovered. This was not likely to occur given éipproximate 75-Hz critical bandwidth at 500
Hz, and the fact that a 50-Hz noise bandwidth vezsiuNevertheless, stimuli were
diagnostically tested for possible envelope recpbgrfitering all stimuli with a 50-Hz
bandwidth, #-order gammatone filter at center frequencies f&@® 600 Hz in 1 Hz steps.
Envelopes were then recovered from the stimulidf-\Wwave rectification and filtering with a
first-order low-pass filter with an 8 Hz cut-ofefjuency. First, envelopes from the filtered
chimaeric stimulus sets {€; and EC;) were compared to the envelopes from the filtered
original stimulus sets @E; and EC,respectively). Under no cases (i.e., at any fitamter
frequency or for any waveform) did the correlati@ue fall below 0.977. Then, the
correlations between the envelopes extracted iki6e and EC, conditions were subtracted
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from the correlations between the envelopes exdiict the EC, and EC, conditions, and also
from the correlations between the envelopes exadaitom the EC; and EC; conditions. This
comparison examined whether the envelope of thelibasconditions (e.g., fwas recovered
from the carriers of the chimaeric conditions (eEgC;). Under no cases did the correlations
differ by more than 0.05, indicating that at thesmulus and filter bandwidths, the recovery of
envelope information from stimulus-fine structusederipheral filtering was unlikely.

2.2.3 Training

Training procedures were similar to those describddavidsoretal. (2006) and will be
briefly summarized here. An extensive training para was used encourage subjects to form
detection strategies that remained constant oeeduhation of the experiment in order to
establish stable performance for the final tespiracedure, which was a single-interval task
using large numbers of trials at threshold. Thré&sieodefined here for each subject as te¥NE
value in dB where d1. Three separate training tasks were completetleach task was
progressively more similar to the final testing ggdure. The training procedures used 50-Hz
bandwidth, 100-ms duration noise waveforms thaevganerated randomly on each trial (i.e.,
not the reproducible stimuli used in the testinggedure). Randomly-generated noise was used
to prevent any possible learning of reproducibiesh.

The following training and testing procedures wewaducted under both the$ and
NoS interaural configurations. In general, subjecteneed stimuli from only one interaural
configuration per session (2-3 hours). The useg® Nr NoS stimuli alternated by session for
all subjects but S2 and S4. S2 and S4 completéchaling (and testing) for thegS condition
first, and then completed all training and tesfmgthe NS, condition. This change was made to
reduce possible confusion of the diotic and dichoties created by switching interaural
configurations between sessions. (Note that S3 @eththe experiment both alternating
interaural configurations by session and also bgpdeting the NS interaural configuration
first. Detection patterns from the two testing nogtd were highly correlated.)

In rare cases, stimuli from both interaural comfagions were presented in the same
session (such as to finish a particular trainingesting paradigm). During those sessions,
presentation of the blocks of stimuli never altéedebetween the two configurations. The initial
listening configuration was randomized across subje

During the first training procedure, each subjextpleted 10-15 repetitions of a two-
interval two-alternative forced-choice tracking pedure with trial-by-trial feedback to estimate
a level wheral ;arc = 0.77. Each track had a fixed length of 100 dridlhe step size was
maintained at 4 dB for the first 2 reversals amapged to 2 dB thereafter. Thresholds were
estimated by averaging tone levels at all but itts¢ 4 or 5 reversals in the track such that the
number of reversals averaged was even. Subjectsingructed to “select the interval
containing the tone” and learned the task usingriakby-trial feedback.

During the second training procedure, a singleriatk fixed-level task with feedback
was used to encourage stable performance at ebjgtts approximate threshold. The
instructions for the single-interval tasks werédetermine whether the tone was present” on
each trial and to click on a button labeled eithene” or “no tone.” Approximately 10 blocks
containing 100 trials each were completed at +3ard -1 dB relative to the threshold
established in the two-interval task. Throughoetdhngle-interval training procedures (and the
testing procedure described in Sec. 2.243nd bias (, MacMillan and Creelman, 1991) were
monitored. Thel values calculated from these blocks were used ase@urate estimate of tone
level whered was approximately equal to unity, rounded to 0r5t-dB resolution.
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Approximately 10 blocks were then run at that tawel. If a subject’s threshold changed, the
tone level was once again adjusted with 0.5 or Ted®lution untild returned to unity.

After a stable tone level was established, theldaekl was removed, and subjects
completed approximately 10 100-trial blocks withtegdback in order to determine whetber
values would remain near unity after feedback veasowed. In rare cases, tone-levels were
adjusted with 1-dB resolution such thatd The block length was then increased to 400strial
and subjects completed 5 more blocks.

If a listener was noticeably biased (i.edeparted more than 15 percent from unity, with
unity indicating an equal probability of guessingrie” or “no tone”) the subject was given
verbal feedback to “try and make an equal numbé¢org and no tone responses.” Subjects were
also notified that < 1 indicates too many “tone” responses ardl indicates too many “no
tone” responses. The valuesdoiind were computed using P(Y|T+N) (the probability of a
“yes” response conditional on individual T+N wawefg or hit rate) and P(Y|N) (the probability
of a “yes” response conditional on individual N weérm, or false-alarm rate) across all
stimulus waveforms from the four cue conditions] arere not monitored within each of the
conditions. No attempt was made to control forataons in values od and computed for the
individual envelope and carrier sets (e.gCH during the course of the experiment.

2.2.4 Testing

The testing procedure was identical to the finailing procedure except that the
reproducible noises described in Sec. 2.2.2 wezd as stimuli. Before each 400-trial block, 20
practice trials (that did not use reproducible stijnwere presented with feedback. Each T+N
and N stimulus from each of the 4 stimulus sets pvasented twice in a randomly interleaved
order in each 400-trial block. A total of 50 blocksere presented to each listener such that 100
presentations of each T+N and each N waveform ywergented at the final tone level in both
the NSy and NS conditions.

The narrowband-noise waveforms used in traininggwandom and did not include
chimaeric stimuli. As a result, the tone level det@ed from the training procedure did not
necessarily represent the level whereldor each subject when using the sets of reprétiici
noise waveforms. In these cases, the tone levebhdjasted in 0.5 or 1-dB steps until # for
each subject. The tone level was adjusted at dewst for each listener, which was most likely a
consequence of the specific stimuli selected wighdistortion control algorithm. Learning
during this process was unlikely, as the long trgmprocedure with feedback was designed to
encourage subjects to establish a fixed decisiatesty. Feedback was never presented while
testing with the reproducible noise waveforms.

2.2.5 Analysis

The reliability of the data was first verified bglculating thed, , r? and ? statistics.
Following these computations, detection patteri§¥|\®), or the probability of a “yes” response
conditional on a particular stimulus waveform] warelyzed across the various stimulus
conditions and interaural configurations.

Detection patterns were first compared within satg and across the chimaeric stimulus
sets, which required several steps: Initially PN |W) values were convertedzecores. The
general strategy was then to predict each of teeline detection patterns(& or E,C,) with
the chimaeric detection patternsC& and EC,) using multiple regression. This regression
procedure is illustrated in Fig. 2-1 B. To the extidhat detection cues were based on the carrier,
the detection patterns for conditiongCz and EC; should be the same, and detection patterns
for conditions EC, and EC; should be the same. To the extent that detectiea were based on
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envelope, the detections patterns for conditiois Bnd EC, should be the same and detection
patterns for conditionsJE; and EC; should be the same.

The method used for predicting the detection paftethe EC; condition is described in
this section (as shown in Fig. 2-1 B). The methardofedicting the EC, detection pattern can be
obtained by interchanging the subscripts 1 andtBarfollowing description. An additional
analysis was also performed in which the datalfer2 conditions described above were pooled
by either envelope predictor or carrier predictor.

The goal was to determine the influence of envelpcarrier specifically. A multiple-
regression approach was used to incorporate Abedhd EC, detection patterns as predictors
for the BC; detection pattern. It was first of interest toueel the variability associated with the
E,C, pattern in the remaining detection patterns. Aditgly, the BEC, detection pattern was
regressed on each of three remaining patternghenaesiduals from this regression were used
for subsequent analysis. The net effect was tocklor “partial out” the variability associated
with E-C,. Next, several simple regressions were perforrfiddte that each regression used
only residuals from the above operation.) First twopdaninear regressions were performed to
predict EC; using both EC; and EC; as predictors individually; these regressions iatlid the
proportion of variance explained (in terms &j Respectively by the carrier (becausen@s
held constant) and by the envelope (becayseaEk held constant). Recall that the variability
associated with £, was “blocked.” Then, E; was simultaneously regressed o€Eand EC;
to compute the proportion of variance explainecltiypear combination of both envelope and
carrier. Incremental F-tests (Edwards, 1979) weréopmed to determine if the proportion of
predicted variance in the;€; detection pattern was significantly increasedrnmprporating
carrier in addition to envelope alone, or envelopaddition to carrier alone.

Comparisons between stimulus configurations angestdbwere quantified using the
square of Pearson’s correlation coefficient, wheciirectly comparable to the regression
predictions.

2.3 RESULTS AND DISCUSSION

Several comparisons are made in the following sastiFirst the reliability of the data is
addressed. Then, detection patterns estimatediathaseline and chimaeric stimuli are
compared within subjects. Detection patterns aga tompared between subjects and between
interaural configurations. Finally, implications fexplanatory models are discussed. An average
subject (3,9 was considered for all but the between-subjentgarisons and the within-subject
comparisons made in each of the four stimulus ¢mmdi. The average subject was created by
computing P(Y|W) across all subject responses.

2.3.1 Reliability of the data and detection performnce

Tables 2-1 through 2-4 show reliability and datecperformance statistics for the®y
(Tables 2-1 and 2-2) and,8l (Tables 2-3 and 2-4) interaural configurationse Tiireshold-tone
level whered 1 is given terms dEg/No. The resultingl and values calculated across and
within the four stimulus sets are also shown. Thaing procedure was relatively successful in
finding overalld values near 1 with the possible exception of ShenN\,S condition (Table 2-
3). No procedure was implemented to controldhend values within the individual stimulus
sets. For IS stimuli, d values ranged from 0.51-1.14 andalues ranges from 0.70 to 1.32
(Table 2-1). For S stimuli, d values ranged from 0.54-1.11 andalues ranges from 0.57 to
1.35 (Table 2-3).



Table 2-1. Reliability and performance statisticsdr the NoS, interaural configuration. One
tone level Es/Ng) was used for each subject. Overall and were computed using responses
to waveforms in all conditions. Individuald and values are given for each of the 4 stimulus
conditions. The coefficient of determination betwee responses from the first and the last
half of the trials (r?) and the proportion of predictable variance (V) ae given for each

condition. All r? values were significant§ < 0.05).

Overall P(YIW)
S EgN, d Condition d r* Veaw)
S1 10 0.87 0.93 E,C, 0.96 0.70 0.93 0.98
E,C, 0.95 0.80 0.97 0.99
E,C, 0.76 1.04 0.95 0.99
E,C, 0.94 1.23 0.96 0.99
S2 10 0.88 0.99 E,C, 1.01 0.87 0.93 0.98
E,C, 0.90 0.84 0.96 0.99
E,C, 0.63 1.03 0.95 0.99
E,C, 1.04 1.29 0.92 0.98
S3 10 1.02 1.07 E,C, 0.86 1.02 0.88 0.97
E,C, 1.07 0.99 0.90 0.98
E,C, 1.01 1.10 0.89 0.97
E,C, 1.14 1.21 0.92 0.98
S4 11 0.96 0.95 E,C, 0.85 0.85 0.93 0.98
E,C, 0.93 0.93 0.93 0.98
E,C, 0.95 0.93 0.93 0.98
E,C, 1.13 1.17 0.92 0.98
S5 11 0.86 0.99 E,C, 0.51 0.88 0.95 0.99
E,C, 1.21 1.05 0.95 0.99
E,C, 0.68 0.97 0.95 0.99
E,C, 1.13 1.32 0.97 0.99
S6 115 0.94 0.97 E,C, 0.79 0.81 0.89 0.97
E,C, 1.00 0.94 0.90 0.97
E,C, 1.05 1.04 0.89 0.97
E,C, 0.99 1.19 0.88 0.97
Sag 10.58 0.92 0.98 E,C, 0.82 0.85 0.98 0.99
E,C, 1.00 0.91 0.98 0.99
E,C, 0.84 1.02 0.98 0.99
E.Cy 1.06 1.24 0.98 0.99
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Table 2-2. Reliability statistics for P(Y|T+N) andP(Y|N) for the NoS stimuli. The Zstatistic,
coefficient of determination between responses frote first and the last half of the trials
(r3), and the proportion of predictable variance (V) ae shown. All ? values were significant
(p < 0.001) and ali? values were significant§ < 0.05).

P(Y[T+N) P(YIN)
S  Condition 2 r’ V(TN 2 r’ Ve
S1 E,C, 1371 0.91 0.98 1829 0.91 0.98
E,C, 1947 0.96 0.99 1720 0.96 0.99
E,C, 2198 0.94 0.99 2078 0.95 0.99
E,C; 1850 0.94 0.98 1694 0.96 0.99
S2 E.C; 1543 0.89 0.97 1856 0.92 0.98
E,C, 2055 0.96 0.99 1783 0.93 0.98
E,C, 1737 0.94 0.98 1779 0.94 0.98
E,C; 1791 0.90 0.97 1557 0.89 0.97
S3 E.C; 669 0.73 0.92 1011 0.85 0.96
E,C, 820 0.75 0.93 1148 0.87 0.97
E.C, 488 0.61 0.88 1431 0.89 0.97
E,C, 664 0.80 0.94 1226 0.85 0.96
S4 E.C; 1350 0.91 0.98 1340 0.89 0.97
E,C, 1486 0.87 0.96 1547 0.92 0.98
E.C, 940 0.86 0.96 1628 0.92 0.98
E,C, 1176 0.83 0.95 1130 0.90 0.97
S5 E,C, 2352 0.95 0.99 3017 0.95 0.99
E,C, 2402 0.95 0.99 1966 0.89 0.97
E,C, 1645 0.90 0.97 2310 0.96 0.99
E,C; 2104 0.97 0.99 2341 0.93 0.98
S6 E,C, 1258 0.75 0.93 1645 0.93 0.98
E,C, 1760 0.90 0.97 1460 0.79 0.94
E,C, 1113 0.77 0.94 1620 0.87 0.97
E,C; 1561 0.79 0.94 1778 0.87 0.97
Savg E.C; 4873 0.94 0.98 7659 0.98 0.99
E,C, 7798 0.97 0.99 6601 0.97 0.99
E.C, 3912 0.93 0.98 8530 0.98 0.99

E.Cy 5409 0.95 0.99 6473 0.98 0.99




Table 2-3. Same as Table 2-1 but for thedS interaural configuration.

Overall P(Y|W)
S E¢N, d Condition d r’ Veamw)
S1 0 078 0091 E.C, 1.10 0.57 0.93 0.98
E,C, 1.03 0.70 0.91 0.98
E.C, 0.66 0.97 0.93 0.98
E,C, 0.54 1.19 0.93 0.98
S2  -10 097 1.10 E.C, 0.85 1.35 0.90 0.97
E,C, 0.87 1.11 0.91 0.98
E.C, 1.09 0.96 0.94 0.98
E.Cy 1.10 0.96 0.91 0.98
S3  -17 1.01 0.99 E.C, 0.94 1.11 0.89 0.97
E,C, 0.96 1.01 0.85 0.96
E.C, 1.06 0.92 0.86 0.96
E,Cy 1.11 0.92 0.88 0.97
S4 -1 093 1.00 E.Cy 0.92 0.85 0.90 0.98
E,C, 1.03 0.94 0.95 0.99
E.C, 0.79 1.03 0.93 0.98
E,Cy 1.02 1.25 0.93 0.98
S5 -16.5 091 1.02 E.Cy 0.90 1.24 0.92 0.98
E,C, 0.81 0.94 0.87 0.97
E.Co 1.09 1.11 0.92 0.98
E.Cy 0.88 0.87 0.88 0.97
S6 -10 0.96 1.06 E.Cy 0.87 0.95 0.89 0.97
E,C, 0.81 1.22 0.84 0.96
E.Co 1.08 0.96 0.87 0.97
E,C, 1.11 1.12 0.88 0.97
Sag -9.08 0.92 1.01 E.Cy 0.89 1.00 0.98 0.99
E,C, 0.90 0.99 0.97 0.99
E.Co 0.96 0.99 0.97 0.99

E.Cy 0.94 1.06 0.98 0.99




Table 2-4. Same as Table 2-2 but for thedS interaural configuration .

P(Y[T+N) P(YIN)
S  Condition 2 r’ V(TN 2 r’ Vein
S1 E,C, 885 0.94 0.98 1621 0.89 0.97
E,C, 1116 0.93 0.98 1516 0.85 0.96
E,C, 1859 0.94 0.98 1938 0.90 0.97
E,C; 1477 0.91 0.98 1445 0.93 0.98
S2 E.C; 1283 0.89 0.97 639 0.75 0.93
E,C, 1383 0.88 0.97 872 0.82 0.95
E,C, 1188 0.91 0.98 970 0.85 0.96
E,C; 968 0.83 0.95 617 0.83 0.95
S3 E.C; 844 0.81 0.95 530 0.75 0.93
E,C, 801 0.72 0.92 487 0.66 0.90
E.C, 909 0.72 0.92 366 0.63 0.88
E,C, 585 0.67 0.90 426 0.69 0.91
S4 E,C, 921 0.90 0.97 1100 0.82 0.95
E,C, 1648 0.91 0.98 1759 0.96 0.99
E.C, 1390 0.91 0.98 1625 0.91 0.98
E,C, 1429 0.92 0.98 1343 0.84 0.96
S5 E,C, 1388 0.89 0.97 623 0.87 0.96
E,C, 1117 0.82 0.95 658 0.78 0.94
E,C, 1220 0.88 0.97 614 0.74 0.93
E,C; 955 0.86 0.96 705 0.77 0.93
S6 E,C, 1438 0.87 0.97 490 0.73 0.92
E,C, 1081 0.80 0.94 472 0.62 0.88
E,C, 1159 0.77 0.94 654 0.72 0.92
E,C; 1112 0.83 0.95 615 0.65 0.89
Savg E.C; 3089 0.98 0.99 1287 0.87 0.97
E,C, 1470 0.92 0.98 744 0.76 0.93
E.C, 1953 0.91 0.98 978 0.83 0.95
E,Cy 2595 0.96 0.99 1072 0.83 0.95
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Tables 2-1 through 2-4 also include first-halftdaalf correlations and proportions of
predictable variance (Ahumada, 1971), both of wimclicate the reliability of the data. These
statistics are shown for cases when T+N and N weyeped together [P(Y|W), Tables 2-1 and
2-3] or considered separately [P(Y|T+N) and P(Y[Nbles 2-2 and 2-4]. Note that Tables 2-2
and 2-4 also includé€? statistics, with larger values indicating moreatele detection patterns
(for a more complete description see the Apperfsiec. A.3.1.) In general, more variance was
predictable for P(Y|W) because a larger numberaifeforms was considered. Note that the vast
majority of the variance was predictable in th&d\condition ( >95 percent in most cases) for all
sets of stimuli. Less variance was predicablé@XyS condition than the p& condition, but
this amount always exceeded about 90 percent.rniargk these results indicate that all of the
estimated detection patterns were reliable.

Note the relatively low/ and ? values observed for,gin Table 2-4. Despite the fact
that more trials were included when calculatingsthstatistics as compared to those for
individual subjects, the? values remained lower than some of those comgataddividual
subjects for P(Y|N). This indicated that when pogliesponses across subjects, the detection
patterns actually became less variable (i.e. gitagtl), which was consistent with the individual
listeners using different strategies for this task.

2.3.2 Within-subject comparisons of detection pattas estimated with baseline and
chimaeric stimuli

Before applying the analysis procedure describeédeammethods section, the detection
patterns were checked for normality using the &fitirs hypothesis test of composite normality
(Sheskin, 2000), keeping the individual-test alf@wel at 0.05. No family-wise error-rate
correction was implemented in order to maintaimaservative test criterion. Only 2 of the 144
detection patterns [considering P(Y|W), P(Y|T+Njd &(Y|N) separately for the 4 stimulus sets
in the 2 interaural configurations with 6 subjegigjved to be non-normal. Similarly, for all
regression analyses, residuals were examined tlengame test. Of the 324 regressions
performed [3 predictors (E,, E;C, and combined) x 3 detection-pattern components x 6
subjects x 3 predictor models (envelope carridyath) x 2 interaural configurations], only 10
showed significantly (p < 0.05) non-normal residu&xamination of residual plots failed to find
any serious issues of heteroscedasticity (unequal eariances). Correlations between predictor
variables in the same analysis were computed tckcloe multicolinearity (high correlation of
predictor variables). Typical values for tfebetween predictor variables ranged from 0 to 0.1
(and were insignificant) and in no case did theigadxceed 0.31, indicating that the data did not
exhibit a large degree of multicolinearity.

Figures 2-2 through 2-7 show scatter plotg-stores computed for the various cue
conditions. Probabilities of 0 and 1 (the z-scarewhich are unbounded) were replaced with
1/100 and 99/100 respectively, which occurred fdy &4 of the 2400
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Figure 2-2. Comparisons between cue conditions f&(Y|W), P(Y|T+N) and P(Y|N) (columns) for 6 subject
(rows). Envelope-based predictions are shown in gygsquares), while carrier-based predictions are siwn in
black (circles). Relative weights are shown by the values. Rgc corresponds to the proportion of predictable
variance using a linear combination of both envelap and carrier. Significant (p < 0.05) incremental Rest
results are shown for envelope and/or carrier. Sigal-to-noise ratio in dB (E/Np) is shown to the right of each
plot.
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Figure 2-3. Same as Fig. 2-2 except predictions véeemade for the EC, stimulus condition.
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Combined Predictions: N S,
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Figure 2-4. Combined predictions for EC,; and E;C, by predictor type: envelope or carrier. Predictiors are

for the NoS, condition. See text for details.
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Figure 2-5. Same as Fig. 2-2 except8l stimuli were used.
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Figure 2-6. Same as Fig. 2-3 except predictions véeemade for the EC, stimulus condition.
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Figure 2-7. Same as Fig. 2-4 except predictions veemade for the NS condition.
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probabilities in the stimulus set [50 P(Y|W) x 2eiraural configurations x 4 stimulus conditions
X 6 subjects]. In each panel, the detection pattestimated from responses to chimaeric stimuli
were used to predict the detection patterns estimnatthe EC; or E;C, conditions. The
predictors are plotted on the abscissa of eachl paneelope predictions are always shown in
grey squares and carrier predictions are alwayashio black circles. Regression slopes &nd

bc) are shown in each panel. The slope values wanputed using the multiple regression
procedure (i.e., both envelope and carriers wegdigtors) and thus are slightly different from
the slopes that would be obtained using eitherlepeeor carrier individually (as discussed
below). If the carrier were a perfect predictotlod variance in the detection patterns, the black
circles would fall exactly along the diagonal ardMould equal one. Conversely, if the envelope
were a perfect predictor of variance in the detecpatterns, the gray squares would fall exactly
along the diagonal and: lwould equal 1.

Three R values are shown in each panel (Figs. 2-2 thr@4@h The upper greyR
corresponds to a prediction using only envelope niiddle black Rcorresponds to a prediction
using only carrier. The lower-black® corresponds to a linear combination of envelogk an
carrier using the weights given by &dnd Iz respectively. Slopes for the individual envelopd a
carrier predictions (corresponding to the individeravelope and carrier’Ralues) are not
shown. Significant Rvalues are in bold and denoted with an asterigkuRs from incremental-
F tests (R«) indicate if the addition of envelope to a prediotlmased on carrier, or the addition
of carrier to a prediction based on envelope, &amtly increased the amount of predictable
variance in the detection pattern plotted alongotttknate. (Note that the incremental-F test is
equivalent to testing the significance efdr k). Recall that the variance linearly associated
with the non-predictor condition was blocked ing@gredictions, as described above.
2.3.2.1 NS stimuli

Figures 2-2 through 2-4 show results for the resjoesanalyses described above fo6N
stimuli. Chimaeric detection patterns were useplréalict baseline detection patterns for each
individual subject. Figures 2-2 and 2-3 show segapeedictions for detection patterns estimated
with E;C; and BC; stimuli, respectively. It was of interest to detee if the predictions for the
two baseline conditions were in agreement. To darsotest of significant differences between
correlated but non-overlapping correlations (Raglio@anet al, 1996) was conducted for each
combination of envelope and carrier (2), each sulff, and for P(Y|W), P(Y|T+N), and
P(Y|N), for a total of 36 tests. As with the testsiormality, we were interested in NOT
rejecting the null hypothesis. To reduce the charidgpe-I1l error, a family-wise error alpha
level was not computed, and the individual alph&lléor each test was maintained at 0.05.
None of the 36 tests yielded significant differex¢g>0.05) between predictions for& (Fig.

2-2) and EC; (Fig. 2-3) for either envelope or carrier. Thus ttata from Figs. 2 and 3 were
combined for Fig. 2-4. The data from Figs. 2-2 ar8lwere concatenated by predictor (either
envelope or carrier), and data from the two basgdatterns were also concatenated. Thus,
individual panels in Fig. 2-4 contain twice the ragnof data points as in Figs. 2-2 or 3. The
weights and Rvalues in Fig. 2-4 are essentially the averaghase in Figs. 2-2 and 2-3 for
corresponding panels. One notable difference wbembming predictions was the additional
significant per value for S4, P(Y[T+N) in Fig. 2-4, which was mbisely an effect of doubling
the number of data points.

Inspection of Fig. 2-4 reveals that both envelapé carrier were, in general, positively
correlated to the each of the individual listenelegision variables (for all but four cases). The
large number of significantg values indicates that for most subjects, both lepesand carrier
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contributed unique information that was correlatethe listeners’ decision variables. However,
there was some intersubject variability in tHevRlues observed in Fig. 2-4. In previousSN
detection experiments in which energy was not erg| subjects’ detection patterns were
highly correlated to one another (e.g., Evilsigeal, 2002 and Davidsoet al, 2006). These
high correlations indicate that the same or vemyilar decision variables were used by each
subject in those studies. Recall that in th&JNondition of this experiment, overall stimulus
levels were equalized to remove the availabilitgnérgy as decision variable. As a result, high
intersubject correlations were not necessarily etque(for a complete discussion of intersubject
correlations, see below), nor was the use of idahtiecision variables across subjects. In fact,
the results shown in Figs. 2-2 through 2-4 (in addito the relatively low intersubject
correlations described in Sec. 2.3.3) suggest skeotidifferent detection strategies by different
subjects. The b values and W®lues for subject 3, suggest a preference fos oelated to the
fine structure of the stimulus waveforms rathentbavelopes of the stimulus waveforms. The
remaining subjects used a combination of carridrenvelope-related cues, as indicated by the b
and R values for envelope predictors with respect toieapredictors.

Although the majority of Rvalues in Figs. 2-2 through 2-4 are significanmne are
above 0.80, and all are lower than the estimatéseoproportions of predictable variance shown
in Tables 2-1 and 2-2. Thus, substantially moréavere in the detection patterns should be
predictable. The scatter plots in Figs. 2-2 throRghdo not suggest a comparable nonlinear
statistical model capable of explaining signifidgmhore variance than the current linear model.
Nevertheless, based on the overall pattern ofteestiivas concluded that the linear model was
not necessarily a good fit for these data. Thigests that the separation of carrier and fine
structure for the purposes of computing individdedection statistics (i.e., a statistic for carrier
and a statistic for fine structure), and the subsatjrecombination of those individual detection
statistics to compute model decision variabletsansolution that will lead to acceptable model
predictions for the b, interaural configuration. One could argue thatrtiethod of separation
of envelope and fine structure (e.g., the Hiloexh$form) was simply inappropriate, or that the
chimaeric stimulus waveforms contained interfere(ecg., frequency splatter) that lowered R
values. However, each of these arguments also sttt separating the stimulus waveform
into envelope and fine structure is not a viabtategy for modeling the subjects’ detection
patterns. For example, if separate temporal pratgss envelope and fine structure occurred,
frequency splatter should not affect the listendetection patterns. In review, the results
illustrated in Figs. 2-2 through 2-4 support théiathat detection models should compute
detection statistics from the entire stimulus wavedt, rather than separating envelope and fine
structure completely. (A possible exception cowddflihe model computed statistics based on
envelope and fine structure as a function of tiamg] allowed those statistics to interact
temporally before computing a final decision valgabSuch a computation is evaluated in Ch.3).
2.3.2.2 NS stimuli

As in the NS, interaural configuration, it was of interest taetenine if the predictions
for the two baseline conditions differedy(& and EC,). Several tests of correlated but non-
overlapping correlations (Raghunathetral, 1996) were conducted on the correspondihg R
values shown in Figs.2-5 through 2-6. As with th&\data, none of the 36 tests indicated
significant (p>0.05) differences between the catrehs in Figs. 2-5 and 2-6.

Before moving on to the combine@®! predictions in Fig. 2-7, the reader is reminded of
the rather large threshold difference between stbjsome on the order of 17 dB) for this
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interaural configuration. Also recall thapBl noise-alone stimuli are diotic, while;8® T+N
stimuli are dichotic.

Subjects 3 and 5 had the lowest threshold tondslewel showed similar trends in terms
of envelope and carrier predictions (see Fig. ZFiag linear combination of envelope and carrier
failed to predict the majority of the variance wsonly P(Y|N). Predictions using only P(Y|T+N)
indicated a stronger reliance on carrier, but fladgd to predict more than approximately half
the variance in the baseline detection patterredi€tions for P(Y|W) indicate that carrier
dominated the detection process for these two st#jbut also showed a significant
contribution of cues based on the signal envelofiee linear model predicted just over half the
variance in the baseline detection patterns fasetsibjects. Slightly larger weights were fit for
cues derived from the waveform carrier.

Subjects 2 and 6 were tested with threshold toveddeabout 7 dB higher than subjects 3
and 5. Subject 2 showed consistent dominanceraécdased cues over envelope-based cues.
The linear model explained about 70 percent ofr@ance in the complete detection pattern
[P(Y|W)] for this subject. Results for subject @irated a stronger contribution of envelope over
carrier with significant incremental F tests fotlbenvelope and carrier. The linear model
explained about 65 percent of the variance in theplete detection pattern for this subject.

Subjects 1 and 4 were tested with the highestlibidgone levels. Subject 1 weighted
cues derived from the carrier more strongly tharséhderived from the envelope, but predictions
using P(Y|W) explained less than half the variandée baseline detection patterns. Subject 4
used cues derived from both envelope and carmertfze linear model was able to up to 77
percent of the variance in the baseline detectaitems.

In general, the results for the® interaural configuration, as for the® interaural
configuration, indicated that complex interacti@esurred between signal envelope and carrier
that were not captured by the linear statisticatleloThe model seemed to fit best for the
subjects with higher thresholds, but in generadljoted about 40 to 80 percent of the variance in
the baseline detection patterns.

2.3.3 Comparisons between subjects

Tables 2-5 and 2-6 show intersubjecvalues for the baseline and chimaeric detection
patterns. The intersubjeétvalues were lower for thedS intersubject configuration for this
study than in previous studies (Evilsiagral, 2002; Davidsort al., 2006) and ranged from
0.21 to 0.79 for P(Y|W). The lower intersubjectretations suggest the use of a more diverse set
of decision variables across subjects in this arpant than in previous experiments with diotic
stimuli, which was likely caused by the lack ofimgle energy cue and the small stimulus
bandwidth. Pairs of subjects with the highest subject f values did not necessarily share the
same predictions for envelope or carrier domingeag, S2 and S6 in Fig. 2-4. and Tables 2-5
and 2-6). However, given the lower intersubjeatelations observed in this study as compared
to previous studies (e.g., Davidsetinal, 2006 or Evilsizeet al. 2002), a strong trend of cue
dominance across subjects and intersubject camedais not necessarily implied. The lack of
such a trend may be interpreted (cautiously) asatithg that separate processing of envelope
and fine structure is not an ideal way of accounfar the detection patterns.



Table 2-5. Comparisons between subjects [P(Y|W)] psented in terms of?.

Interaural Intersubject P(Y|W)

configuration Comparison E.C, E.C, E.C, E.C,
NoSo S1-S2 0.38* 0.57* 0.49* 0.34*
S1-S3 0.59* 0.56* 0.45* 0.51*

S1-s4 0.68* 0.77* 0.56* 0.54*

S1-S5 0.36* 0.50* 0.21* 0.27*

S1-S6 0.47* 0.62* 0.43* 0.42*

S2-S3 0.40* 0.53* 0.40* 0.61*

S2-S4 0.51* 0.62* 0.54* 0.60*

S2-S5 0.59* 0.71* 0.57* 0.63*

S2-S6 0.70* 0.71* 0.68* 0.65*

S3-54 0.38* 0.49* 0.49* 0.60*

S3-S5 0.44* 0.42* 0.30* 0.46*

S3-S6 0.40* 0.51* 0.51* 0.63*

S4-S5 0.32* 0.58* 0.40* 0.41*

S4-S6 0.54* 0.75* 0.67* 0.63*

S5-S6 0.66* 0.79* 0.60* 0.65*

Interaural Intersubject P(Y|W)

configuration Comparison E.C, E,C, E.C, E,C,
NoS S1-S2 0.05 0.00 0.00 0.01
S1-S3 0.40* 0.18* 0.06 0.25*

S1-s4 0.73* 0.78* 0.62* 0.45*

S1-S5 0.16* 0.09* 0.04 0.10*

S1-S6 0.31* 0.02 0.05 0.08*

S2-S3 0.27* 0.28* 0.49* 0.57*

S2-S4 0.02 0.00 0.00 0.14*

S2-S5 0.55* 0.51* 0.60* 0.52*

S2-S6 0.52* 0.69* 0.58* 0.52*

S3-54 0.34* 0.11* 0.09* 0.41*

S3-S5 0.52* 0.27* 0.57* 0.50*

S3-S6 0.61* 0.39* 0.53* 0.57*

S4-S5 0.09* 0.03 0.03 0.21*

S4-S6 0.15* 0.00 0.06 0.12*

S5-S6 0.64* 0.56* 0.62* 0.44*

*p<0.05
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Table 2-6. Comparisons between subjects [P(Y|T+Nand P(Y|N)] presented in terms of?.

Interaural  Intersubject P(Y|T+N) P(Y|N)
configuration Comparison E.C: E.C, E.C; E.C, E.Cy E,C, E,C, E.C,
NoSo S1-S2 0.17* 0.38* 0.29* 0.16* 0.20* 0.51* 0.55* 0.15
S1-S3 0.14 0.49* 0.14 0.24* 0.64* 0.32* 0.56* 0.42*
S1-54 0.39* 0.75* 0.18* 0.32* 0.69* 0.62* 0.81* 0.40*
S1-S5 0.17* 0.32* 0.01 0.06 0.44* 0.34* 0.34* 0.16*
S1-S6 0.32* 0.49* 0.17* 0.14 0.33* 0.47* 0.47* 0.41*
S2-S3 0.12 0.39* 0.13 0.49* 0.21* 0.34* 0.47* 0.36*
S2-54 0.24* 0.48* 0.15 0.37* 0.42* 0.50* 0.84* 0.43*
S2-S5 0.69* 0.70* 0.35* 0.43* 0.56* 0.52* 0.65* 0.57*
S2-S6 0.59* 0.77* 0.55* 0.51* 0.61* 0.47* 0.77* 0.51*
S3-54 0.01 0.44* 0.01 0.28* 0.40* 0.16* 0.56* 0.30*
S3-S5 0.35% 0.29* 0.08 0.12 0.53* 0.07 0.23* 0.34*
S3-S6 0.08 0.55*% 0.07 0.52* 0.34* 0.11 0.37* 0.41*
S4-S5 0.08 0.39* 0.04 0.15 0.50* 0.45* 0.54* 0.19*
S4-S6 0.30* 0.66* 0.25* 0.57* 0.47* 0.62* 0.69* 0.33*
S5-S6 0.51* 0.65* 0.30* 0.31* 0.76* 0.74* 0.77* 0.78*
Interaural  Intersubject P(Y|T+N) P(Y|N)
configuration Comparison E:C, E.C» E:C, E.Cy EiCy E2C> E:C E.Cy
NoS S1-S2 0.05 0.00 0.00 0.01 0.33* 0.41* 0.37* 0.36*
S1-S3 0.40* 0.18* 0.06 0.25* 0.04 0.04 0.01 0.02
S1-s4 0.73* 0.78* 0.62* 0.45* 0.64* 0.61* 0.78* 0.39*
S1-S5 0.16* 0.09* 0.04 0.10* 0.04 0.00 0.04 0.01
S1-S6 0.41* 0.03 0.18* 0.13* 0.17* 0.1 0.17* 0.01
S2-S3 0.27* 0.28* 0.49* 0.57* 0.00 0.01 0.01 0.01
S2-54 0.02 0.00 0.00 0.14* 0.38* 0.40* 0.48* 0.13
S2-S5 0.55*% 0.51* 0.60* 0.52* 0.17* 0.05 0.18* 0.03
S2-S6 0.42* 0.59* 0.28* 0.48* 0.04 0.17* 0.11 0.00
S3-54 0.34* 0.11* 0.09* 0.41* 0.00 0.09 0.07 0.01
S3-S5 0.52* 0.27* 0.57* 0.50* 0.15 0.01 0.01 0.07
S3-S6 0.60* 0.46* 0.44* 0.61* 0.19* 0.15 0.01 0.12
S4-S5 0.09* 0.03 0.03 0.21* 0.13 0.06 0.16 0.00
S4-S6 0.23* 0.00 0.25* 0.16* 0.02 0.08 0.13 0.01
S5-S6 0.59* 0.39* 0.34* 0.40* 0.09 0.06 0.02 0.00

*p < 0.05
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Under the NS conditions, intersubject values were on average lower than those for
NoS conditions, and ranged from 0.00 to 0.78 for P()|8Bubjects with similar threshold tone
levels had more similar detection patterns. Subjéand 4, 2 and 6, and 3 and 5 had the highest
intersubject correlations, which were significaok@.05) for all conditions for P(Y|W),
P(Y|T+N) and P(Y|N). These subjects also had tbsestt thresholds, showing a likely
dependence of threshold on strategy. Comparing2=fgand Tables 2-5 and 2-6 for the pairs of
subjects with the largest intersubject correlati@aml the closest thresholds) did not reveal any
clear trend of envelope or carrier dominance, ssiggge once more that the linear combination
of envelope and carrier does perform well predgctime detection patterns.

2.3.4 Comparisons between interaural configurations

Tables 2-7 and 2-8 show correlations (in term<)afetween P(Y|W), and P(Y|T+N) and
P(Y|N) respectively. The subjects with the hightbstsholds (S1 and S4) had the highest
correlations between detection patterns from treeiteraural configurations. Closer inspection
of Table 2-8 reveals that the sources of the catiogls between the two interaural configurations
were entirely from responses to noise-alone stif{lY|N). Subjects 1 and 4 show dramatically
high P values between P(Y|N) values from the two inteabeonfigurations, ranging from 0.90
to 0.95. Recall that noise-alone stimuli in thgSNcondition are the same as those from th&N
condition.

Table 2-7. Comparisons between interaural configurgons [P(Y|W)] presented in terms ofr?.

P(YIW)

Subject E.C, E.C, E.C, E,C,
S1 0.74* 0.69* 0.50* 0.43*
S2 0.07 0.01 0.00 0.15*
S3 0.27* 0.30* 0.27* 0.45*
S4 0.67* 0.72* 0.63* 0.54*
S5 0.00 0.06 0.02 0.09*
S6 0.08 0.03 0.29 0.18

Savg 0.39* 0.47* 0.44* 0.49*

*p<0.05

Table 2-8. Comparisons between interaural configurigons [P(Y|T+N) and P(Y|N)] presented in terms of?.

P(Y|T+N) P(YIN)

Subject EiCy E2C: E:C> E2Cy E:Cy E.C» EiCs E.Cy
S1 0.10 0.18* 0.12 0.10 0.95* 0.95* 0.90* 0.93*
S2 0.06 0.00 0.03 0.07 0.47* 0.48* 0.59* 0.42*
S3 0.01 0.02 0.02 0.05 0.10 0.06 0.00 0.01
S4 0.18* 0.29* 0.13 0.05 0.91* 0.95* 0.93* 0.93*
S5 0.00 0.00 0.00 0.02 0.29* 0.29* 0.35* 0.22*
S6 0.00 0.09 0.00 0.00 0.00 0.10 0.08 0.00
Savg 0.04 0.04 0.01 0.05 0.26* 0.25* 0.37* 0.15

*p<0.05
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Such high T values suggest that S1 and S4 were attemptingetthe same detection strategy for
the two interaural configurations, explaining thghthresholds for the §$ stimuli. The

subjects with the lowest thresholds (S3 and S5)irtedmediate thresholds (S2 and S6) had
much lower correlations between detection pattéor the two interaural configurations. The
noise-alone intersubject values have implications for the types of detectimodels used to
explain the detection patterns, which will be ot in the following section.

2.3.5. Implications for computational modeling

2.3.5.1 Comparisons between detection patterns estited with baseline and chimaeric

stimuli

Although results varied across listeners for bogBoMind NS stimuli, several important
modeling implications are embedded within the daétee first pertains to the separation of
envelope and carrier. Part of the motivation fas #udy was to collapse the entire detection
process into decision variables based on envelogpearier without concern for temporal
interactions of envelope and carrier. The goal wwaguantify how well the statistical models
explain the baseline detection patterns. Largequt@ms of the predictable variance remain
unexplained by the linear statistical model, whidplies that understanding the temporal
interaction of stimulus envelopes with stimulusress is paramount for modeling these data.
Moreover, previous studies attempting to explaired#on patterns with computational models
have omitted peripheral filtering and nonlineastiender the assumption that these do not
contribute to the detection process (e.g., Isab#865; Davidsort al., 2006). The results of the
present study suggest that such dynamic interactimay be needed to explain the detection
process. Further, the results of this study algmest that extraction of the complex analytic
signal should not be used to separately processlagrer and fine-structure unless some
interaction between the two occurs before decisaables are computed. The fact that
corresponding P(Y|W) values estimated from setiofuli with either the same envelopes or
the same carriers differed suggests a form ofacten between the two that has not previously
been employed for the purposes of modeling dataated with reproducible maskers.

Several candidate models remain in contentioddin diotic and dichotic signal
detection, and each will be tested in future swdidiese models are worth briefly mentioning
here. In general, each incorporates some sogr&rdic interaction of envelope and carrier, and
each computes the decision variable from the estineulus waveform (rather than stripping the
stimulus envelope or fine structure apart for sefgaanalyses). An example of a diotic model
that remains under consideration is the multipleed®r model (e.g., Gilkey and Robinson,
1986), which uses monaural banks of filters thatvegighted and combined linearly to produce
a decision variable. This model may provide sugfitiinteraction of envelope and carrier at the
peripheral processing stages.

With respect to binaural models, equalization-cHaten-style models with realistic
peripheral processing stages (e.g., Breelsat, 2001a) should remain under consideration.
Cross-correlation-style models (e.g., Colburn, 39¥ith realistic peripheral processing should
also remain under consideration, given that thesagefs operate on the entire stimulus
waveform, rather than on envelope or fine strucaloae.
2.3.5.2 Comparisons between interaural configuratios

The fact that reliable detection patterns are obthfor NS noise-alone stimuli (e.g.,
Evilsizeret al, 2002; Isabelle, 1995; Siegel and Colburn, 19&8) at least two implications
worth discussing. First: The intersubject varigpih detection patterns is not likely to be
caused by internal noise processes. As the nuniligals of each reproducible stimulus is
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increased, the internal noise present in the respprobability for that waveform is averaged
out. Such averaging should tend to always incredsesubject correlations with increased
numbers of trials, which is not observed experiraiytSecond: If independent internal noise
processes dominate over external noise at eadladditive noise), any symmetrical binaural
processing would not result in a stable detectmibepn. A multiplicative internal noise source
may produce a stable pattern if no normalizationasrcellation occurs during binaural
processing. The response on each trial would siip@lgased on interaural differences that result
from the internal noise processes. Over large musnbf trials, such noise-generated interaural
differences would produce “flat” detection pattewith no reliable differences in detection
probabilities from noise to noise. One mechanisat vould generate reliable detection patterns
for noise-alone stimuli is a static frequency misthaor a static interaural delay or attenuation.
Such a mechanism would be stable over time, anddwggnerate a specific detection pattern
based on processing asymmetry. The magnitudesyped of plausible processing asymmetries
will be examined in future work.
2.4 SUMMARY AND FUTURE DIRECTIONS

This experiment investigated the roles of cuesdasestimulus envelope and carrier for
tone-in-noise detection. A simple linear model waable to explain all of the predictable
variance in the detection patterns, yieldirfgvilues between 0.31 and 0.80 faSistimuli and
between 0.53 and 0.77 fop8l stimuli. No clear trends in the data indicated tiigher-order
interactions would yield better predictions. Ovekrtlle pattern of correlations between detection
patterns estimated with chimaeric and baselinewtsnggested a temporal interaction of signal
envelope and carrier. The decision variable wag tik@dy a result of this interaction, rather
than a result of separately processing signal epeednd fine structure, computing decision
variables, and subsequently recombining decisiomabtes derived from signal envelope and
carrier.
These results were consistent with the findinggaofde Par and Kohlrausch (1998) that showed
no remarkable difference in thresholds when ITDHR.®s were eliminated in and$ detection
task. In future studies, several diotic and dichotmputational models incorporating dynamic
envelope and carrier interactions will be testadgithe detection patterns estimated in this
experiment.
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CHAPTER 3

An evaluation of models for diotic and dichotic dedction in
reproducible noises

ABSTRACT

Several psychophysical models for masked deteuctgne evaluated using reproducible
noises. The data were hit and false-alarm ratéwastd in four separate studies. Models were
tested with both & and NS stimuli at several stimulus bandwidths. A lineambination of
the stimulus energy at the output of several @ltirand filters was the best predictor of diotic
data. The decision variables of other more comf@atéemporal models, including the Deiual.
(1996a) model and the Breebagairial. (2001a) model, were only weakly correlated todata
for cases in which predictions were significantmédel that temporally combined ITD and ILD
processing best explained tone-plus-noise respdaosbe NS stimuli, but offered no
predictions for noise-alone trials.

3.1 INTRODUCTION

The traditional goal of psychophysical masked-d#&iaexperiments has been to
characterize threshold signal levels as functidrghgsical parameters of the stimuli (e.g., signal
frequency, noise bandwidth, interaural phase diffee of the signal, etc.; for a review, see
Durlach and Colburn, 1978). These thresholds wstienated using masking waveforms that
were drawn without replacement from an infinite seteach trial, such that a new sample of
masking noise was always presented. More recentiymber of studies have sought to collect
data using reproducible maskers (e.g., Pfafflin Kiadthews, 1966; Gilkegt al, 1985; Siegel
and Colburn, 1989; Isabelle and Colburn, 1991;d8ap1995; Evilsizeet al, 2002; Davidson
et al.2006). The goal of studies using reproducible msiseto characterize detection
performance for each stimulus waveform in a sn&l(s.g., 10 — 30), rather than describing a
single threshold estimated over an infinite sevateforms. Such data present a rigorous test for
models of masked detection, because the modelmotisinly predict average threshold to be
considered successful, but it must also accurateglict detection statistics estimated for
individual waveforms. As shown here and in otherkyonodels that are capable of accurately
predicting average thresholds may fail at predictesponses to individual waveforms (e.g.,
Isabelle, 1995).

Before explaining the details of the models testetiis work, a brief review of the target
data and the methods used to collect those datasented. Data sets from 4 studies, which
shared similar experimental methods, are usedsmibrk for modeling purposes. First, an
approximate threshold was estimated using a 2vat@daptive track, or other similar task,
drawing from an infinite set of masker waveformsheout replacement. Then, a fixed-level,
single-interval experiment was performed with fegaly again drawing from an infinite set of
masker waveforms. Subjects were asked on eachdniaport if the tone was present. Feedback
was then removed and signal levels were adjustglsubjects’ performance was stable
(customarily by monitoring detectability, @nd bias, ; Macmillan and Creelman, 1991).

Finally, the closed set of reproducible maskersaega the infinite set used above. Maskers
were drawn with replacement in a random order etih tone plus noise (T+N) and each noise
alone (N) stimulus was presented multiple times180). Upon completion of the experiment,
hit rate, or probability of a “yes” response whia tone was present [P(Y|T+N)], and false-
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alarm rate, or the probability of a “yes” responden the tone wasot present [P(Y|N)], were
tabulated. The resulting sets of hit and falseraleates are called detection patterns [P(Y|W)], or
the probability of a “yes” response for any givéimsilus waveform].

Hit rates and false-alarm rates from Isabelle (}9ESilsizeret al.(2002), and the
Appendix and Ch. 2 of this thesis served as thgetatata for all modeling exercises presented in
this study. These data were selected because tivelgcthey established a set of detection
patterns estimated under bothf®land NS interaural configurations, with several different
noise bandwidths (50, 100, 115, and 2900 Hz), dndged a tone frequency of 500 Hz. The
Isabelle (1995) data (henceforth study 1) was ctak under the § configuration only, with a
noise bandwidth of 1/3 octave (approx 115 Hz) & B@. The Evilsizeet al. (2002) data
(henceforth, study 2) were collected usingsiNand NS interaural configurations, and 100-Hz
(450 — 550 Hz) and 2900-Hz (100 — 3000 Hz) noisebadths. Corresponding stimuli from
each of the bandwidths share the same frequencpamants in the 100-Hz region surrounding
the tone frequency. The data from the Appendihaf thesis (henceforth, study 3) were
collected under both §$ and NS conditions and had 50-Hz noise bandwidths. Widanh
interaural configuration, there were four “cue” ddions: random noise, random energy
(RNRE); low noise, random energy (LNRE); randonmseaqual, energy (RNEE); and low
noise, equal energy (LNEE). Stimuli for the lowiseoconditions were produced using a
modified version of the low-noise noise algorithRu(nplin, 1985) described in the Appendix.
T+N stimuli in the equal-energy conditions had @llestimulus energies normalized to the
average value of all T+N stimulus energies witlie bw-noise and random-noise conditions,
while N stimuli in the equal-energy conditions we@malized to the average value of all N
stimuli within each condition. The data from Chofzhis thesis (henceforth, study 4) were
collected under both §$% and NS conditions and had 50-Hz noise bandwidths. Thenew
again four stimulus conditions within each inteedwonfiguration. The conditions were denoted
E1Ci, ECy, E1Cy, and ECy; with E denoting envelope and C denoting car@atresponding
stimuli within the EC; and EC; conditions and within theE; and EC, conditions shared the
same temporal-envelopes. Similarly, correspondimgusi within the EC; and EC; conditions
and within the EC, and EC, conditions shared the same carriers (i.e., haddhee zero
crossings). The methods section in Ch. 2 provigesific details regarding stimulus
construction, but it is worth reminding the reatlext the energies of T+N and N waveforms
were equalized for all §& stimuli in study 4, thus eliminating cues relatedverall energy.

Several studies have examined the abilities oéBffit models to predict detection
patterns for both diotic and dichotic stimuli. Detien patterns estimated in diotic or monaural
conditions are best predicted by the multiple-detemodel (MD), as shown in Ahumada and
Lovell (1971), Gilkeyet al (1986), and Davidsoet al.(2006). This model uses the weighted
sum of energies at the outputs of several audfitbeys surrounding the tone frequency as a
decision variable. The MD model accounted for up@gercent of the variance in one listener’'s
responses in Ahumada and Lovell (1971) and up tper2ent of the variance in one listener’s
responses in Gilkegt al. (1986). Predictions have also been made for stusir®) the MD
model in Davidsoret al. (2006), accounting for 80 to 90 percent of thearare in the average
subject’s responses, depending on bandwidth aadatal configuration (monaural or diotic).
The MD model is an extension of Fletcher’s (194@yppsal that energy at the output of the
critical band (or auditory filter) centered at tio@e frequency could explain threshold for tone-
in-noise detection tasks. Davidsenal.(2006) showed that the critical-band (CB) model
predicts 64 to 82 percent of the variance in theérage subject’s responses. Two temporal
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models were also considered: a modified versiath@Richards (1992) envelope-slope (ES)
model (Zhang 2004) and the phase-opponency (POgihjGdrneyet al, 2002). Davidsomet al.
(2006) showed that the ES and PO models preditiedt®&0 percent of the variance in
narrowband and wideband detection patterns. Timeskels have not been previously tested
using detection patterns estimated from stimulhveihergy equalized across stimulus
waveforms.

Predictions for NS detection patterns have been less successfuthbaa for NS
detection patterns. Isabelle (1995) and Collairal. (1997) analyzed several different decision
variables for explaining theird$ detection patterns. Colbuent al. (1997) considered the
equalization-cancellation model (EC), and both raized (NCC) and unnormalized cross-
correlation models. They found that the EC decismamable is more dependent on stimulus
energy than on external interaural differencesitaraural differences resulting from the time
and amplitude jitter used to establish model tho&khThe dichotic detection patterns are not
well-explained by an energy model, so the EC medel rejected as a suitable predictor. They
found that the unnormalized cross-correlation medkd too dependent on masker waveform
rather than on the addition of the tone to the maskaveform for tone-plus-noise stimuli.
Decision variables for an unnormalized cross-cati@h model were almost identical regardless
of signal presence (that is, hit rates and falaerakates were too similar). Colbugnhal. (1997)
found that the NCC model is equivalent to the EGlehavhen using multiplicative time and
amplitude jitter, such that the decision variabksvagain heavily dependent on the energy in
each waveform. Isabelle (1995) showed that theatian in the NCC decision variable based on
the tone waveforms was too weak with respect talépendence of the NCC decision variable
on stimulus energy to predict his data.

Isabelle (1995) was able to explain at most abOyteéscent of the variance in hig®
data and the Isabelle and Colburn (1991) data gl energy (as a substitute for the EC, and
NCC models), standard deviations of interaural-tdifferences (ITDs) and interaural level-
differences (ILDs), and decision variables computsithg various combinations of ITDs and
ILDs. Isabelle’s modeling strategy was the insporafor the experiments presented in Ch. 2 of
this thesis. The experimental results of the prtesienly suggested that separately processing
ITDs (based on fine structure) and ILDs (basedrel®pe) would not result in a decision
variable that adequately explains the data foraticlor diotic stimuli.

The models tested in this study were selected lsecdney have been used to predict
reproducible noise data successfully in the past, frletcher, 1940; Ahumada and Lovell, 1971;
Gilkey and Robinson, 1986), because they have bset with some success to predict
thresholds for a broad spectrum of psychophysiettation tasks (i.e., Daat al, 19964, b;
Breebaartet al, 2001a, b, ¢), because they are straightforwaagtations of observed
physiological phenomena (i.e., McAlpie¢al, 2001; Marquardt and McAlpine, 2001 ), or
because they use a processing strategy that irsralcemplex temporal interaction between
stimulus envelope and fine structure (i.e., Goy2€05).

One final strategy, an interaural mismatch modeVijMwas motivated by the following
observation: Suppose that the binaural decisiorcdevas symmetrical and introduced no
interaural differences as a consequence of itsggsieg scheme. Under this case, a binaural
system operating onteraural difference®r normalized cross correlatioproduces essentially
no decision variables forg8 noise-alone stimuli (recall that the noise-aloasecis diotic)
exceptdirectly as a result of some internal noise pre¢gshe noise is added after the binaural
processor), or the way in which the internal naiseorrelates the right and left noise-alone
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waveforms (if noise is added before the binauratpssor). If an additive or multiplicative
Gaussian noise source was responsible for produdieaural differences for noise-alone
stimuli, it would, over the course of many triaigt yield detection statistics that vary
consistently across noises, and yet, consisteatti@h patterns for noise-alone trials are
observed in the data. One possible explanatiomferaural differences not driven by external
noise could be that slight interaural mismatchdsimaural processing contribute to the decision
variable (personal communication with Joseph HBll Such a suggestion is provocative
because diotic and dichotic detection patterncanelated for wideband stimuli (and not
narrowband stimuli), indicating that either the ma&tch could be exploited in both diotic and
dichotic detection or that it is bandwidth deperiden

A brief overview of each model featured in thisdstus given here. (Specific model
structures will be described in the methods sedtibhe general modeling approach is divided
into two distinct sections: predictions for theQlinteraural configuration and predictions for
the NyS interaural configuration. The CB, MD, Datial (1996a) model (DA) and Breebaatt
al. (2001a) models (BR) were applied to all the didata (sets 2, 3 and 4). The Dau model (Dau
et al, 1996a,b) has been used to predict thresholdsiumber of different monaural (or diotic)
psychophysical tasks including detection of tomesandom and frozen noise as a function of
temporal position, duration, and frequency of theet as well as forward and backward masking
tasks. This model’s decision variable is computech@rily from the stimulus envelope. The
Breebaart model (Breebaart et al., 2001a,b,c) lsaso@en used to accurately predict results for
a number of psychophysical tasks such as maskirej-differences in a multitude of different
interaural configurations, as functions of tonegjfrency, noise bandwidth, masker energy, as
well as tasks such as interaural correlation disication, effects of masker fringe, and binaural
forward masking. Monaurally, this model is also €ope dependent, although it employs a
different detection strategy than the Dau modet¢dbed in detail in the methods section). Thus
the relation of the Dau and Breebaart decisioraldes was of interest, in addition to the fact
that neither of these models were designed to jiorate temporal-fine structure information at
the monaural level.

The models considered fop8l detection patterns are briefly summarized belosvesal
of the decision variables (standard deviationsT@f,lILD, and combinations thereof) from
Isabelle (1995) were re-examined with the newea df@m studies 2, 3 and 4. These decision
variables were supplemented with decision variafotes Goupell (2005) and Goupell and
Hartmann (2005). The Goupell decision variablesvaslapted from the Isabelle decision
variables to include two distinct groups that make of both ITD and ILD: “Separate centers”
models in which integration over time occurs sefgdydor the decision variable based on ITD
and ILD, and “auditory image” models, in which ITBsd ILDs are allowed to interact in some
way as a function of time. The results from Chuggest that because the Isabelle decision
variables do not allow envelope and fine-structarimteract temporally, they will not be capable
of predicting the detection patterns; thus, itfinterest to determine the effectiveness of the
Goupell “auditory image” decision variables thdbwal for this interaction. A variant of the
Marquardt and McAlpine (2001) model for masked deda was also tested; this model has
been shown to successfully predict masked-detethi@sholds using only 4 binaural delay
channels (henceforth referred to as the 4-chanadeimFC). This model was inspired by the
findings of McAlpineet al. (2001) who reported that recordings from delaysges®@ neurons in
the guinea pig inferior colliculus were centeredusnd 45°, regardless of the neurons’ best
frequencies. A model based on binaurally-mismatgifieaquency channels (i.e., channels tuned
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to different characteristic frequencies) and speaiteraural delays and attenuations was also
tested (MM). The binaural counterpart of the Bregbenodel was also tested; this model makes
use of temporal fine structure in the binaural pssor.

3.2. METHODS

3.2.1 General modeling strategy

The models included in the following analyses dreapying complexity, ranging from
simple decision variables (e.g., RMS energy) tomlarated, multi-stage psychophysical models
(e.g., the Breebaart model). Some of the publisleesions of these models make explicit
assumptions about internal noise, while othersatanclude internal noise. In general, internal
noise is used to calibrate each model such thantdel's overall threshold becomes reasonable
for some given task. For the purposes of this amglyncorporating internal noise would reduce
the correlation of the model decision variableth®various detection patterns. (This is true in
all cases except for certain model responses$ Mbise-alone stimuli for which, as explained
above, internal noise itself could be responsibtegenerating the noise-alone model responses.
Because such responses are a result of a zerommesanprocess, they cannot be correlated with
the detection patterns.) Since the goal of thidystusas to show the best possible correlations of
each model to the data, internal noise was notidtezl here. As a consequence of not including
internal noise, individual model thresholds, whiebuld be universally underestimated, are not
reported. With the exception of the MM model, eatthe models tested here has been shown in
the previous literature to accurately predict thodds using randomly-generated noises when
incorporating internal noise. Because each modsltested at each individual subject’s
threshold without internal noise, model performaee, d) varied across models and subjects,
and in general produced\lues greater than unity. This variability in foemance and lack of
internal noise has a net effect of artificially ieasing ¥ values for P(Y|W) when modéls are
large, due to separation of the distributions of|P¢N) and P(Y|N). Thus, modeling analyses
were confined to P(Y|T+N) and P(Y|N). The effecaoblyzing hit and false-alarm rates
separately is to lower the proportions of variaegglained with respect to the variance that
might be explained in P(Y|W). The smaller valuesdue in part to the reduction of the number
of waveforms included in the computationrdand in part to the separation of the relationship
of model d and the proportion of variance explained.

The strategy used to evaluate all models was tbksih a decision variable for each stimulus
waveform within each study. The decision varialese then correlated to tkescores of the
listeners’ P(Y|T+N) or P(Y|N).

Ther? metric, or the square of the Pearson product-mor@relation, was used to
guantify model predictions and can be interpretetha percent of the variance in each detection
pattern explained by each model. It is importargdtablish an upper limit of expected
performance for any given predictio,). Model results are therefore presented in duggica
first in terms of? and then in terms of an estimate of the perceptexfictablevariance ¢)
explained, computed as the ratiordbverVp. Isabelle (1995) described that the reasonable
upper limit for predicting his data (study 1) wasraof about 0.88. Evilsizest al. (2002) report
first-half, last-half correlations that yield pretiible variancesvg) from 0.80 to 0.97 depending
on subject. Predictable variances are reportedtéaties 3 and 4 in the Appendix and in Ch. 2 of
this dissertation, respectively, and ranged frob8@o 0.99.

3.2.2 Individual model implementations
3.2.2.1 Diotic models
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3.2.2.1.1 Critical-band model

A block diagram of the critical-band model is showririg. 3-1. This model was based
on Fletcher’s (1940) suggestion that detectionbmaxplained by the energy at the output of an
auditory filter centered at the tone frequency.e Ttodel decision variable was the RMS output
of a 4"-order gamma-tone filter centered at 500 Hz. Téwmisibn variable increased upon
addition of the target tone. The equivalent reatdargbandwidth (ERB) of the filter was set at
75 Hz to correspond to the estimate of Glasberghmare (1990). The model decision
variable was given by

FG) & (0%t Eq. (1)

wheref is the output of the gammatone filtérs time, and is the duration of the stimulus
waveformj.
3.2.2.1.2 Multiple-detector model

This model was based on a linear combination®RMS output of several™order
gammatone filters (Fig. 3-1). The results of Dawgiulst al (2006) showed that filters exceeding
the bandwidth of the stimulus noise do not sigaifiity increase the predictive power of the
model. Therefore, center frequencies were selebgdspanned 275 to 725 Hz (in 75-Hz
increments) for the 2900-Hz condition of study 2j 425 to 575 Hz for the 100-Hz condition of
study 2. The MD model was not used to predict tita dfom studies 3 and 4, for which the
masker bandwidth was only 50 Hz. The filter bandividas held constant at 75 Hz to match the
methods of Davidsoat al (2006). A block diagram of the MD model is showrig. 3-1.
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Figure 3-1. Block diagrams of the models used to pdict detection patterns estimated under the §&
conditions. The models listed from top to bottom a&: CB, critical band; MD, multiple detector with fit
weights; MDS, multiple detector with sub-optimal wéghts; ES, envelope slope; DA, Dast al; BR, Breebaart
et al; PO, phase opponency. H(t) denotes the Hilbert trasform used to recover the absolute value of the
complex-analytic signal. AL denotes the adaptatioloops as described in Daet al. (1996a). AN denotes the
Heinz et al. (2001) auditory-nerve model.
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The weights (W for the linear combination were established uswg separate methods. In the
first method (MD), the weights were fit to the mdiual subject’s detection patterns using the
reproducible stimuli from each study. The MATLABnRttion fminsearch was used to minimize
the quantity of one minus the correlation coeffitief the linear combination of the RMS filter
outputs and the-scores of P(Y|T+N) and P(Y|N) for each subjeatach condition in studies 1
and 2. Thus, the MD model uses a fit to the subjeleta, rather than a decision-theoretic
weighting strategy. In the second method (MDS)ee@sion-theoretic sub-optimal weighting
scheme was used rather than fitting the weightkedisteners’ data, in order to compare the
resulting weight profiles across frequency andvdmgance of the detection patterns explained by
each method. Individual weights were computedgud®00 repetitions of randomly-created
(i.e., not reproducible) noise. Tones were addebvagights were computed as

. FOM ey FAM)y,
wW(i - . Eq. (2
) varFE (@i, m) ;) varE3i,m) ) a. ()
2
whereF is the root-mean-squared filter output for frequecicannel and random-noise
repetitionm for T+N or N stimuli, and the means and variancesanxcomputed across each
repetition () within frequency channeli)( (Note that this method would be optimal if the
covariance of each channel were accounted for irREfhe models decision variables were
given by
M@  F3Dwi), Eq. (3)

using the weights computed with either method above

3.2.2.1.3 Envelope-slope model

The envelope-slope model is a metric for quamtgyfluctuation in the stimulus envelope
(ES, Fig. 3-1). Methods were matched to Davidsbal. (2006). The model decision variable
was computed as

Xttt xtj| Eq. (4)

E()) —

wherex(t,j] is the Hilbert envelope of the output of &drder gammatone filter centered at 500
Hz, with a 75-Hz ERB for stimulus wavefofjmro ensure that all fine-structure was removed
from the stimulus waveformqt,j] was filtered with a 18-order maximally flat IIR filter with a
cut-off frequency of 250 Hz before being processétd Eq. (1). The statistic was normalized as
suggested by Zhang (2004) to remove effects ofggreend duration. Upon addition of the tone
to the noise waveform the stimulus envelope flattés such, the decision variable decreases
with increasing tone level.
3.2.2.1.4 Dau model

The Dau model is significantly more complex thiaa previously described decision
variables (DA, Fig. 3-1). The model consists offiad-order gammatone filter centered at the
tone frequency (500 Hz) using Glasberg and Moo®8Q@) filter bandwidths (1 ERB is
approximately 75 Hz at a center frequency of 50D fkae output is half-wave rectified and
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passed on to a series of adaptation loops @aili 1996a). The adaptation loops are designed to
simulate adaptation found in auditory-nerve respersy/ processing fast stimulus fluctuations
almost linearly and compressing slowly-fluctuatstgmuli. The output of the adaptation loops is
low-pass filtered with a time constant of 20 msge&ig), effectively removing fine structure and
leaving envelope information. The output at thegstis referred to as the “internal
representation” of the model. The internal représt@m is passed to an optimal detector. The
optimal detector uses a template derived from thenalized difference between the mean of
500 T+N internal representations subtracted froemtiean of 500 N internal representations.
Such a large number of noises were used to simeldénsive training. The templates were
computed using randomly generated noise with sasggded at 10 dB above each listener’'s
threshold. The optimal detector first subtractsrtbise-alone template from each of the T+N and
N internal representations corresponding to theodgcible stimuli. The mean scalar product of
the normalized difference template and the diffeeelbetween the noise-alone template and the
internal representation of each reproducible stimud then computed as a function of time. The
model was originally designed to pick the interifedm a 2-interval task) with the larger scalar
product as containing the tone. For the purposé#si®ttudy, which focuses on single-interval
tasks, the scalar product itself was used as ttisida variable. This process is summarized with

7t *t
o) 11 Gy o=trs® @

0 rMS[ @ @ 0 ®

where D is the Dau decision variable, is the internal representation of the current shirsiu

waveformj, is the mean of 500internal representations of Btifdulus waveforms (the

T N
T+N template), - is the mean of 500 internal representations offiftNusi (the N template), is
the duration of the stimulus waveform, and RMSes toot-mean-squared function.
3.2.2.1.5 Breebaart Model

The diotic version of the Breebaart model is shanwhig. 3-1 (BR). This model is
similar to the Dau model but has the following diffnces: The Breebaart model was
implemented as a bank of processors with diffecenter frequencies. Filters were implemented
with a spacing of 2 filters per ERB over the sarmapdwidths as the MD and MDS models. The
low-pass filter from the Dau model was replacedchwitdouble-sided exponential window with
time constants of 10 ms each. The structure ofifiesion device is described in detail in
Breebaaret al.(2001a), and is composed of a sub-optimally weidl@ombination of internal
representations at different frequency channels;iwére then summed as a function of time and
frequency. This model also makes use of both T+iNNwtemplates. The templates were
established as the means of 50 internal represmmsaof randomly-generated T+N and N
waveforms at each listener’s threshold. The detdgl computes the decision varialide
according to
B(j) 4l2(2i,tt)) J(j,i,t)didt. Eq. (6)

% This number was reduced from 500 for practicakimerations. The sensitivity of model decisionialalies on the
number of internal representations was not greatjlts were stable for 20 or more repetitions.
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The quantity Uji,t) is the difference between the internal represemtaf the reproducible
waveformj, and the N template for each frequency chanriiis U(,i,t) is weighted by the

difference between the T+N and N templateg pver the variance of the N templates’j.

3.2.2.1.6 Phase-opponency model

The phase-opponency model was computed as desaniled/idsoret al. (2006) and
was based on the model described by Caetey. (2002) (PO, Fig. 3-1). Two Heiret al.
(2001) model auditory-nerve fibers with spontane@tss of 50 spikes/sec converged upon a
coincidence detector of the type described in Quil§u977). The fibers’ center frequencies were
selected such that their phase responses diffgré8@° at the tone frequency (which occurred
for the two center frequencies of 459 and 542 H#)e count at the output of the coincidence
detector was used as the model decision varialdesgibed by

G(i) NiTew  aso(i) sip(J 0t Eq. ()

0
where ng, is the number of auditory-nerve fiber inputs atheeenter frequencyl,,, is the time

window for coincidence detectionis time, is the duration of the stimulus,is the output of

the Hienzet al (2001) auditory-nerve model at each of the twate@efrequencies. The model
decision variable@) was computed for each reproducible stimyluss the level of the tone is
increased, the count at the output of the coin@detetector is reduced because the two model
fibers progress to firing perfectly out of phasenimodel fibers were used with a coincidence
window of 20 s. As in Davidsoret al (2006), the onsets and offsets of the auditoryenéber
responses were truncated because they exceedsticdavels and did not produce decision
variables correlated to the psychophysical data fuhe use of relatively short-duration stimuli
in the present study, only the first and last 25ofrthe responses were truncated.

3.2.2.2 Dichotic models
3.2.2.2.1 Isabelle (1995) and Goupell (2005) deoisivariables

Isabelle (1995) used several decision variablesvibee based either on fine structure,
(i.e., ITDs), or on envelope (i.e., ILDs). ITDs adDs are given by

LU0 (1)

(1,0 Eq. (8)

- A (1)
L(i,t) 20l : Eqg. (9
(i.1) °9 A (i) 9. (9)

where (j,t)is the instantaneous phase from the complex anaignal for the right or left

stimulus waveforms, is the center frequency of the noise bak({lt) is the envelope of the
complex analytic signal for either the right ott Isfimulus waveform, andis the index of each
reproducible stimulus waveform. The complex analgtgnals were computed using the Hilbert
transform. It should be noted that since intermag@& was not used in the present
implementation, the resulting decision variablescdibed in this section will be identically O for
noise-alone (and diotic) stimuli. Therefore, prédies were not computed for P(Y|N). A
selection of several decision variables featuredaielle (1995) and Goupell (2005) are shown
below: These included the variances of ITD and Hdinputed for each reproducible stimulus as
defined by
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s(j)? G,y — Cdt Eq. (10)

. . — 2
s(j)*. L dt Eq. (11)
0
A weighted combination of the standard deviatiohd® and ILD [Eq. (12)] and a combination
of the average values of ITD and ILD [Eq. (13)] eaiso explored, as defined by

Wsr(j,8) as ()) @ @)s.(j), and Eq. (12)

Wo(ha) = d  (ujdt = @ &) ()bt Eq. (13)

respectively, whera is a weight determined by minimizing the sum afa®d errors between
Wand z{P(Y|T+N} for each condition and subjeceizch study. Note that the decision
variables described by Eqgs. (12-13) were callepdsate centers” models by Goupell (2005),
because the standard deviations (or average absa@lutes) of ITD and ILD were computed
before the weighted combination of ITD and ILD veasnputed. The four metrics described in
Egs. (10-13) were compared to the “auditory imadgision variables of Goupell (2005), which
included the standard deviation of a temporal coiation if ITD and ILD [Eq. (14)] as well as a
temporal combination of average values of ITD drd JEqg. (15)] defined by

Xsr(1,0) sfb () @ b (0] and Eq. (14)

Xo(b) b (0 @ b) (bt Eq. (15)

0
respectively, wherb is a weight computed in the same manner as in([#gsand 13). Goupell
(2005) called the decision variables computed is. Et@-15) “auditory image” models because
ITD and ILD were combined before computing standdadiations or summing over time.
Finally, a lateral-position model was consideredf(er, 1971) which is based on a combination
of ITD and ILD using a trading ratio of 2&/dB and is defined by

LG 1] (b a (d.  Eq@6)

where is the duration of the stimulus aads the trading ratio. These models [Egs. (10-16)]
were of particular interest because they allowtlierdistinct interaction of statistics based on
envelope and carrier as a function of time. Therdd position model is similar to Egs. (14-15)
except a constant trading ratio was use for allpatations.
3.2.2.2.2 Four-channel model

The general structure of the four-channel model (A& quardt and McAlpine, 2001) is
shown in Fig. 3-2. The right and left stimulus wenrens were processed using the Heshal
(2001) auditory-nerve model. The output of eadkrfilvas passed to a delay line with a delay of
45° (corresponding to 25 at 500 Hz) on each side. The delayed stimulus fie ipsilateral
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side and delayed stimulus from the contralatedsd sonverged onto binaural coincidence
detectors where both the unnormalized cross coweland the binaural cancellation
(difference) were computed for each channel (ireotd approximate EE and EIl neurons,
respectively). The cells were thus tuned to +4% #h35°, spanning the entire range of possible
interaural phase differences at 500 Hz in relaticeements of 90°. The outputs of the four
binaural channels were sub-optimally weighted anmdraed using the same strategy as used for
the MDS model. In summary,

Fe() w (0bDe (it D) W (1,)e (it D),

, Eq. (17
w, (j,t D) (1,t) w, (,t).  (j.t D)g q. (17)

where F. (] ) is the model decision variable for the reprodwecgiimulus (), (j.t,D) is the
output of the Heinet al (2001) auditory-nerve model delayedwgeconds (45°
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Figure 3-2. Block diagrams of the models used to pdict detection patterns estimated under
the NpS interaural configuration. The models listed fromtop to bottom are: FC, four-
channel; BR, Breebaart model. AN denotes the Heirgt al (2001) auditory-nerve modelD
denotes a delay block computed at the center frequey of each model auditory-nerve fiber.
AL denotes the adaptation loops as described in Daat al. (1996a). BP denotes a binaural
processor.
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or 250 s) andw is the sub-optimal weight computed for each delsnnel as shown in Fig. 3-
2.
3.2.2.2.3 Breebaart model

The binaural version of the Breebaart model isxdarsion of the monaural model
described above. A simplified block diagram is shawFig. 3-2 (BR). The output of the
adaptation loops from the ipsilateral and conteaiftsides are passed to a binaural processor
that simulates an excitatory-inhibitory interactidie processor was originally designed with a
series of attenuation taps and delays as desantigckebaaret al. (2001). The model selects
only the single delay and attenuation line thatxghthe greatest change in output between T+N
and N stimuli. The zero delay and attenuation chhahlvays shows the largest change in output
for NoS stimuli, thus allowing the model here to be cadlegh to only the zero-delay, zero-
attenuation channel. The binaural processor isritestby

E(j.i,t) alogb( (j.i,t) (i) 1° Eq.(18)

for NoS stimuli, where (j,i,t) describes the output of the adaptation loopsdpraducible

stimulusj, frequency channe] at timet. E(j,i,t) is then filtered with a double-exponential
window with a time constant of 30 ms per exponénfide filteredE(j,i,t) is then scaled,
compressed with a logarithm and then scaled agash@wn in Eq. (18), with = 0.1and
b=0.00002 The two scale factors were calibrated by settiregmodel threshold to predict8I
and NS detection tasks as described in Breebataal. (2001). The detector operates similarly
for the monaural and binaural models as describéttji (6). However, for the binaural case, the
temporally-weighted internal representation of eaalkeform is simply summed over time and
frequency, and the templates are computed usingatmpressed and filtered output of the
binaural processor (as opposed to computing ardiftee between T+N and N templates and
using the filtered output of the adaptation loopsnahe monaural model; recall that the N
template is identically zero for the binaural mgdel
3.2.2.2.4 Mismatch model

The mismatch model (MM) is an adaptation of thed&éad binaural delay line approach
proposed by Jeffress (1948) and the idea of attemutaps as used in Breebaarial (2001).
This model is essentially a normalized cross-cati@h model with inputs that are free to vary in
frequency, delay, and attenuation (Fig. 3-2). Tloeleh parameters were selected using a search
procedure designed to maximize the correlation betwz scores of individual subject’s
P(Y|T+N) and P(Y|N) values (individually) and thedel decision variables. The parameter
space was selected based on the distributionsrek41991) with spacing to allow the search to
be completed in a reasonable amount of time (1. d@itere were a total of 4 free parameters
that were varied systematically: the right and dftlitory-nerve center frequencies, the
interaural phase delay, and the interaural levi@mdince. The right and left auditory-nerve
center frequencies ranged from 300 to 700 Hz witliHa spacing, while interaural phase delays
ranged from -400 to 400s in 100 s increments and interaural level differences rdrigam -10
to 10 dB in steps of 5 dB. Colbuet al (1997) showed that the normalized (and unnorred}iz
cross correlation model produced decision variafoegdividual noise waveforms that were
too correlated to overall energy to explain P(Y|J-#Nd P(Y|N). However, those computations
assumed no periphery and symmetric processing (witinteraural delays or attenuations). In
this modeling exercise both normalized (MMn) andarmalized (MMc) cross correlations, as
well as an excitatory-inhibitory interaction (MMaje used (separately) as binaural processors
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operating on the output of the Heietzal (2001) auditory-nerve model driving functions.eTh
goal was to determine if any of the best-fit pareareremained constant across different
stimulus conditions for each subject, to deterntireedifference between the best-fit parameters
that were fit to P(Y|T+N) and P(Y|N), and to deterenif the resulting decision variables were
correlated to the listeners’ detection patterns.
3.3 Results and Discussion
3.3.1 Diotic models

Predictions for each model are shown in Figs. 88%4 for P(Y|T+N) and P(Y|N)
respectively. The criticaf value for a significant prediction is 0.16, as atexl by the
horizontal-dashed line. These predictions are ottqud in Figs. 3-5 and 3-6 in termsrqﬁ or the
square of the correlation coefficiemf)(normalized by the proportion of predictable varié)
for each subject within each condition in each gtédthough therp2 predictions are provided,
they are not a substrate for performing statistiestls, and most of the discussion will be
oriented to the unnormalizeti values. Each subject in each study is denoted;@sififferent
symbol. Identical symbols do not correspond tostdn@e subjects across studies (but do
correspond to the same subjects within studiesg.dB model is discussed first, followed by the
MD model, after which results from the temporal misdES, DA, BR, and PO) are presented
for conditions where stimulus energies were eqadliz
3.3.1.1 Individual model results
3.3.1.1.1 Critical-band model

The critical band model was the simplest modektés this study and in general, made
significant predictions for all subjects but S4tady 2 for P(Y|T+N) and significant predictions
for all subjects but S3 and S4 in study 3 for P(Y|Recall that energy was equalized among
T+N and N trials separately for the RNEE and LNRB&ditions of study 3 and overall energies
were equalized for all stimuli in study 4. Inspeatof Figs. 3-3 and 3-4 shows some significant
predictions for the energy model under these egnatgy conditions. These predicticaspear
significant because no internal noise was usetddarsimulations. One might suspect that the
peripheral filter included in this study recoveestergy differences from stimulus-to-stimulus.
However, careful inspection of the decision vamasitalculated for the CB model in EE cases of
study 2 reveals a maximum difference of only 0.B5SPL between the stimulus waveform with
the highest level and the stimulus waveform with ithwest level (when compared to differences
on the order of 8 dB SPL for RE stimuli). The lssgdifference between levels at the output of
the gammatone filter for the stimuli in study 4 vedmut 1 dB. In order for the CB model to
explain these results the listeners would havetbadliably measure the output of a critical band
filter with a resolution of about 0.04 dB (to caotlg order 25 T+N or N stimulus waveforms in
terms of level) in the presence of internal noisid \&n effective variance of approximately 1 dB
across noises (estimated assuming the internatteyral noise ratio is approximately 1 for the
data from study 2 in the conditions where the datarrelated to the CB model). Thus, the CB
model failed in the equal energy cases but wasfgigntly correlated to subjects’ detection
patterns when energy cues were available. Thisnighd in agreement with the results from the
Appendix of this thesis, and with the results ofiirds (1992).
3.3.1.1.2 Multiple-detector model
The reader is first reminded that the MD model waly applied to the results for study 2 (which
had super-critical noise bandwidths). The MD mdded been used to predict these data
previously (Davidsomt al., 2006), but only predictions for P(Y|W) are showihat study.
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Model

Figure 3-3.Proportion of variance explained in thez scores of P(Y|T+N) by the b5 model predictions.
Results were quantified using the square of the coelation coefficient (%). Model abbreviations from left to
right: CB, critical band; MD, multiple detector; MD S, multiple detector with sub-optimal weights; ES
envelope slope; DA, Dau; BR, Breebaart; and PO, thehase opponency. Different subjects are indicataslith
different symbols connected across models to faddie intersubject comparisons. Note that subjectshsiring
the same number do not correspond across studies.
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Model

Figure 3-4. Proportion of variance explained in tle z scores of P(Y|N) by the §& model predictions. Results
were quantified using the square of the correlatiorcoefficient ¢?). Model abbreviations are as in Fig. 3-3.
Note that subjects sharing the same number do noborespond across studies.
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Model

Figure 3-5. Proportion of variance explained in the scores of P(Y|T+N) by the & model predictions.
Results were quantified using the square of the cmlation coefficient normalized by the proportion d
predictable variance tpzz r’/V). Model abbreviations from left to right are thesame as in Fig. 3-3. Note that
subjects sharing the same number do not corresporatross studies.
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Model

Figure 3-6. Proportion of variance explained in the scores of P(Y|N) by the & model predictions. Results
were quantified using the square of the correlatiorcoefficient normalized by the proportion of predi¢able
variance (rpZ: r’/V). Model abbreviations from left to right are thesame as in Fig. 3-3. Note that subjects

sharing the same number do not correspond acrossuslies.
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Here, individual predictions for P(Y|T+N) and P(Y|are presented, along with predictions that
were derived using sub-optimal weights. Weightsilteg) from the fit to the data (MD model)
and from the sub-optimal computation (MDS moded) stiown in Fig. 3-7. Note that the
negative weights found above and below the targeuency were not present in the sub-optimal
weighting scheme. The weighting strategy used®in$he 100-Hz condition was close to that
of the sub-optimal scheme (recall that the subragitiveights attempt to maximizkerather than
increasing?). Inspection of Figs. 3-3 through 3-6 shows v&dictions of the MD and MDS
models for P(Y|T+N) and P(Y|N) are similar for thatener. Detection patterns produced by
listeners that tended to have more negative perakeights for the MD model were not well
predicted by the MDS model (as one might expedf)iarsome cases, the MDS model
predictions were even worse than the CB model priedis (S2 and S4 for example). The MD
model accounted for more variance in the subjet#ction patterns than any other model
tested here. Davidsagt al. (2006) showed that the MD model weights signiftbaraisedr?

values for the CB model greater than would be ebgaeby simply adding free parameters. Here
it is of interest to determine whether the MD model

Figure 3-7. Weights computed for MD and MDS model$or the 100-Hz and 2900-Hz data in
study 2. Weights are shown for the 4 subjects. kothat weights in each condition were
normalized to the maximum weight (occurring at 50Hz). These weights correspond to the
w; for the MD and MDS models in Fig. 3-1 and Eq. (3).
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predictions were significantly better than the MD8del predictions. For all subjects but S3
[see Fig. 3-4, P(Y|N)], the MD model made bettedictions than the MDS model. Tests of
significant differences between non-independentetations were computed for each subject in
each bandwidth to test the hypothesis that the Mdehpredicts detection patterns significantly
better than the MDS model. Results indicate thatMid model predicted significantly &
0.05) more variance in P(Y|T+N) for S2, S3 andrsthe 100-Hz bandwidth, and S1 and S4 in
the 2900-Hz bandwidth; and more variance in P(¥¢i\)S1 and S2 in the 100-Hz bandwidth
and S2 in the 2900-Hz bandwidth. Thus, the MD ey strategy does, for some subjects,
make significantly better predictions than the MB&ghting strategy.
3.3.1.1.3 Envelope-slope model

The ES model is a temporal model based entirelherstimulus envelope. It was of
interest to test this model under equal energy-tiomg in comparison to conditions with energy
differences from stimulus waveform to stimulus wlave. It was also of interest to see how
this model compared to other (temporal) modelsages in which energy differences were not
present across the reproducible stimuli. In genénal ES model predictions were mediocre, with
only 36 of the 52 predictions reaching significafmeP(Y|T+N) (Fig. 3-3) and only 20 of the 52
predictions reaching significance for P(Y|N) (F3g5). Predictions were highly variable across
subjects in all studies, except for P(Y|T+N) in thideband condition of study 2. Despite this
model’'s simplicity, it was able to account for maagiance in some of the subject’s detection
patterns than some of the more complicated temmpaodkls (i.e., DA, BR, PO, see below),
particularly in the equal-energy cases of studiaad4 for P(Y|N) (see Figs. 3-4 and 3-6). Note
that the ES model predictions shown here explas l@riance than those in Davidszral.
(2006), due the use of separate predictions fofTP{M) and P(Y|N) in the present study.
3.3.1.1.4 Dau model
Like the ES model, the Dau model relies primaritytbe temporal envelope of the stimulus
waveform, but the Dau model does allow some fingcttire to pass on to the decision device.
This model uses a distinct template-matching gisatsuch that stimulus waveforms more
similar to the internal template (computed as ndized version of the difference between a
T+N and a N template) will be selected as contgitie tone. Figure 3-8 shows representative
T+N and N templates (top panel) and the normaldffdrence template (bottom panel) for the
100-Hz condition of study 2. Each trace in the papel shows the output of the adaptation
loops averaged over 500 stimulus waveforms. Iteiardhat the averaging brings out some fine-
structure information related to the tone frequeincdyne T+N template. This information is
effectively increased by the normalization prooggh respect to that of the difference of the
two templates (bottom panel). The model decisiarabée is computed as the mean (over time)
product of the internal representation of an indliial stimulus and the normalized difference
template. This difference is largest at the onsét@ noise waveform due to the lack of
compression in the adaptation loops for stimulivi@st changes in SPL (i.e., at the onset,
whereas the latter portion of the difference is poessed). The operation of the detector
indicates that the Dau decision variables shouldtbeast partially correlated to overall energy,
and thus should be impacted by energy-equalizatidhe stimuli (which will be discussed in
detall in the following sections). The co-variatimrtime of the fine-structure present in the
stimulus waveform and in the internal template alsotributes to the decision variable.
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Figure 3-8. Templates used in the DA model decisiatevice. The T+N and N templates were
computed as the mean of 500 internal representatisrof T+N and N stimuli respectively.

The lower panel shows the normalized difference beten the two templates in the upper
panel.

In general, the predictions for the Dau model wesesignificantly correlated to the
subjects’ detection patterns. Only 16 of the 54|Pf¥) predictions and only 6 of the 54 P(Y|N)
predictions reached significance. This model wallrbvisited below in the context of its energy
dependence.
3.3.1.1.5 Breebaart model

The peripheral processing in the Breebaart madsihnilar to that of the Dau model. Any
difference between the model predictions of theeBaart and Dau models must result from the
differences in the decision devices (including text@ mechanisms). Representative templates of
the Breebaart model are shown in Fig. 3-9 for @-Hz condition of study 2 for the 3
frequency channels used. Recall that the noisesdlemplate was subtracted from the internal
representation for each T+N stimulus waveform aseasure of the “distance” from the noise-
alone stimulus. The frequency weighing computeldn(6) is shown in Fig. 3-9. The wideband
weights are similar to those shown in Fig. 3-7tfee MDS model, while the narrowband
Breebaart weights are similar to the MDS weightgs Thodel produced only 16 significant
predictions of the 54 made for P(Y|T+N) and onlgignificant prediction of the 54 made for
P(Y|N). Thus, this model's decision device seemsetincapable of predicting the subjects’
detection patterns.
3.3.1.1.6 Phase-opponency model

The PO model's ability to predict detection pattewas on a par with the ES model, with
23 of the 54 P(Y|T+N) predictions reaching sigrafice and only 11 of the
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Figure 3-9. Internal noise-alone templates (top pam) for the different frequency channels in
the narrowband condition of study 2, and frequencyweighting (bottom two panels) imposed
by the Breebaartet al. (2001) model on the internal representations of #hstimulus
waveforms. The frequency weights were summed oveirte and normalized to the peak
value for the 100 and 2900-Hz conditions of study &r the left and right panels respectively.

54 P(Y|N) predictions reaching significance. Thisdal performed no better under cases for
which energy was equalized than in cases with gnargs present. Its relation to envelope, fine-
structure, and energy will be examined below, alaitg the other models tested.
3.3.1.2. Comparisons between models

Although none of the models was able to predgigaificant proportion of the variance
in subjects’ detection patterns in all conditioihss still useful to determine how similar or
different each models’ decision variables are paher model's decision variables. Because
the models were “run” at different tone levels éaich subject, the decision variables varied
slightly. In order to simplify comparisons betweaandels, and because the signal-to-noise
ratios were within 3 dB for all subjects within @astudy, a single signal-to-noise ratio (the
median signal-to-noise ratio for each study) wascsed. Inter-model correlations are presented
in terms of f in Tables 3-1 and 3-2 for P(Y|T+N) and P(Y|N) pesively, for the each of the
models in Fig. 3-1. Blank values indicate cond#idar which models did not apply.

Tables 3-1 and 3-2 show that the CB model wagfgigntly correlated to each of the
diotic models tested in this study. The most higldyrelated models were the CB and MDS
models with f values on the order of 0.91 to 0.98. These modlets also significantly
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correlated to the MD model, which is not surprisgigen that each of the three used energy at
the output of one or more critical bands as degis@riables. The CB and ES models were also
significantly, albeit weakly, correlated. The CBDMind MDS models were all significantly
correlated to the Dau and the BR models (for canabtthat had differences in level across
stimulus waveforms), as expected given
the Dau and BR models’ envelope dependences apdtibet strategies. Finally, the Dau and BR
models were correlated for every condition in ev&@ndy. The PO and ES models were
correlated for all studies as well.
3.3.1.3 Effect of stimulus energy
The contribution of stimulus energy to each ofredel decision variables was tested with a
multiple regression approach, using two modelsréalipt the listeners’ data. The CB model was
always one of the 2 predictor models. An incremidatast was used to determine if the addition
of the second model (when added as a predictdwet&€B model), significantly increased the
proportion of predicted variance. This procedurs equivalent to testing the significance of the
partial correlation coefficient or the significanokthe slope of a predictor variable in a multiple
regression analysis. Results are briefly summariize¢lde text below in terms of the increase in
R? (the proportion of variance explained by a muéipgression including the CB model as a
predictor) achieved by adding the second moddi¢ddB model for both P(Y|T+N) and P(Y|N).
Of all the diotic models tested [312 tests wereirutotal for P(Y|T+N) and 312 for P(Y|N); 6
models x 1 study with 4 subjects and 2 conditiodssxudy with 5 subjects and 4 conditions and
1 study with 6 subjects and 4 conditions], only ke, ES, and PO models yielded significantly
better predictions when added to the energy maslalsecond predictor, confirming that the
variance explained by the MDS, Dau, and BR modaeflaps” with the variance already
explained by the CB model. Significant increase&ivalues by the addition of the MD model
as a predictor were in the range of 0.10 to 0.83feN stimuli and 0.10 to 0.36 for N stimuli,
depending on subject. Significant increases byrapthe ES model were in the range of 0.10 to
0.32 for T+N stimuli and of 0.10 to 0.52 for N stitip depending on subject. Significant
increases resulting from adding the PO model wethe range of 0.08 to 0.46 for T+N stimuli
and 0.16 to 0.21 for N stimuli.
3.3.1.4. Between-condition comparisons of model dsion variables for study 4

Correlations were computed in termgdbetween model decision variables computed in
the BEC, E.Cy, E1Cy, and EC; conditions to test whether each model operatedgiiy on
envelope, fine structure, or both features of thratdus waveforms. Results are presented in
Table 3-3. Cues dominated by envelope will shovhltigrrelations between the “E” conditions
with the same subscripts. Cues dominated by finettre will show high correlations between
“C” conditions with the same subscripts. Almostmveodel relied more heavily on stimulus
features related to the envelope for T+N stimutie Tomparison was less clear for noise-alone
stimuli, for which the distortion control algorith(eee Ch. 2 Methods) may have allowed some
correlation between envelope and fine structufédis(correlation was removed in the analyses
of Ch. 2 by the statistical blocking procedurexgaction of Table 3-3 indicates that, with the
exception of energy-based models (which were radtided because all waveforms had the same
overall level), the ES, DA, BR models all rely hiyaon envelope, while the PO model relies on
both envelope and fine structure.



Model Comparison Study 2 Study 3 Study 4
RNRE LNRE RNEE LNEE E.C, E.C, E,C, E.C,
CB-MD 0.78* 0.70*
CB - MDO 0.95* 0.98*
CB-ES 0.33* 0.56* 0.15 0.34* 0.32* 0.86* 0.22* 0.51* 0.07 0.12
CB-DA 0.00 0.09 0.60* 0.77* 0.00 0.13 0.04 0.00 0.17* 0.01
CB-BR 0.10 0.28* 0.90* 0.54* 0.18* 0.03 0.01 0.00 0.11 0.09
CB-PO 0.01 0.2* 0.22* 0.34* 0.33* 0.28* 0.23* 0.3* 0.14 0.10
MD - MDO 0.79* 0.65*
MD - ES 0.34* 0.55* 0.15 0.34* 0.32* 0.86* 0.22* 0.51* 0.07 0.12
MD - DA 0.00 0.07 0.60* 0.77* 0.00 0.13 0.04 0.00 0.17* 0.01
MD - BR 0.07 0.3* 0.90* 0.54* 0.18* 0.03 0.01 0.00 0.11 0.09
MD - PO 0.00 0.21* 0.22* 0.34* 0.32* 0.28* 0.23* 0.3* 0.14 0.10
MDO- ES 0.21* 0.5* 0.15 0.34* 0.32* 0.86* 0.22* 0.51* 0.07 0.12
MDO- DA 0.00 0.08 0.60* 0.77* 0.00 0.13 0.04 0.00 0.17* 0.01
MDO- BR 0.09 0.25* 0.90* 0.54* 0.18* 0.03 0.01 0.00 0.11 0.09
MDO- PO 0.00 0.19* 0.22* 0.34* 0.32* 0.28* 0.23* 0.3* 0.14 0.10
ES - DA 0.00 0.05 0.04 0.36* 0.04 0.12 0.11 0.00 0.16* 0.00
ES-BR 0.01 0.33* 0.31* 0.15 0.04 0.05 0.03 0.00 0.03 0.03
ES - PO 0.34* 0.51* 0.49* 0.73* 0.54* 0.46* 0.49* 0.41* 0.46* 0.55*
DA - BR 0.31* 0.38* 0.64* 0.9* 0.37* 0.57* 0.86* 0.81* 0.74* 0.89*
DA - PO 0.00 0.13 0.10 0.46* 0.00 0.01 0.26* 0.24* 0.36* 0.22*
BR - PO 0.05 0.2* 0.40* 0.27* 0.08 0.09 0.18* 0.26* 0.22* 0.09
*p<0.05
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Model Comparison Study 2 Study 3 Study 4
RNRE LNRE RNEE LNEE E.C, E.C, E,C; EC,
CB - MD 0.57* 0.56*
CB - MDO 0.91* 0.97*
CB-ES 0.20* 0.44* 0.00 0.00 0.17* 0.35* 0.30* 0.23* 0.06 0.01
CB - DA 0.40* 0.34* 0.46* 0.94* 0.03 0.04 0.00 0.02 0.05 0.05
CB-BR 0.41* 0.08 0.83* 0.91* 0.00 0.15 0.01 0.03 0.10 0.13
CB - PO 0.11 0.37* 0.00 0.02 0.10 0.01 0.03 0.03 0.00 0.00
MD - MDO 0.60* 0.50*
MD - ES 0.22* 0.35* 0.00 0.00 0.17* 0.35* 0.3* 0.23* 0.06 0.01
MD - DA 0.35* 0.35* 0.46* 0.94* 0.03 0.04 0.00 0.02 0.05 0.05
MD - BR 0.20* 0.20* 0.83* 0.91* 0.00 0.15 0.01 0.03 0.10 0.13
MD - PO 0.05 0.33* 0.00 0.02 0.10 0.01 0.03 0.03 0.00 0.00
MDO- ES 0.05 0.37* 0.00 0.00 0.17* 0.35* 0.3* 0.23* 0.06 0.01
MDO- DA 0.33* 0.27* 0.46* 0.94* 0.03 0.04 0.00 0.02 0.05 0.05
MDO- BR 0.41* 0.05 0.83* 0.91* 0.00 0.15 0.01 0.03 0.10 0.13
MDO- PO 0.01 0.31* 0.00 0.02 0.10 0.01 0.03 0.03 0.00 0.00
ES - DA 0.20* 0.22* 0.00 0.00 0.02 0.02 0.01 0.00 0.00 0.03
ES -BR 0.03 0.32* 0.07 0.00 0.02 0.16* 0.04 0.03 0.01 0.02
ES - PO 0.78* 0.58* 0.61* 0.43* 0.63* 0.45* 0.58* 0.29* 0.56* 0.39*
DA - BR 0.35* 0.47* 0.63* 0.96* 0.73* 0.09 0.81* 0.78* 0.69* 0.88*
DA - PO 0.12 0.35* 0.04 0.03 0.12 0.00 0.23* 0.01 0.05 0.02
BR - PO 0.02 0.34* 0.01 0.04 0.00 0.02 0.34* 0.02 0.11 0.06
*p <0.05
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Table 3-3. Correlations between bS model decision variables (in terms of?) for the various
conditions of study 4, separated by T+N and N stimi) and model. Model abbreviations are
as in Fig. 3-1. Significant correlations are showwith *. Note that energy-based models were
omitted from this analysis; all stimulus waveformshad the same overall level.

Model P(Y|T+N) P(Y|N)

E.C, E.C, E.C: E.C, E.C, E.C:

ES E.C: 0.04 0.95* 0.02 0.18* 0.93* 0.33*
E.C, 0.01 0.98* 0.28* 0.90*

EiC> 0.01 0.40*

DA E.C: 0.00 0.91* 0.00 0.11 0.69* 0.17*
E.C, 0.02 0.92* 0.30 0.83*

E.C, 0.01 0.18*

BR E.C: 0.00 0.96* 0.01 0.20* 0.89* 0.18*
E.C, 0.01 0.92* 0.25* 0.92*

E.C, 0.01 0.19*

PO E.C: 0.00 0.60* 0.00 0.59* 0.71* 0.75*
E.C, 0.13 0.94* 0.80* 0.83*

E.C, 0.11 0.66*

*p<0.05
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Model

Figure 3-10. Proportion of variance explained by te Nb)S model predictions for selected Isabelle (1995) and
Goupell (2005) decision variables for z scores of PT+N). EN is the RMS energy of the right stimulus
waveform, sT is the standard deviation of ITDs, sis the standard deviation of ILDs, Wst is a linear
combination of the standard deviations ITDs and ILEs, Wav is a linear combination of the average valuef
ITDs and ILDs, Xst is the standard deviation of aihear combination of ITDs and ILDs, Xav is the aveage
value of a linear combination of ITDs and ILDs, andLp is a lateral position model relating ITDs and LDs
with a trading ratio. Models are described in Eq. 10-16). Studies 1-4 correspond to rows 1-4, with &a
column representing a different condition within eah study. Different subjects are indicated with diferent
symbols connected across models to facilitate compeons between models. Note that subject identifitian
numbers only correspond to the same subjects withistudies. Model predictions were quantified with tle
square of the correlation coefficient %). Predictions above the horizontal-dashed line arsignificant (<
0.05.
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Model

Figure 3-11. Same as Fig. 3-10 except predictiongse quantified using the square of the correlation
coefficient normalized by the proportion of predictble variance (pZ: r’/V). Model abbreviations from left to
right are the same as in Fig. 3-10. Note that sulgés sharing the same number do not correspond acres

studies.
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3.3.2 Dichotic models

Predictions for each model are shown in two setgafes. Figure 3-10 shows results for
P(Y|T+N) for the Isabelle (1995) and Goupell (20686}ision variables. The criticell value for
reaching a significant prediction is 0.14 for stddgnd 0.16 for studies 2, 3 and 4, as denoted by
the horizontal-dashed line. As was done for théi@imodel results, the dichotic predictions are
re-plotted in Fig. 3-11 in terms 032 or the square of the correlation coefficierd) fiormalized
by the proportion of predictable varianad8 for each subject within each condition in each
study. Note thaltp2 results are not suitable for statistical testiddditionally, if only a small
proportion of the variance in the detection patisrestimated to be predictabtgz, may exceed
1. The reader is reminded that each subject in staly is denoted using a different symbol and
that identical symbols do not correspond to theesaubjects across studies (but do correspond
to the same subjects within studies).
3.3.2.1Individual model results
3.3.2.1.1 Isabelle (1995) and Goupell (2005) deoisivariables

The Isabelle (1995) and Goupell (2005) decisionakées are based on interaural

differences calculated directly from the stimulusvweforms. No predictions are shown for
P(Y|N) because the N stimuli were diotic (i.e., nadnteraural differences) and internal noise
was not included in this analysis, resulting inidien variables that were identically zero.
Figures 3-10 and 3-11 show predictionsrfoandr,” respectivel§. The EN decision variable
(RMS energy of the right stimulus waveform) perfedrpoorly in general, with only 8 of the 57
predictions reaching significance. These findings@nsistent with those of the original
Isabelle (1995) study, and indicate that the cwel Uy listeners to perform the detection task
was not correlated to energy. Standard deviatidhs@s and ILDs (sT and sl) performed better,
with 20 and 11 of the 57 predictions reaching digance respectively. Linear combinations of
the standard deviations or average values of ITidsliaDs performed best, consistent with the
results of Ch. 2, suggesting that both envelopefiardstructure contribute to the detection
process. Of the 57 predictions, 23 using the Wstsibn variable reached significance and 29
using the Wav decision variable reached signifieafredictions for models thiatst computed
decision variableand thencombined across ITD and ILD processors (Wst and)vdaegounted
for about the same amount of variance in P(Y|T+hase that combined ITDs and ILDs as a
function of timebeforedecision variables were computed (Xst, Xav, anyl Tpe Xst, Xav and
Lp decision variables made 26, 36, and 22 sigmfigaedictions respectively for the 57
comparisons performed. Summarizing, the “separaiecs” (Wst and Wav) and “auditory-
image” (Xst and Xav) decision variables had abbatsame predictive power. It is of interest to
view the weights placed on ITD or ILD decision adnles to examine possible trends across
subjects, and to determine if any relationshiptexigtween threshold tone level and weight
selection. Figure 3-12 shows weighasafidb) used in Egs. 12-15, organized by model and
subject for the four studies. Recall that weighesernbounded by 0 and 1, with 1 indicating

* These decision variables were also computed udlraydier gammatone filters centered at 500 Hz. Howéme
all cases but the 2900-Hz case, predictions weneepavhen peripheral filtering was used, and tloeggfthose
results were not included in this document. Thesgsitbn variables were also tested using the Hefirat. (2001)
and Zilanyet al.(2006) auditory-nerve models. Poor results (i.ess& than those achieved with no peripheral
processing) were also encountered using the ayditmve models as a peripheral processing stagé¢hisuvas
likely due to the fact that these decision varialkdy on the complex-analytic signal, which is netl defined for
the output of the auditory-nerve models (the owgiitwhich have nonzero dc components). TheretbeeHeinz
et al (2001) predictions are not shown.
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reliance on ITD and O indicating reliance on ILBigure 3-12 shows that the favorable results of
these models were largely due to their abilityelest the better decision variable from sT or sl.
Certain subjects, however, did use a true weigbteabination of the two decision variables (S4
in study 1; S2, S3, and S5 in study 3; and S3udyst). In almost all cases, these subjects were
subjects with lower thresholds. Subjects with bigthresholds were fit more reliably with
weights of 0 or 1, indicating that they relied arlyol TDs or ILDs.
3.3.2.1.2 Four-channel model

Results for the four-channel model are shownrnimseof the square of the correlation
coefficient ¢2) in Figs. 3-13 and 3-14 for P(Y|T+N) and P(Y|N3pectively, and estimates of
the proportion of predictable variance explain&ﬂ) (@re shown in Figs. 3-15 and 3-16 for
P(Y|T+N) and P(Y|N) respectively. Two versions lastmodel were implemented. The basic
structure of both versions is shown in Fig. 3-2 XFhe first (FCc) used a cross correlation
(product) of the inputs for the “peaker” channégeighted by wand w in Fig. 3-2), while the
second used a normalized cross correlation (Coleuah 1997) for the “peaker” channels.
Weights derived for each of the four channels amewvs in Fig. 3-17. The weights were
normalized separately foraand ws and for by wand w; for display purposes only (in order to
eliminate the difference in absolute value of thgpat from two types of channels). As
expected, very few of the weights took on a valiie, as each channel was tuned in increments
of 90° of interaural phase. This model performedrfyoin general, with predictions reaching
significance for only 3 of the 114 comparisons l{iding both FCc and FCn) for P(Y|T+N).
This model performed better for noise-alone stinf@i of the 57 comparisons were significant
for FCc and 14 of the 57 comparisons were sigmtiéar FCn.
3.3.2.1.3 Breebaart Model

Like the Isabelle and Goupell decision variabiks, binaural version of the Breebaart
model produced decision variables that were idalyi® for noise-alone stimuli due to the
subtraction mechanism in Eq. 18, and was thereforiged from Figs. 3-14 and 3-16 (recall the
noise-alone template for this model would alsodaiically zero). Figure 3-18 shows
representative temporal and spectral weights ®bthaural version of the model computed for
the two bandwidths of study 2. Note that the omset weighted more heavily than the steady-
state portion of the stimulus due to the actiothefadaptation loops. This model produced
significant predictions for 24 of the 57 comparisaa P(Y|T+N), performing on a level
comparable to Wst or Wav, despite its much morepdexnstructure.
3.3.2.1.4 Mismatch model

The mismatch model predictions are shown in Fig8 3hrough 3-16 for P(Y|T+N) and
P(Y|N). Model parameters were fit separately to|Pf) or P(Y|N). The resulting decision
variables were compared to both P(Y|T+N) and P(Yijéardless of the condition of fit [i.e.,
the decision variables resulting from a fit to A{¥N) were also used to make predictions for
P(Y|N), and vice versa]. This model was implement@d three different binaural processors: a
standard binaural cross correlation (MMc), a noizeal cross correlation (MMn), and a
subtraction mechanism (MMe). Correlations were garad for the various fit conditions to
determine whether a single set of parameters waahta of predicting a significant proportion
of the variance of both P(Y|T+N) and P(Y|N). Thaximum number of significant predictions
possible within P(Y|T+N) or P(Y|N) is 57. The MMmufel fit to P(Y|T+N) produced 52
significant
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Figure 3-12. Model weights for decision variablesdsed on both ITDs and ILDs. A weight approaching 1

indicates reliance on ITD and a weight approachin@ indicates reliance on ILD. Note that subjects shiang

the same number do not correspond across studiesines connecting subjects are present for comparison
purposes only.
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Y Y~ Y~ Y~

Fitto P(Y|T+N) Fit to P(Y|N) Fit to P(Y[T+N) Fit to P(Y|N) Fitto P(Y|T+N) Fitto P(Y|N) Fit to P(Y|T+N) Fitto P(Y|N)

Model

Figure 3-13. Proportion of variance explained by B model predictions for z scores of P(Y|T+N) quantiéd
using the square of the correlation coefficientrf). Model abbreviations from left to right are: FCc, four-
channel model using cross correlation for simulategeaker channels; FCn, four-channel model using a
normalized cross correlation for peaker channels, B, the Breebaart (2001) model. The mismatch (MM)
models included (c) cross-correlation, (n) normalied-cross-correlation, and (e) subtraction mechanissa The
left 3 MM models were fit to P(Y|T+N) data, while he right 3 were fit to P(Y|N) data. Different subjets are
indicated with different symbols connected across adels to facilitate intersubject comparisons. Notéhat
subjects sharing the same number do not corresporatross studies.
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- Y~ Y~ Y~

Fitto P(Y|T+N) Fit to P(Y|N) Fit to P(Y[T+N) Fit to P(Y|N) Fitto P(Y|T+N) Fitto P(Y|N) Fit to P(Y|T+N) Fitto P(Y|N)

Model

Figure 3-14. Proportion of variance explained by B5 model predictions for z scores of P(Y|N) quantifieé
using the square of the correlation coefficientrf). Model abbreviations are as in Fig. 13. Note thaubjects
sharing the same number do not correspond acrossuslies. Note that BR model predictions were identidly
0, and therefore were omitted.
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——r— Y~ Y~ N

Fitto P(Y|T+N) Fit to P(Y|N) Fitto P(Y|T+N) Fitto P(Y|N) Fitto P(Y[T+N) Fit to P(Y|N) Fit to P(Y|T+N) Fitto P(Y|N)

Model

Figure 3-15. Proportion of variance explained by B5 model predictions for P(Y|T+N). Predictions were
guantified using the square of the correlation codicient normalized by the proportion of predictable
variance (rpZ: r’/V). Model abbreviations from left to right are thesame as in Fig. 3-13. Note that subjects
sharing the same number do not correspond acrossuslies.
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——r— Y~ Y~ N

Fitto P(Y|T+N) Fit to P(Y|N) Fitto P(Y|T+N) Fitto P(Y|N) Fitto P(Y[T+N) Fit to P(Y|N) Fit to P(Y|T+N) Fitto P(Y|N)

Model

Figure 3-16. Proportion of variance explained by B5 model predictions for P(Y| N). Predictions were
guantified using the square of the correlation codicient normalized by the proportion of predictable
variance (rpZ: r’/V). Model abbreviations from left to right are thesame as in Fig. 3-13. Note that subjects
sharing the same number do not correspond acrossuslies. Note that BR model predictions were identidly
0, and therefore were omitted.
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Channel

Figure 3-17. Weights derived for the individual chanels of the four-channel model. Weights are showfor
all channels using a cross correlation operation (C) in channels 2 and 3, as well as for a using amaalized
cross correlation for channels 2 and 3. Weights arvirtually the same using either mechanism. Notéat very
few channels have weight values of 0.
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Figure 3-18. Representative Temporal weights (topnd spectral weights (bottom) from the
Breebaart model. Note that the onset of the stimukiis weighted more heavily than the
steady-state portion of the stimulus.

predictions for P(Y|T+N) and 23 significant predeis for P(Y|N). The same model fit to
P(Y|N) yielded only 14 significant predictions #(Y|T+N) and 55 significant predictions for
P(Y|N). The MMn model fit to P(Y|T+N) produced 4ignificant predictions for P(Y|T+N) and
31 significant predictions for P(Y|N). The samedaldfiit to P(Y|N) produced 15 significant
predictions for P(Y|T+N) and 56 significant preécis for P(Y|N). The MMe model fit to
P(Y|T+N) produced 47 significant predictions folYPP(+N) and only 13 significant predictions
for P(Y|N). The same model fit to P(Y|N) produaady 13 significant predictions for

P(Y|T+N) and 56 significant predictions for P(Y|N}.is unreasonable to assume that subjects
could employ a different “mismatch” for T+N and Nhsuli. The pattern of fit results described
above suggest that the best fit parameters dfeP¢Y|T+N) and P(Y|N), indicating that a
single mismatch channel was not likely responditiieéhe subjects responses. The parameters
are presented in Table 3-4 for only the study-cmalsubject combinations that yielded
significant predictions for both P(Y|T+N) and P(Y[fr both fit conditions. Under the
mismatch hypothesis, one would expect that theegati for P(Y|T+N) would be the same as
those for P(Y|N). In general, the values differ elgging on fit condition with no discernable
pattern. One caveat could be that the specifiduéea used to search the parameter space was
not sufficiently fine. Ongoing simulations will ihn@e a more exhaustive search using finer
resolutions for auditory-nerve model center frequesy delays, and attenuations.
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Table 3-4. MM model parameters fit to P(Y|T+N) andP(Y|N). Model abbreviations are the same as in Fi@-

13.
Fit to P(Y|T+N) Fit to P(Y|N)

Study Condition  Subject Model CF(R) CF(L) Delay Atten CF(R) CF(L) Delay Atten
1 115 Hz 3 MMn 700 400 400 0 650 650 -100 -5
2 100 Hz 1 MMc 550 700 -300 -5 500 550 -300 10

1 MMn 600 700 200 -10 500 550 -300 -10

2 MMn 300 700 -400 5 300 700 -400 0

3 Mme 350 300 -400 -10 300 350 400 5

4 MMc 300 400 -400 -10 300 350 -400 -10

4 MMn 300 350 400 -5 300 350 400 0

2900 Hz 3 MMn 500 450 -100 5 500 500 -200 10
3 RNRE 2 MMc 550 600 400 5 500 500 -400 -10
5 MMn 350 550 0 0 400 550 -300 -5

LNRE 3 Mme 400 300 300 0 300 350 400 5
RNEE 1 Mme 400 550 400 -10 350 700 -300 0
2 MMc 450 600 100 10 450 700 400 -5

2 MMn 650 700 100 0 600 600 -400 -5

4 Mme 550 300 400 0 300 550 200 -5

LNEE 1 MMc 400 400 -100 10 600 600 0 0
1 MMn 450 400 400 -10 350 400 200 10

4 MMc 600 650 100 -10 350 700 -200 -10

4 E.C, 2 MMc 350 650 -400 0 500 550 -300 5
2 MMn 300 550 300 0 400 600 200 -5

E,C, 2 MMc 600 500 0 0 500 600 0 -5
2 MMn 600 500 0 -10 500 600 0 -5

3 MMc 300 550 -400 0 300 450 100 5

5 MMe 500 500 100 5 500 500 -200 10

E.C, 2 MMc 450 300 100 -10 400 700 -400 10
2 MMn 500 300 300 10 400 700 -400 10

E,C, 2 MMn 350 550 100 5 350 450 -400 -10
5 MMe 400 400 -300 0 450 700 400 10

6 MMn 300 400 -400 -10 450 600 400 -5
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3.3.2.2 Comparisons between models

Between-model comparisons are shown in Tables3d33&6 for P(Y|T+N) and P(Y|N)
for the EN, Wav, Xav, FCn, BR, MMnd [MMn fit to P(Y+N)], and the MMnf [MMn fit to
P(Y|N)] models. The signal-to-noise ratios of tistelners with the lowest thresholds (in each
study) were used for comparisons in Table 3-5,thadignal-to-noise ratios of the listeners with
the highest thresholds were used for comparisoiialite 3-6. Table 3-5 is discussed first. The
following model decision variables were correlatéthv and Xav, Wav and BR, and Wav and
MMnd. Stimulus energy (EN) was modestly, albeingdigantly correlated to Wav, Xav, and the
BR models under some conditions. The results ofelat6 are similar, but as expected for the
subjects with higher thresholds, the correlatioinsiany of the decision variables to energy were
stronger at the higher signal-to-noise ratio. Nase that Wav and Xav were slightly less
correlated at the higher signal-to-noise ratios.

Colburnet al.(1997) and Isabelle (1995) discounted models basattoss-correlation,
normalized cross-correlation, and equalization-eflaton based upon their relationships to
stimulus energy. Tables 3-5 and 3-6 showed onlgtierate correlations between the MM, BR,
and FC models to energy. (Note that the EE contitaf study 3 had equal energies, and all
conditions of study 4 had nearly equal energiegetations of the MM, BR, and FC models
were expected to be near zero.) Because energpavasrrelated to the subjects’ detection
patterns, the failure of these models is partiedglained by their moderate correlations to
stimulus energy.
3.3.2.3 Between-condition comparisons of model demn variables for study 4

Tables 3-7 and 3-8 show between-condition compasisd the 7 representative model
decision variables applied to detection patterrstady 4. The results in Table 3-7 were
computed using the lowest signal-to-noise ratistudy 4, and the results in Table 3-8 were
computed using the highest signal-to-noise ratidbe study 4. Models relying on envelope will
show high correlations between “E” conditions shaithe same subscript. Models relying on
fine-structure will show high correlations betwéé€ri conditions sharing the same subscripts.
At lower signal-to-noise ratios (Table 3-7) it jgparent that overall energy is highly correlated
to the envelope. Such a high correlation occuralise no peripheral filtering was used and the
overall energies of each stimulus waveform in eamridition were identical before the tone
waveform was added. Wav and Xav relate primarilthefine structure of the stimulus
waveforms but less so at higher signal-to-noisesdsee Table 3-8). The Breebaart model was
correlated more strongly to fine structure thaengelope, as temporal smoothing occurs after
the binaural interaction. The four-channel and naisrin models did not produce strong patterns
of envelope or carrier dominance.



P(Y[T+N)

Study 1 Study 2 Study 3 Study 4
Model Comparison 115 Hz 100 Hz 2900 Hz RNRE LNRE RNEE LNEE E.C; E,C, E,C, E.C,
EN - Wav 0.30* 0.43* 0.30* 0.30* 0.79* 0.04 0.00 0.05 0.15 0.08 0.01
EN - Xav 0.30* 0.43* 0.32* 0.20* 0.57* 0.04 0.00 0.01 0.12 0.34* 0.01
EN - FCn 0.23* 0.12 0.08 0.29* 0.00 0.08 0.01 0.00 0.04 0.04 0.00
EN - BR 0.06 0.20* 0.10 0.24* 0.63* 0.05 0.01 0.04 0.01 0.01 0.01
EN - MMnd 0.02 0.14 0.10 0.03 0.71* 0.03 0.01 0.09 0.02 0.02 0.00
EN - MMnf 0.24* 0.13 0.03 0.00 0.11 0.03 0.10 0.24* 0.00 0.00 0.02
Wav - Xav 1.00* 1.00* 0.78* 0.91* 0.92* 1.00* 0.94* 0.93* 1.00* 0.83* 1.00*
Wav - FCn 0.07 0.01 0.03 0.14 0.03 0.18* 0.09 0.01 0.14 0.03 0.15
Wav - BR 0.18* 0.42* 0.29* 0.52* 0.88* 0.03 0.64* 0.14 0.52* 0.56* 0.39*
Wav - MMnd 0.18* 0.28* 0.15 0.00 0.60* 0.43* 0.01 0.03 0.03 0.43* 0.13
Wav - MMnf 0.05 0.10 0.03 0.01 0.11 0.09 0.03 0.03 0.00 0.52* 0.09
Xav - FCn 0.08 0.01 0.02 0.10 0.03 0.18* 0.10 0.03 0.13 0.01 0.15
Xav - BR 0.16* 0.42* 0.18* 0.48* 0.88* 0.03 0.54* 0.11 0.52* 0.35* 0.39*
Xav - MMnd 0.18* 0.28* 0.14 0.00 0.40* 0.43* 0.00 0.02 0.03 0.30* 0.13
Xav - MMnf 0.05 0.10 0.09 0.01 0.10 0.09 0.05 0.02 0.00 0.32* 0.09
FCn - BR 0.05 0.00 0.01 0.01 0.02 0.00 0.02 0.05 0.07 0.11 0.00
FCn - MMnd 0.00 0.00 0.01 0.03 0.05 0.07 0.12 0.01 0.09 0.02 0.27*
FCn - MMnf 0.13 0.03 0.05 0.02 0.28* 0.07 0.08 0.01 0.17* 0.08 0.06
BR - MMnd 0.06 0.21* 0.34* 0.08 0.43* 0.01 0.00 0.01 0.03 0.24* 0.00
BR - MMnf 0.01 0.03 0.00 0.05 0.08 0.14 0.01 0.00 0.10 0.70* 0.01
MMnd- MMnf 0.31* 0.46* 0.00 0.88* 0.20* 0.11 0.06 0.38* 0.47* 0.38* 0.13
P(Y|N)
FCn - MMnd 0.01 0.24* 0.01 0.00 0.69* 0.09 0.32* 0.00 0.01 0.01 0.01
FCn - MMnf 0.47* 0.01 0.33* 0.10 0.01 0.02 0.04 0.11 0.01 0.02 0.00
MMnd- MMnf 0.23* 0.40* 0.02 0.81* 0.00 0.13 0.61* 0.50* 0.77* 0.10 0.07
*p<0.05
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P(Y[T+N)

Study 1 Study 2 Study 3 Study 4
Model Comparison 115 Hz 100 Hz 2900 Hz RNRE LNRE RNEE LNEE E.C; E.C, E,C, E.C,
EN - Wav 0.48* 0.35* 0.45* 0.48* 0.38* 0.06 0.02 0.03 0.22* 0.12 0.10
EN - Xav 0.25* 0.43* 0.39* 0.29* 0.21* 0.06 0.03 0.00 0.56* 0.21* 0.06
EN - FCn 0.31* 0.01 0.12 0.00 0.06 0.01 0.16* 0.00 0.03 0.02 0.00
EN - BR 0.19* 0.34* 0.10 0.30* 0.39* 0.21* 0.01 0.03 0.04 0.01 0.01
EN - MMnd 0.13 0.24* 0.06 0.07 0.19* 0.05 0.02 0.16* 0.02 0.04 0.03
EN - MMnf 0.08 0.21* 0.00 0.18* 0.05 0.16* 0.01 0.00 0.01 0.01 0.23*
Wav - Xav 0.87* 0.75* 0.84* 0.83* 0.25* 1.00* 0.31* 0.95* 0.00 0.67* 0.63*
Wav - FCn 0.59* 0.05 0.06 0.13 0.01 0.22* 0.15 0.09 0.02 0.34* 0.08
Wav - BR 0.37* 0.46* 0.37* 0.45* 0.02 0.04 0.01 0.17* 0.34* 0.17* 0.14
Wav - MMnd 0.31* 0.06 0.07 0.13 0.18* 0.40* 0.00 0.02 0.02 0.21* 0.18*
Wav - MMnf 0.01 0.15 0.01 0.16* 0.03 0.01 0.01 0.01 0.24* 0.03 0.16*
Xav - FCn 0.39* 0.04 0.09 0.18* 0.00 0.22* 0.05 0.10 0.09 0.14 0.00
Xav - BR 0.25* 0.49* 0.24* 0.55* 0.45* 0.04 0.16* 0.17* 0.02 0.44* 0.46*
Xav - MMnd 0.29* 0.19* 0.09 0.06 0.23* 0.40* 0.06 0.00 0.00 0.21* 0.10
Xav - MMnf 0.00 0.15 0.03 0.23* 0.01 0.01 0.03 0.01 0.00 0.00 0.09
FCn - BR 0.47* 0.07 0.10 0.15 0.01 0.12 0.00 0.11 0.02 0.19* 0.04
FCn - MMnd 0.12 0.01 0.03 0.02 0.10 0.09 0.00 0.04 0.10 0.03 0.11
FCn - MMnf 0.04 0.03 0.01 0.01 0.37* 0.11 0.00 0.00 0.19* 0.04 0.22*
BR - MMnd 0.01 0.06 0.02 0.07 0.25* 0.10 0.00 0.03 0.07 0.11 0.01
BR - MMnf 0.15 0.03 0.00 0.31* 0.04 0.01 0.03 0.08 0.10 0.00 0.00
MMnd- MMnf 0.06 0.18* 0.35* 0.00 0.20* 0.03 0.78* 0.23* 0.16* 0.24* 0.69*
P(YIN)
FCn - MMnd 0.17* 0.02 0.38* 0.50* 0.26* 0.09 0.00 0.00 0.00 0.01 0.10
FCn - MMnf 0.47* 0.57* 1.00* 0.77* 0.55* 0.00 0.01 0.19* 0.01 0.01 0.03
MMnd- MMnf 0.07 0.00 0.39* 0.19* 0.01 0.14 0.77* 0.39* 0.61* 0.10 0.01
*
p <0.05
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3.4 Summaryand conclusions

Results for diotic modeling exercises indicated tiene of the temporal models were
able to explain detection patterns as well asiti@at combination of energy at the output of
several critical bands. The relatively complicaaliet al. (1996a) andBreebaart et al(2001)
models performed more poorly than the standaradtcakiband model at predicting the subjects’
detection patterns, and the variance explainedhéset models was attributable to their
correlation to the critical band model. The bestgrening dichotic model tested here was the
average value of a linear combination of ITDs dridd (Isabelle, 1995), predicting up to about
70 percent of the variance in some subjects’ dete@atterns. The following chapter highlights
suggestions for future work, including alternat@lementations of the Breebaart model with an
emphasis on the specific use of the model’s teraptachanism. The analysis described in Ch.
2 is repeated in Ch. 4, except subjects’ detegaiterns were replaced with decision variables
produced by the models described in this chapter.
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Table 3-7. Correlations between dichotic model desion variables (in terms ofr?) for the various conditions of
study 4, separated by T+N and N stimuli, and modellhese predictions were calculated at the signal-taoise
ratio of the subject with the lowest threshold. Mo@!| abbreviations are as in Fig. 3-1. Significant ecelations
are shown with *.

Model

EN

Wav

Xav

FCn

BR

MMnd

MMnf

E.C,
E,C,
E.C,

E.C,
E,C,
E.C,

E.Cy
E.C,
E.C;

E.C,
E,C,
E.C,

E.C,
E,C,
E.C,

E.Cy
E:Co
E.Co

E.C,
E,C,
E.Co

P(Y|T+N)
E2C2 E1C2 EZCI
0.27* 1.00 0.27*
0.27* 1.00
0.27
0.04 0.07 0.94*
0.98* 0.04
0.05
0.03 0.02 0.98*
0.83* 0.04
0.02
0.00 0.33* 0.36*
0.14 0.37*
0.15
0.43* 0.43* 0.60*
0.76* 0.27*
0.26
0.00 0.02 0.21*
0.37* 0.07
0.15
0.12 0.00 0.02
0.01 0.01
0.08

P(Y|N)
E2C2 E1C2 EZCI
0.05 0.90* 0.06
0.05 0.92*

0.03

0.07 0.05 0.08
0.05 0.00

0.05

0.21* 0.11 0.00
0.01 0.00

0.00

*p<0.05
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Table 3-8. Correlations between dichotic model desion variables (in terms ofr?) for the various conditions of
study 4, separated by T+N and N stimuli, and modellhese predictions were calculated at the signal-taoise
ratio of the subject with the highest threshold. Mdel abbreviations are as in Figs. 3-3 and 3-13. Sificant
correlations are shown with *.

Model

EN

Wav

Xav

FCn

BR

MMnd

MMnf

E.C,
E,C,
E.Co

E.C,
E,C,
E.C,

E.C,
E,C,
E.C,

E.Cy
E.C,
E.C,

E.C,
E,C,
E.C,

E.C,
E,C,
E.C,

E.Cy
E,C,
E,C,

P(Y|T+N)
E2C2 E1C2 EZCI
0.27* 1.00* 0.27*
0.27* 1.00*
0.27*
0.05 0.01 0.63*
0.50* 0.01
0.09
0.06 0.01 0.94*
0.02 0.02
0.00
0.10 0.35* 0.03
0.29* 0.14
0.02
0.23* 0.17* 0.61*
0.89* 0.14
0.12
0.00 0.01 0.21*
0.01 0.00
0.20*
0.01 0.00 0.46*
0.00 0.03
0.00

P(YIN)

E2C2 E1C2 EZCI
0.05 0.90* 0.06
0.05 0.92*

0.03

0.06 0.00 0.08
0.01 0.09

0.14

0.14 0.30* 0.31*
0.16* 0.27*

0.17*

*p<0.05
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CHAPTER 4

General discussion and summary

This chapter summarizes the general findings oettpeeriments in the Appendix and Ch.
2 and the modeling efforts described in Ch.3. Tiredyasis of the relative contributions of
envelope and fine-structure cues from Ch. 2 isatgzbusing the model decision variables
described in Ch.3 (rather than subjects’ detegtmiterns). Specific psychophysical experiments
and modeling exercises are then proposed, withapstention paid to the utility of template
mechanisms for detection of tones in noise.

4.1 Summary

The goal of this dissertation was to charactetmestimulus features upon which
detection of tones in noise is based. A main resiulhe experiment described in the Appendix
was in agreement with previous research, (e.gtclide, 1940; Richards and Nekrich, 1993)
indicating that if overall energy differences aregent between noise-alone and tone-plus noise
stimuli in a diotic detection task, subjects temdise those energy differences to perform the
task. This finding was verified using a basic egargpdel that was able to predict up to 85
percent of the variance in subjects’ detectiongrat. Seemingly in conflict with this result, sets
of stimuli with corresponding waveforms having diént overall energies but identical temporal
structures (and therefore relative magnitudes dadg spectra) produced significantly correlated
detection patterns. This fact indicates that algfloonuch of the variance in listeners’ detection
patterns can be explained by energy, the speattahagporal structure of the stimulus waveform
did indeed factor into subjects’ decisions. Imgiicas of this result for physiological
experiments, along with suggestions for future pephysical experiments, are discussed below.

The results of the experiment described in Ch.gg)est that listeners’ decision variables
must be based on both envelope and fine-struatusedier to predict detection patterns estimated
in the NNSp or NoS  stimulus configurations. Generally speaking, gigantly more variance in
subjects’ detection patterns was predicted wheporeses based on both stimulus envelopes and
carriers were included as predictors. Further glstsnulus features interacted in a way such that
a linear combination of decision variables sepdyaterived from envelope and fine structure
did not predict all of the predictable variancdisteners’ detection patterns.

The results of Ch.3 showed that several diotic neothat successfully predict thresholds
for tone-in-noise detection tasks cannot explaaticdidetection patterns. Further, none of the
temporal models examined in this work were ablpremict significant proportions of variances
in all of the subjects’ data, including cases irnchlenergy cues were made unreliable (and thus
listeners were forced to rely on cues other tharallvenergy). A model based on a linear
combination of energies at the output of seveltar8 surrounding the target frequency (MD;
Gilkey et al, 1986) best predicted the data with level variaifrom noise to noise. A model
based on envelope fluctuation (ES; Richards, 198ang, 2004) best predicted detection
patterns estimated from stimuli with no level vaoas; the model predicted more variance in
listeners’ detection patterns than either the Blaal. (1996a) or Breebaaet al. (2001a) models.

Implementations of several models of binaural urkimgswere also tested in Ch. 3. The
best performing models used a linear combinatiolf Bfand ILD information (Xav and Wav;
Goupell, 2005; Isabelle, 1995). The binaural versibthe Breebaast al.(2001a) model
preformed on a level comparable to that of Xav @faV. As in the diotic condition, none of the
models tested were able to make significant priesistfor every subject in every condition of
the studies tested. The combined results of Chd2dead to interesting observations about
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both diotic and dichotic detection models that m@tytemplates to compute decision variables.
These observations are discussed the contextwkfmodeling exercises below.
4.2 An analysis of model decision variables usinhé¢ methods of Ch. 2

Some of the models explored in Ch. 3 used intevastof cues derived from envelope
and fine structure to compute decision variablesak of interest to determine if the nature of
these interactions was appropriate by comparing tieethe interactions of listeners presented in
Ch. 2. Table 4-1 shows the results of applyingatih@lysis described in Ch. 2 to the model
decision variables described in Ch.3 (in lieu @& slubjects’ detection patterns). Briefly
summarizing, stimuli from 4 conditions {€;, E;C,, E;C,, and EC,) shared either envelopes (E)
or carriers (C); subscripts shared between comditiodicate the particular waveform
component shared between conditions). Model deteg@tterns were computed for each of the
4 conditions. A linear regression was performedde model detection patterns from th€E
and EC; conditions to predict either,E; (top row for each model, note that variabilitydarly
associated with £, was removed from the analysis for this condition}C; (bottom row for
each model, note that variability linearly assacalatvith EC; was removed from the analysis for
this condition) detection patterns.

Results are presented for simulations run at thdianesignal-to-noise ratio of the
subjects in Ch. 2 for thedSp condition (Table 4-1, p&). Model abbreviations are as in Fig. 3-
3. All the NoSy models tested relied more heavily on envelope daarier (Rg > Rec) with the
exception of the PO model, which made use of botkelepe and fine structure. In general, the
patterns of model interactions between envelopefiardstructure (i.e., Rvalues) were in stark
contrast to the results of the analysis presemédgs. 2-2 and 2-5, indicating that subjects celie
roughly equally on envelope and carrier. The omljable exception was for the PO model,
which predicted a more equal utilization of envel@nd fine-structure cues, but captured at
most only about 60 percent of the variance in stibjeletection patterns.

Results are also presented for simulations ruheahighest and lowest signal-to-noise
ratios of the subjects in Ch. 2 for thgS\Ncondition (Table 4-1, p6 : High SNR and S Low
SNR, respectively). Model abbreviations are theesamin Fig. 3-13. [Note that some models
did not produce decision variables for the noigealconditions and thus analyses for those
models were omitted from the table.] Each of thelet® tested here was dominated by the
carrier of the waveform (with the exception of stios energy), as would be expected for
conventional models of binaural detection at loimatus frequencies. The pattern of
interactions differs from the results of Ch 3, whindicated a more equal reliance on envelope
and carrier.

Some models considered in Ch.3 actually predittednuch(up to 100 percent) of the
variance in the model;E; and EC, detection patterns when fit with a linear modegj(eall but
the PO model for p& conditions, and the Wav and Xav models at lowaigo-noise ratios for
NoS conditions). The results of Ch. 2 indicate thahear combination of cues derived from
envelope and carrieshould not account for all of the predictable vac@ in the EC; and EC,
detection patterns. These results support the gsiocl that models explaining detection in
reproducible noises must rely on a combinatioreafgoral envelope and fine structure cues, and
that the reliance on envelope and fine structuli&e$y a necessary, but not sufficient condition
for predicting the listeners’ detection patterns.
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NoSo

P(Y|W) P(Y|T+N) P(Y|N)

Model be R% bc R% R%e be R%: bc R% R%¢ be R% be R% R%

ES 1.00* 0.94* 0.45* 0.16* 0.95* 1.04* 0.96* 0.95* 0.19* 0.98* 0.89* 0.93* 0.53* 0.36* 0.96*
1.06* 0.94* 0.49* 0.18* 0.96* 1.03* 0.98* 0.54* 0.14 0.99* 1.08* 0.90* 0.70* 0.25* 0.94*

DA  0.89* 0.83* 0.75* 0.04 0.91* 0.93* 0.93* 0.56* 0.01 0.95* 0.88* 0.67* 0.97* 0.07 0.88*
1.27% 0.87* 0.87* 0.23* 0.95* 1.33* 0.92* 0.86* 0.25* 0.95* 1.30* 0.81* 0.89* 0.27* 0.95*

BR  1.78* 0.92* 0.49 0.01 0.92* 1.90* 0.96* -0.31 0.03 0.96* 1.66* 0.87* 1.08* 0.00 0.90*
1.80+ 0.92* 0.50* 0.03 0.93* 1.78* 0.92* -0.47 0.04 0.93* 1.78* 0.91* 0.85* 0.07 0.94*

PO  1.04* 0.61* 1.25% 0.23* 0.79* 1.19* 0.70* 1.33* 0.05 0.77* 0.81* 0.28* 1.22* 0.40* 0.70*
0.96* 0.84* 0.48* 0.41* 0.92* 1.14* 0.94* 0.32* 0.36* 0.96* 0.80* 0.59* 0.55* 0.52* 0.85*

NoS : High SNR
P(Y[W) P(Y[T+N) P(Y|N)
Model be R% be R% R%: be R% be R% R%e be R% be R%: R%:
EN 1.00+ 1.00* 0.15 0.03 1.00*
1.00+ 1.00* 0.00 0.10 1.00*
sT 0.33 0.00 0.99* 1.00* 1.00*
0.32 0.00 1.00* 1.00* 1.00*
sl 1.03* 0.99* 0.06 0.10 0.99*
1.01* 1.00* 0.03 0.20% 1.00*
Wav 0.34* 0.02 1.00* 1.00* 1.00*
0.58* 0.05 1.00* 1.00* 1.00*
Xav 0.85* 0.34* 0.86* 0.01 0.91*

0.98* 0.12 0.94* 0.20* 0.92*
FCn 0.28* 0.27* 0.14 0.01 0.29* 0.27* 0.27* 0.09 0.00 0.28* 0.82* 0.89* 0.71* 0.02 0.98*
0.35* 0.09* 0.36* 0.25* 0.35* 0.35 0.11 0.30* 0.21* 0.31* 1.03* 0.92* 1.00* 0.00 0.99*
BR -0.12 0.01 0.62* 0.55* 0.55*
-0.03 0.00 0.69* 0.87* 0.87*
MMnd 0.19 0.11* 0.78* 0.64* 0.66* 0.09 0.05 0.87* 0.65* 0.65* 0.65* 0.51* 0.49* 0.30* 0.62*
0.24 0.15* 0.78* 0.63* 0.65* -0.07 0.00 0.69* 0.51* 0.52* 0.69* 0.68* 0.42* 0.43* 0.76*
MMnf 0.43* 0.00 0.81* 0.73* 0.78* 0.25 0.13 0.78* 0.74* 0.75* 0.58* 0.45* 0.74* 0.48* 0.79*
0.34* 0.03 0.97* 0.81* 0.84* 0.28 0.07 1.06* 0.86* 0.88* 0.75* 0.58* 0.51* 0.33* 0.80*

NoS : Low SNR
P(Y]W) P(Y[T+N) P(Y|N)

Model be R% be R% R%c be R% bc R% R% b R% bc R%: R%
EN 1.00+ 1.00* 0.74 0.00 1.00*
1.00*+ 1.00* 0.02 0.01 1.00*
sT -0.06 0.03 0.95¢ 0.97* 0.97*
-0.25 0.17* 0.87* 0.94* 0.94*
sl 0.51* 0.39* -0.56 0.01 0.41*
1.01* 0.95* -0.08 0.29* 0.96*
Wav 0.18 0.08 0.99* 0.99* 0.99*
0.55 0.06 0.91* 0.99* 0.99*
Xav 0.32 0.01 0.97¢ 0.99* 0.99*

043 0.00 0.91* 0.99* 0.99*
FCn 0.31* 0.35% 1.07* 0.49* 0.70+ 0.31* 0.38* 1.17* 0.55* 0.78* -8.16* 0.89* -2.12* 0.02 0.98*
2.12* 051* 0.49* 0.18* 0.65* 2.33* 0.56* 0.53* 0.21* 0.73* -1.84* 0.92* -594* 0.00 0.99*
BR 0.10 0.06 0.46* 0.45* 0.47*
0.03 0.00 0.47+ 0.60* 0.60*
MMnd 0.06 0.3 0.59* 0.45% 0.46* -0.00 0.05 0.98* 0.76* 0.76* 0.1 0.00 0.12 0.08 0.08
0.54* 0.29* 0.63* 0.58* 0.63* 1.32* 0.59* 0.42* 0.53* 0.69* 0.16 0.08 0.54* 0.54* 0.55*
MMnf 0.08 0.27% 0.17* 0.48* 0.49* 0.8 0.31* 0.15* 0.51* 053* 026 0.10 -0.07 0.02 0.10
-0.08 0.00 0.31* 0.26* 0.29* -0.02 0.03 0.26* 0.29* 0.29* 0.52* 0.26* 0.03 0.01 0.26*
*p<0.05

Table 4-1. The contribution of envelope and carrieto model decision variables computed using the alyasis
technique described in Ch. 2. Results are shown fdhe Ny, condition at the subjects’ median signal-to-noise
ratio and for high and low signal-to-noise ratios ér the NoS condition. The subscripts E and C denote
statistics computed for envelope and carrier respdiwely. Significant b values indicated that the addition of
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envelope or carrier significantly increased the amant of variance explained. R? values are given in bold for
the proportion of variance explained by envelope,arrier, and a combination of envelope and carrierThe
first and second rows for each model show predicties for the ELC1 and E2C2 condition respectively (seCh.
2 methods for details). Model abbreviations are theame as described in Figs. 3-3 and 3-13.

4.3 Implications and suggestions for future experimnts
4.3.1 Psychophysical experiments

The results described in the Appendix and of Ride@and Nekrich (1993) both indicate
that listeners are free to use detection stratétpesliotic detection tasks) based on overall leve
level-invariant information, or both, dependingtbe specific cues provided in the stimuli. It
would be of interest to quantify the contributiafsuch cues in a way that (1) does not require
assumptions about peripheral processing or paaticldcision variables, (2) allows the
contribution of energy and temporal informatiorbspecified beyond comparing thresholds
computed with random maskers and (3) would allosvefiect of stimulus energy on detection
patterns to be quantified directly. An experimensuggested below that is designed to meet the
3 requirements listed above.

The proposed experiment contains 3 conditiond) eae with a set of reproducible
maskers. All are diotic and use sub-critical ndiaedwidths. Listeners would be trained using
the methods described in the Appendix and in Cin fhe first condition, stimuli would have
overall levels that vary in the standard way; eagise-alone waveform is normalized by the
RMS value of the ensemble of waveforms. When thedare added at each listener’s threshold,
energy differences between the tone-plus-noisenais#-alone stimuli would be created as a
function of the way the tone and noise sum temporal the second condition, the level
variation of the noise-alone waveforms would beem@d. That is, the formerly low-level noise-
alone waveforms would be scaled to become the leigdi-waveforms, and vice versa, but no
effort would be taken to change the level resultirigen the tone is added. Finally, in the third
condition, the corresponding energies for tone-ploise waveforms would be interchanged with
energies for corresponding noise-alone waveforimghis manner, 3 detection patterns would
be estimated, and by comparing across various sulpg, different energy-related hypotheses
could be tested. Order becomes paramount in tnedgses, so the Spearman rank-order
correlation coefficient should be used for all c@mgons. For example, suppose the energy cue
was dominant over all other cues. In that caseywméd expect that within hit and false-alarm
rates, the probabilities associated with each waweto reverse order in the detection pattern
for the second set of stimuli with respect to th&edtion pattern from the first set of stimuli.
(e.g., the stimuli leading to high hit and falsarai rates should now lead to low hit and false-
alarm rates and vice versa, following the trenthefoverall energies of each waveform). This
reversal would cause the rank-order correlatiowéen the two detection patterns to be -1.
Comparing between the first and third sets, deiagiatterns corresponding hit and false-alarm
rates should interchange on a waveform-by-wavetmansis, leading to a negative but equal
correlation between hit rates and false-alarm ratéise third condition with respect to hit rates
and false-alarm rates from the first condition.

Such an experiment would produce a measure ottéegth of the use of an energy cue,
indexed by the ability to reverse the order ofghgbabilities in the detection patterns. Specific
waveforms could be examined in the context of thembability ranks to determine any features
related to the rank change (or lack of change) fdetection patterns estimated in one condition
or another.
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The resulting correlations between detection pasteould be used as weights in a model
that combines energetic and level-invariant infaioma Because an energy model could be
applied to the data collected with the same stifudiat two different energies (i.e., rather than
equalizing overall energy), a direct test is pdssid whether the successes of energy-model
predictions are the result of their correlatioratget unidentified cue, or whether energy itself is
used as the decision variable.
4.3.2Modeling exercises
4.3.2.1 Diotic models

Two modeling exercises are proposed for diotic slilmased upon the results of Ch. 2.
of this work, and the models used by Bet@l.(1992) and Greeet al. (1992). Green and
colleagues have studied the discrimination of nalbend spectra (including sub-critical band
spectra) at a center frequency of 1 kHz. They abfe to partially explain their results based on
pitch cues (for bandwidths of about 1 critical bamdl narrower than 2 critical bands) and the
fluctuation of the envelope spectrum for stimulbbstantially narrower than a critical band (20
Hz at a 1 kHz center frequency). The stimuli feadiun Ch.3 of this thesis could fall into either
category. Thus it would be of interest to see mtezhs of both a pitch model, such as the
envelope-weighted instantaneous frequency (destribdetalil in Berget al.,1992), and a
model based on the modulation spectrum at the bofpaisingle critical-band filter (described
in detail in Greeret al, 1992; with more elaborate versions describedan @ al, 1997a; b).
4.3.2.2 Template-based models

The following discussion is intended to apply ty diotic or dichotic model that uses
internal templates (e.g., Datial, 1996a, b; Breebaagt al, 2001a, b, c). For example, the
Breebaaret al. (2001 a,b,c) model was tested in Ch.3 and foargktcorrelated to some
listeners’ data. However, the specific implemewotatised in Ch.3 did not take full advantage of
the model's complexity (as parsimony was paramauntder to compare between models).
Trial-by-trial responses were not simulated andraning template was not computed.
Computation of a running template could be a usafudeling exercise that would not only
exploit the full potential of the model, but wowdtso investigate an often-heard criticism
regarding experiments using reproducible noisesic€point out that experimenters have no
real way of knowing that listeners maintain the satatection strategy throughout an entire
experiment. Admittedly, the author and other listsrhave reported being influenced by
particular noise waveforms, or even feeling templyraonfused for brief periods (i.e., tens of
trials) during an experiment. Individual responard waveform identification numbers were
recorded on each trial for the experiments preselmeee, providing data suited for an interesting
analysis of template-based models. Suppose trab@late was constructed as the mean of
several practice trials of randomly generated nofSeppose also that this memory was a buffer
of a limited number of waveforms in a first-in figut configuration. It would be of interest to
re-examine model predictions for the data in stsidi€l as a function of the buffer length (or the
number of internal representations of the stimaédito compute an average template). This
analysis is possible because responses to eaclionavean be used to sort waveforms into
perceivedone-plus-noise and noise-alone groups, regardies®e stimuli used for each trial.

One potential drawback of this modeling approacid far that matter, a drawback of
any of the models used in this study) would be tih@tpotential use of short-term cues would not
be captured by the template mechanism employdteialbove models. Subjects reported for the
dichotic detection tasks that relatively brief ep®of stimuli were often the basis for decisions.
This fact compounds the modeling problem becauseetmporal locations of these epochs are
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unknown, and may differ from waveform to wavefo®uch a strategy would render useless the
temporal weighting scheme used by the Breebaaremadhich averages across waveforms.
Further, an epoch-based strategy would likely negairethinking (i.e., shortening) of the time
constant used for smoothing the output of the bimigarocessor in the Breebaart model.

Recent evidence suggests that the relatively Istighates of binaural temporal windows,
60 to 200 ms (e.g., Grantham and Wightman, 1979n&er and Gilkey, 1990; Culling and
Summerfield, 1998) may in fact be too long, andesies on the order of 50 ms or shorter might
be more suitable for modeling the current data &kkland Culling, 2005). Indeed, researchers
testing temporal aspects of binaural processing hneported time constants as short as 10 ms
(e.g., Akeroyd and Bernstein, 2001). One otheripdgg is that listeners may employ more
than one type of (potentially short-term) templ&teis strategy could be investigated by
grouping waveforms by their respective hit anddaarm rates, and then investigating the
templates that result from training the model usimyeforms corresponding to high, moderate,
and low hit rates.

Another suggestion for future modeling effortsnisgired by Hancock and Delgutte
(2004). Results from Ch.3 of the current study ssgjghat a single binaural delay/attenuation
model cannot explain detection for reproduciblensti. The Hancock and Delgutte model was
originally designed to predict interaural time driénce (ITD) discrimination data and is based
on recordings from the inferior colliculus of cakhe model employs a neuronal pooling strategy
that optimally combines dalues across a population of model neurons tunedst frequency
and ITD according to distributions measured in ttas. possible that responses of a population
of channels tuned to a number of different ITD eslare necessary to account for the current
data.
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APPENDIX

Diotic and dichotic detection under restricted-cueconditions

A.1 INTRODUCTION

This Appendix describes a preliminary experimeat #ddresses the use of energetic vs.
temporal cues as decision variables for tone-igendetection. The results of this experiment
inspired the design of the experiment in describgdh. 2, which more specifically tested the
use of temporal-envelope vs. fine-structure based ¢or tone-in-noise detection.

In this experiment, detection patterns (composdutafites and false-alarm rates) were
estimated from subjects’ responses to multiplegaregions of several groups of® and NS
reproducible noise waveforms. The overall energyatian across masking waveforms was
known, and both random-phase noise and low-noige rfonoise with reduced envelope
fluctuations; Pumplin, 1985) were used as maskimgudi. The variance of detection patterns
was analyzed to test the hypothesis that energyused as a detection cue foglstimuli. This
analysis was repeated to assess the impact ahgltée temporal properties of the stimulus
waveforms using low-noise noise for botBSland NS stimuli. Results for b5y stimuli
suggest a detection strategy based on overall gtieagy was slightly influenced by temporal-
envelope fluctuations in the signal. The exact aflenvelope fluctuations in the detection task
remains unclear for §& stimuli. Results did not indicate a specific waref feature (i.e.
temporal envelope or energy) that was able to @xpletection under all conditions, although a
simple energy model was able to explain detectattepns estimated using® stimuli,
predicting up to 84 percent of the variability ibgects’ responses. Results fogS\Nstimuli
indicate that both fine-structure and temporal éope are used in detection, suggesting that a
more direct investigation of the roles of overaléegy and waveform envelope and fine structure
should be pursued.

A.1.1 Background

Despite many years of study, the exact processhigihva listener detects a tone in a
noise waveform remains unknown. Over the pastd&itury, a number of explanatory models
have been used in attempts to predict the resutistb diotic (e.g, Fletcher, 1940; Richards and
Nekrich, 1993; and Carneatal., 2002) and dichotic (e.g., Durlach, 1963; Hafl&71; and
Colburn, 1977) tone-in-noise-detection experimeathough these models are successful in
predicting some detection thresholds, studies ugpgducible-masking waveforms have
shown that these models do not sufficiently captheedetection process on an individual-
waveform basis (with the exception of energy-basedel predictions for diotic stimuli; Gilkey
and Robinson, 1986; Isabelle, 1995; Davidsbtal., 2006). These studies used a number of
models to try to predict individual-subjects’ hitcafalse-alarm rates for detecting tones in sets of
reproducible masker waveforms.

Hit rates [P(Y|T+N)] and false-alarm [P(Y|N)] ratarea posteriori probabilities of
reporting tone presence for multiple presentat@mirsach tone-plus-noise (T+N) and each noise-
alone (N) stimulus, respectively. If the P(Y|T+N)daP(Y|N) values are considered together as a
set of waveform-dependent probabilities [P(Y|WhEY form a detection pattern. Many dichotic
models of tone-in-noise detection have proven wnabpredict individual subjects’ detection
patterns (Isabelle, 1995). While some diotic endrgged models were able to partially capture
the diotic detection patterns, they are known toirieother detection tasks, such as those using a
roving stimulus level, equal noise energies, lowsamoise, or Schroeder stimuli, suggesting
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that temporal stimulus properties must be constiéeey., Kiddetal., 1989; Richards, 1992;
Richards and Nekrich, 1993; Eddins and Barber, 1888 Smithetal., 1986).

Gilkey and Robinson (1986) and Davidsstal. (2006) showed that under diotic
stimulus conditions, a multiple detector (MD) modemposed of a linear combination of
overall energy at the output of several criticatd®surrounding the tone frequency was a good
predictor of subjects’ detection patterns. Thisliitg suggests that overall stimulus energy may
be a more salient cue for diotic tone-in-noise cl&a processes than temporal fluctuations in
individual waveforms. Nevertheless, Richards (1982nd that listeners are able to perform the
detection task even when stimulus energies arelizgdacross T+N and N stimuli. This study
is a first attempt at determining the contributiefise mporal-waveform structure to subjects’
detection patterns estimated with diotic and dichaproducible stimuli. Here, overall stimulus
energies (and magnitude spectra) were manipulatethier with temporal stimulus properties in
an attempt to clarify cues used for tone-in-nostedtion.

This study extends previous work (e.g., Zhebgl., 2002; Evilsizeetal., 2002; and
Davidsonetal., 2006) to begin a general examination of stimglusponents that may be used
to compute specific cues for tone-in-noise detectidne of the major goals of this work was to
move away from the standard tone-in-reproduciblsendetection experiment that was designed
to compare detection under different noise bandwidibne phases, etc., or to generate data
suitable for modeling (e.g., Pfafflin and MattheW866; Ahumada and Lovell, 1971; Isabelle
and Colburn, 1991; Isabelle, 1995; and Evilsel., 2002). The design of the present
experiment calls for the estimation of multipleatgton patterns that can be compared (see Fig.
1-2) to test critical modeling assumptions as dbedrbelow.

A.1.2 Experimental design

Here, rather than using arposteriorimodeling approach, models were used to gaide
priori manipulations of the reproducible-noise wavefor8ecifically, signal-processing
techniques were used to manipulate waveform ergerggenporal structures, and temporal
envelope properties. At this point it is worth gfieally defining the usage of “temporal
structure,” “temporal envelope,” and “temporal fsteucture” in this document. The term
“temporal structure” refers to the specific timeathin representation of the waveform as a
whole, without regard for presentation level. Téet “temporal envelope” refers to the slower
fluctuations present in the time-domain waveforat tan be removed either by half-wave
rectification and low-pass filtering, or for ournposes, digitally using the Hilbert transform.
“Temporal fine structure” refers to the carrierg(ezero crossings) present in the stimulus
waveform, without regard for the envelope. “Tempasteucture” includes both envelope and
fine-structure information.

Four groups of stimuli (or cue conditions) werearmorated into the design of this study
and were presented under bottsfNand NS interaural configurations. A baseline group
(random noise, random energy; RNRE) was composeaeéforms with random phase spectra
and overall-energies that varied randomly across#t. A second group (low noise, random
energy; LNRE) shared the same magnitude spectieedsst group, and also had varying
overall energies, but had phase spectra that veéreted using an adaptation of the low-noise
noise (LNN) algorithm (Pumplin, 1985). (The LNN afithm selects phases to minimize tffe 4
moment, or envelope fluctuation, of the noise waxafand is described in detail in Sec. A.2.1)
The LNRE stimuli therefore had different temporaustures than the RNRE stimuli, and would
effectively reduce any cues having a (monotonicaltyeasing) relationship to the magnitude of
temporal envelope fluctuations in the stimuli. Adhgroup of waveforms (random noise, equal
energy; RNEE) had the same temporal structureseafirst group, but had no energy variations
across waveforms within the T+N or N stimuli. Theeggies of the T+N and N waveforms from
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the RNEE conditions were equalized to the averagegees of the T+N and N stimuli from the
RNRE condition, respectively. Finally, a fourth dimon (LNEE; low noise equal energy) also
had no variations in energy within T+N and N stimQlverall levels of the T+N and N LNEE
stimuli were equalized to the average levels of Tarld N LNRE stimuli, respectively.

The influences of these manipulations were quaatifiy estimating subjects’ detection
patterns for each set of waveforms. If the stimuhasipulations altered cues used for the
detection task, observable differences in subjettection patterns would result across the four
stimulus conditions. By comparing the detectiortgras across certain cue conditions, three
naive hypotheses could be tested. Possible outcoftkese hypotheses are summarized in
Table A-1.

The first hypothesis was that subjects rely on alvstimulus energies to perform the
detection task. Although researchers have provanigteners do not depend entirely upon
overall energy to perform the detection task (&gld etal. 1989; Richards, 1992; Richards,
1993), recent evidence suggests that listenersemmgjoy this strategy when

Table A-1. Expected correlations for the 3 naive tgotheses involving the 3 comparisons (C)
shown in Figs. 1 and 2. In gthe two sets of stimuli have different temporal stictures, but
correlated energies. In G the two sets of stimuli have the same temporal stcture but
uncorrelated energies. In Gthe two sets of stimuli have the same temporal stctures,
uncorrelated energies and less dynamic envelopesathin C,.

RNRE RNRE LNRE

VS. VS. VS.
LNRE RNEE LNEE

C, C, Cs
Energy Moderate Low Low
Fine Structure Low High High
Envelope Low High Low

no effort is taken to make an overall-level cueeliable (Davidsoretal., 2006). Under such a
strategy, it was expected that the variance ofatiete patterns (i.e., the variance of hit and false
alarm rates across waveforms) estimated under iieERand LNEE conditions would be
smaller than the variance of detection patternsastéd under the RNRE and LNRE conditions
respectively, as there were no across-waveforrergifices (considering T+N and N stimuli
separately) in overall energy in the equal enemyd@ions. Further, since the correlations of the
energies of the RNRE and LNRE stimuli were knowmy@ moderate correlation between
subjects’ responses in RNRE and LNRE conditionsexgected. As a corollary, it was also
expected that detection patterns in the RNRE anBRbbnditions wouldhot be correlated and
that detection patterns in the LNRE and LNEE coodg would alsoot be correlated (because
the overall stimulus energies did not vary acrosll or N waveforms under EE conditions).
The second hypothesis states that listeners uggtahtues (based on temporal fine
structure or temporal-envelope fluctuations) tdquen the detection task. Under this hypothesis,
detection patterns estimated from the RNRE and LN&ttlitions wouldhot be correlated, as
the stimulus temporal structure was not preseretdiden corresponding waveforms across the
two sets of stimuli. As a corollary to this hypasise detection patterns estimated from RNRE
and RNEE stimuli were expected to be correlateayedsas patterns estimated from the LNRE
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and LNEE conditions. In each of the latter two canmgpns, temporal structures were preserved
between corresponding waveforms (but not overatges).

The third hypothesis states that listeners use temhporal envelopes (e.g., a cue
monotonically related to the magnitude of temperalelope fluctuations) to perform the
detection task. This hypothesis is based on theaRils (1992) observation that when a tone is
added to a noise waveform, temporal fluctuationthénenvelope of the noise waveform are
effectively reduced. Such an observation requinas listeners code the average temporal
fluctuation of the stimulus envelope. The tempaakelope hypothesis calls for only weak or
moderate correlations between detection pattetmaaed from the LNRE and LNEE
conditions, because such stimuli have intrinsicathall envelope fluctuations with respect to
those of the RNRE and RNEE conditions. Any use ai@that is monotonically related the
magnitude of envelope fluctuations should also baifasted as a significant change in the
variance of detection patterns estimated underlaN-Qoise) conditions with respect to RN
(random-noise) conditions. The difference in debecpattern variances between conditions is
expected because the variance of the distributdesvelope fluctuation {Amoment, described
below) are larger for RN stimuli than LN stimuln &ddition, if this temporal-envelope cue was
employed, detection patterns estimated in the RARERNEE conditions were expected to be
correlated, as no attempt to reduce the magnitidawelope fluctuations was made for these
stimulus sets. Finally, under this hypothesis, ooeadation should have existed between the
RNRE and LNRE conditions, because the temporattires of corresponding waveforms
differed across these conditions.

A.2 METHODS

Experimental procedures were matched closely teetlod Davidsortal. (2006),
Evilsizeretal. (2002), and Gilketal. (1985). In this experiment, tone-in-noise detetias
performed under both diotic ¢(8) and dichotic (NS ) listening configurations using
reproducible noises. Listening was completed imgle-walled sound attenuating booth
(Industrial Acoustics Company, Bronx, NY) locateda small room within a larger, quiet,
concrete-walled room. Five subjects ages 21-26sye@ampleted the experiment and each had
audiometrically-normal hearing. One subject (S8, ftrst author) had previous experience with
tone-in-noise detection experiments.

A.2.1 Stimuli

Stimuli were created with MATLAB software (MathwakNatick, MA) and presented
with a TDT System Il (Tucker Davis TechnologiesaiGesville, FL) RP2 D/A converter and
TDH-39 headphones (Telephonics Corp., Farmingtof), M/ithin each interaural
configuration, stimuli were generated accordingie of 4 cue-manipulations. Each of the cue
conditions contained 25 T+N and 25 noise-alone Yeoawes, such that 16 groups of 25
waveforms were considered (i.e., both T+N and Nugsp in two interaural configurations, and
in four cue conditions: RNRE, LNRE, RNEE, LNEE).deavaveform had a sub-critical
bandwidth (according to Glasberg and Moore, 199®)0dHz centered at 500 Hz and was 100
ms in duration.

Waveforms for the baseline condition (RNRE) wereegated in the frequency domain
using 5 frequency components with Rayleigh-disteldumagnitudes and uniformly-distributed
phases. Stimuli with temporal (phase) manipulatiwwase generated using the same magnitudes
as in the baseline condition, but had phases seledth an adaptation of the LNN algorithm as
described in Pumplin (1985). This algorithm seldgtbase values that minimized tH2 4
moment of each waveform in the set of wavefornmigcéively creating a set of stimuli that had
smaller envelope fluctuations than RN stimuli. Theice of LNN phases allowed the temporal
envelope, which is known to have an effect on tmreeise detection thresholds in both diotic
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and dichotic conditions (Eddins and Barber, 1988pe examined using individual masker
waveforms. Specific details of the LNN algorithne aliscussed below.

In order to minimize changes in envelope causeddolng the tone waveforms to the N
waveforms, T+N waveforms were incorporated into“dreor” function of the LNN algorithm
(i.e., the function that is minimized). Within th& N-algorithm “error” function, signals were
added to the N waveforms at levels correspondingadighest threshold across subjects
(established during training). The highest thredh@llue was selected because average
deviations in # moment increase with increasing signal-to-noisie (BNR). The “error” signal
in the LNN algorithm was modified to simultaneoualyd equally weight thé"moments of the
N waveform, the (bSg) T+N waveform, the -phase (NS ) T+N waveform, and the 0-phase
(NoS ) T+N waveform. The resulting search produced atatagnitudes, and two sets of
phases (corresponding to low-noise noise and rarmltase noise, such that the same sets of
magnitudes and phases were used for all listeriEngse magnitudes and phases were then used
to generate the unscaled time-domain RN and LN Mdefeams. The time-domain waveforms
were then cyclically shifted such that the minimahthe envelope occurred at the onset and
offset of the stimulus in order to reduce changestimulus properties caused by gating the
stimuli. RN and LN waveforms were then normalizgdhe average RMS of all 25 RN and 25
LN waveforms respectively, and then multiplied hg RMS value of a 40-dB SPL spectrum
level, 50-Hz bandwidth, 100-msec duration noiseef@anum (57 dB SPL). This normalization
process ensured that random level and SNR variatted across waveforms (denoted as RE,
or random energy). Tone waveforms were then adtledch individual subject’s threshold, and
10-msec cdsramps were applied to the T+N waveform, resultinthe final sets of LNRE and
RNRE stimuli.

Stimuli with restricted energy cues (denoted asdEequal energy) were generated from
the same unscaled time-domain-shifted waveformd umsthe LN and RN conditions above. In
order to minimize differences in energy across @vas, each N waveform was scaled to an
RMS level of exactly 57 dB SPL (40-dB SPL spectianel), effectively eliminating variation
in overall level and SNR across waveforms. Sigreaeforms were added at the thresholds
established during training (as above) and 10-rssramps applied. Each of the RNEE and
LNEE waveforms (with T+N and N groups treated saf®y) was then normalized to the mean
level of the corresponding group of T+N or N RNRELOIRE waveforms. In this manner, mean
differences in level between T+N and N groups wesserved, while overall levels within the
T+N and N groups were equalized.

The resulting RE waveform sets had standard dewisfjacross subjects and RN and LN
noises) in level of about 2.3 dB SPL. The averafferdnce in overall level of T+N and N
waveforms for EE stimuli was about 3.2 dB SPL. €Hectiveness of the LNN algorithm was
tested using a Wilcoxon matched-pairs signed-raedts(Sheskin, 2000). This non-parametric
procedure tested the hypothesis that that the Ld\NRix 4" moment distributions came from
different populations with different medians. Separtests of T+N and N stimuli showed
significant differencesp(< 0.001) between the medians of tfferdoments of RN and LN
stimuli for the various waveforms (e.g., dioticchivtic right and left, etc.), indicating that the
LNN algorithm was effective.

A.2.2 Training

Training procedures were similar to those detaieDavidsonetal. (2006) and will be
briefly summarized here. An extensive training paren was used to allow subjects to form a
stable decision strategy and criterion, such ttadiles performance occurred in the final testing
procedure, which was a single-interval task usangd numbers of trials at threshold. Threshold
is defined here for each subject as tg¥NEvalue in dB where d1. Three separate training



89

tasks were completed, and each task was progrssrege similar to the final testing
procedure. The training procedures used 50-Hz bakdyl00-ms duration noise waveforms
that were generated randomly on each trial (i@ thme reproducible stimuli used in the testing
procedure) and time shifted as described in S 1A0 reduce onset transients. Randomly-
generated noise was used to prevent any poss#rleing of the reproducible stimuli.

The following training and testing procedures wewaducted under both the$ and
NoS interaural configurations. In general, subjecteneed stimuli from only one interaural
configuration per session (2-3 hours), and theofi$&S, or NoS stimuli alternated by session.
In the rare cases where stimuli from both configjares were presented in the same session
(such as to finish up a particular training oritesparadigm), the two conditions were never
alternated within a session (or block). The initistening configuration was randomized across
subjects.

In the first training procedure, subjects complet8¢ll5 repetitions of a two-interval two-
alternative forced-choice tracking procedure witalby-trial feedback to estimate a level for
whichd 2aec = 0.77 (Levitt, 1971). Each track was a fixed lgngf 100 trials. The step size was
4 dB for the first 2 reversals and 2 dB thereafféwresholds were estimated by averaging tone
levels at reversals in the track excluding the firer 5 reversals such that the number of
averaged reversals was even.

The second training procedure was a single-intefixald-level task used to encourage
stable performance at each subject’s thresholdrépmately 10 blocks containing 100 trials
with feedback were completed at +3, +1 and -1 d&ixe to the threshold established in the
two-interval task. Throughout the single-intervalining procedures (and the testing procedure
described in C)d and bias (, MacMillan and Creelman, 1991) were monitored. @healues
calculated from these blocks were used as a margate estimate of the tone level whdre
was approximately equal to unity rounded to withidB. Approximately 10 blocks were then
run at that level. In the event a subject’s thré&tlsbanged, the tone level was adjusted with 1-
dB resolution untitl returned to near unity.

After a stable tone level was established, subpmtgpleted approximately 10 100-trial
blocks without feedback in order to determine wkethvalues would remain near unity after
feedback was removed. (Feedback was removed dlieisigng” to prevent any possible
learning of the reproducible stimuli.) If necessaone-levels were adjusted in 1-dB steps to find
the level resulting in d1. The block length was then increased to 400straahd subjects
completed 5 more blocks.

If deviated by more than 15 percent from 1 (a vafu& sndicated an equal probability
of guessing “tone” or “no tone”), subjects wereagiwerbal feedback to “try and make an equal
number of tone and no tone responses.” The subjaes also notified that < 1 indicates too
many “tone” responses and> 1 indicates too many “no tone” responses. Theegofd and
were computed using P(Y|T+N) and P(Y|N) acrosstatfiulus waveforms from the four
individual cue conditions. Because stimuli from theue conditions were interleaved and were
all presented at the same signal-to-noise rat&etivas no control over variations in the within-
cue-condition values af and . Listeners were shown their respectiveand values at the end
of each block.

A.2.3Testing

The testing procedure was identical to the finailing procedure except that the
reproducible noises described in Sec. A.2.1 weed as stimuli. Before each 400-trial block, 20
practice trials (that did not use reproducible stijnwvere presented with feedback. The testing
paradigm called for 2 presentations of each T+Neawh N stimulus from each of the 4
conditions. These presentations were randomlyledeed within each 400 trial-block.
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However, a programming error resulted in uneques@ntations of T+N and N stimuli in the
LNEE condition only, such that treeposteriori probability of a tone ranged from 0.48 to 0.51
for waveforms 1-24 (the RNRE, RNEE and LNRE coodisi were unaffected) and 0.33 for
waveform 25. Accordingly, waveform 25 was elimircafeom the analyses across all 4
conditions to maintain a balanced experiment. Altof 24 blocks were presented to each
listener such that approximately 48 presentatidresaoh T+N and each N waveform were
presented at the final tone level. The narrowbamsgenwaveforms used in training were random
and did not have equal energies and were not ceregldow-noise noise. As a result, the tone
level determined from the training procedure ditl mecessarily represent the level whereld
for each subject when using the sets of reprodeiciblse waveforms. In these cases, the tone
level was adjusted in 1-dB steps untildfor each subject. Each time the tone level chénge
which occurred two or three times for each subjet entire testing procedure was restarted.
[Recall that thresholds estimated with LNN stimdiffer from those estimated with Gaussian
noise (Hartman and Pumplin, 1988)]. The primaryppse for operating near untyand was
to ensure that reliable detection patterns welieastd, as operating well above threshold
results in all P(Y|T+N) having values near one ath@(Y|N) having values near zero, and
operating well below threshold results in chancggomance. Any learning during this process
was highly unlikely, as the long training procedwith feedback was designed to encourage
subjects to establish a fixed decision strategg,faadback was never used with reproducible
noise waveforms.
A.3 Results and discussion

Several comparisons are made in the following sastiFirst, the reliability of the
detection patterns is considered. Computing thalbiéty of each detection pattern establishes a
reasonable upper limit for correlations amongstvidm@ous stimulus conditions in the
experiment. Then, correlations between detectidtepes from the various cue conditions are
compared. Intersubject correlations and correlatlmetween interaural configurations are then
shown in order to reveal the potential use of lsinstrategies between listeners or between
listening configurations. Note that for all but thetween-subject analyses, an average subject
was created by averaging the P(Y|W) values achesfour subjects.
A.3.1 Reliability of the data and detection perfornance

Tables A-2 through A-5 show detection-performartegistics as well as reliability
statistics for all data collected in each of theué conditions under the,S and NS interaural
configurations. Overall measures of detection penémce  values) are presented for each
subject both across and within the 4 cue conditiongeneral,



Table A-2. Detection performance and reliability satistics for the NoS, interaural
configuration. One signal-to-noise ratio Es/No) was used for each subject. Overall and
were computed using responses to waveforms in atreditions. Individual d and values

are given for each of the 4 listening conditions (RRE, random noise random energy;

LNRE, low noise random energy; RNEE random noise agl energy; and LNEE, low noise
equal energy). The coefficient of determination b&teen responses from the first and the last
half of the trials (r?) and the proportion of predictable variance (V) ae given for each
condition, for hit and false-alarm rates consideredogether [P(Y|W)]. All r? values were
significant (p < 0.05).

Overall P(Y|W)
S EJN, d Condition d re Veew)
S1 5 103 1.18 RNRE 0.80 1.16 0.73 0.92
LNRE 1.23 1.16 0.89 0.97
RNEE 0.84 1.13 0.77 0.93
LNEE 1.25 1.25 0.75 0.93
S2 4 111 1.07 RNRE 0.94 1.09 0.89 0.97
LNRE 1.18 0.98 0.89 0.97
RNEE 1.01 1.14 0.72 0.92
LNEE 1.33  1.07 0.81 0.95
S3 6 077 0098 RNRE 0.74 1.01 0.69 0.91
LNRE 0.92 0.89 0.79 0.94
RNEE 0.58 1.05 0.72 0.92
LNEE 0.86 0.91 0.60 0.87
S4 4 094 0099 RNRE 091 1.25 0.79 0.94
LNRE 1.20 0.74 0.89 0.97
RNEE 0.77 1.21 0.82 0.95
LNEE 1.03 0.73 0.81 0.95
S5 5 114 0096 RNRE 0.93 1.04 0.85 0.96
LNRE 1.22 0.88 0.88 0.97
RNEE 1.04 0.98 0.82 0.95
LNEE 1.38 0.92 0.88 0.97
Sag 48 099 1.03 RNRE 0.86 1.10 0.96 0.99
LNRE 1.14 0.92 0.96 0.99
RNEE 0.84 1.10 0.95 0.99

LNEE 1.15 0.94 0.95 0.99




Table A-3. Reliability statistics for the NS, interaural configuration for hit and false-alarm
rates are considered separately [P(Y|T+N) and P(Y))l The Zstatistic, the coefficient of
determination between responses from the first anthe last half of the trials ¢?), and the
proportion of predictable variance (V) are given. Al 2 values were significant < 0.001)
and all r? values were significant§ < 0.05).

P(Y|T+N) P(Y|N)

S Condition 2 re V(TN 2 r’ Vv

S1 RNRE 452 0.66 0.90 317 0.52 0.84
LNRE 477 0.80 0.94 432 0.75 0.93

RNEE 206 0.47 0.81 305 0.69 0.91

LNEE 266 0.27 0.68 323 0.62 0.88

S2 RNRE 556 0.76 0.93 475 0.91 0.98
LNRE 552 0.82 0.95 479 0.75 0.93

RNEE 230 0.50 0.83 241 0.34 0.74

LNEE 249 0.46 0.81 126 0.22 0.64

S3 RNRE 374 0.64 0.89 393 0.55 0.85
LNRE 351 0.60 0.87 525 0.72 0.92

RNEE 404 0.73 0.92 419 0.68 0.90

LNEE 243 0.37 0.76 462 0.57 0.86

S4 RNRE 498 0.66 0.90 342 0.67 0.90
LNRE 601 0.82 0.95 739 0.84 0.96

RNEE 504 0.82 0.95 434 0.72 0.92

LNEE 471 0.76 0.93 533 0.76 0.93

S5 RNRE 726 0.84 0.96 535 0.70 0.91
LNRE 841 0.84 0.96 573 0.76 0.93

RNEE 430 0.78 0.94 368 0.57 0.86

LNEE 478 0.72 0.92 349 0.69 0.91

Savg RNRE 1813 0.94 0.98 1335 0.91 0.98
LNRE 2310 0.90 0.97 2149 0.94 0.98

RNEE 1163 0.91 0.98 1291 0.89 0.97

LNEE 992 0.83 0.95 1256 0.90 0.97




Table A-4. Same as Table A-2, but for the § interaural configuration.

Overall P(Y|W)
S EJN, d Condition d re Veew)
S1 -4 087 113 RNRE 1.10 0.96 0.70 0.01
LNRE 1.04 1.13 0.85 0.96
RNEE 0.77 1.10 0.62 0.88
LNEE 0.61 1.22 0.57 0.86
S2  -14 100 1.07 RNRE 1.31 0.85 0.86 0.96
LNRE 1.10 1.11 0.78 0.94
RNEE 1.00 0.98 0.71 0.91
LNEE 0.67 1.22 0.66 0.90
S3 -15 101 1.18 RNRE 1.19 1.01 0.87 0.97
LNRE 1.10 1.29 0.75 0.93
RNEE 0.97 1.08 0.71 0.92
LNEE 0.81 1.32 0.65 0.89
S4 -5 087 1.02 RNRE 093 1.22 0.88 0.97
LNRE 1.06 0.79 0.87 0.96
RNEE 0.86 1.22 0.87 0.97
LNEE 071 0.91 0.92 0.98
S5 -16 1.00 0.97 RNRE 1.10 0.74 0.81 0.95
LNRE 1.26 0.94 0.81 0.95
RNEE 0.94 0.91 0.64 0.89
LNEE 0.79 1.23 0.50 0.83
Sag -10.8 095 1.07 RNRE 1.11 0.96 0.95 0.99
LNRE 1.10 1.04 0.93 0.98
RNEE 0.90 1.06 0.92 0.98
LNEE 0.70 1.17 0.90 0.97

93
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Table A-5. Same as Table A-3, but for the § interaural configuration. Somer? values
were not significant ¢ = 0.16 forp < 0.05) and one % value was not significant (i = 49.7
for p < 0.001). These values are underlined.

P(Y|T+N) P(Y|N)

IS Condition 2 re V(TN 2 r’ Vv

S1 RNRE 159 0.16 0.57 206 0.52 0.84
LNRE 182 0.63 0.89 233 0.60 0.87

RNEE 215 0.43 0.79 185 0.33 0.73

LNEE 178 0.40 0.77 140 0.35 0.74

S2 RNRE 349 0.76 0.93 150 0.35 0.74
LNRE 560 0.79 0.94 98 0.03 0.30

RNEE 258 0.42 0.79 115 0.21 0.63

LNEE 297 0.68 0.90 74 0.08 0.44

S3 RNRE 348 0.87 0.97 69 0.07 0.42
LNRE 267 0.51 0.83 61 0.01 0.18

RNEE 209 0.59 0.87 77 0.01 0.18

LNEE 155 0.36 0.75 47 0.02 0.25

S4 RNRE 582 0.77 0.93 697 0.89 0.97
LNRE 743 0.79 0.94 828 0.83 0.95

RNEE 610 0.83 0.95 692 0.87 0.97

LNEE 937 0.92 0.98 1003 0.92 0.98

S5 RNRE 356 0.60 0.87 178 0.58 0.86
LNRE 425 0.59 0.87 223 0.44 0.80

RNEE 165 0.26 0.68 123 0.16 0.57

LNEE 297 0.29 0.70 216 0.17 0.58

Savg RNRE 869 0.87 0.97 357 0.65 0.89
LNRE 848 0.83 0.95 387 0.54 0.85

RNEE 704 0.80 0.94 368 0.65 0.89

LNEE 490 0.77 0.93 314 0.63 0.89

subjects with the highest thresholds had lodvefalues (S3, Table A-2; S1 and S4, Table A-4),
but for the majority of subjects and conditions ¢healues were approximately unity. The
majority of values were also near unity, with some exceptams (S1, Table A-2; S1 and S3,
Table A-4) showed a slight biasX1) to report “no tone” slightly more often. Detectipatterns
estimated within the different cue conditions wef@rimary interest, and accordingly, within-
conditiond and values were also of concern. Recall that the divmere randomly interleaved
across conditions using a single SNR in order steffoa single decision strategy for each subject,
and as a consequence, allowed experimenter carftoolly the overald and . Thus,

differences ird and from unity were not alarming, provided that théed#ion patterns were
significantly reliable (see below).

In the NS, stimulus condition (Table A-2)] values were generally lower for RN stimuli
with respect to LN stimuli. These results were cstesit with previous research that indicates,
under diotic conditions, thresholds for LN stimaite slightly lower than those for RN stimuli
(Hartmann and Pumplin, 1988; Kohlrausthal, 1997; Eddins and Barber, 1998; and Eddins,
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2001). S3 and S4 showed a slight bias toward tesgonses for LN stimuli, which would be
consistent with the use of envelope flattening dstaction cue.

Reliability statistics (Tables A-2 to A-5°, the correlation between estimates of the
detection patterns computed from the first halfesting trials and from the last half of testing
trials; andV, the proportion of predictable variance in theedabn patterns) indicate that
regardless of the within-condition deviationsdo&nd from unity, NSy detection patterns were
significant. The ?values were significant {.; = 49.7 forp < 0.001) indicating that the
variability in P(Y|W) across waveform is more thexpected by chance. Thevalues were also
significant [t = 0.16 for P(Y|T+N) or P(Y|NX%: = 0.18 for P(Y|W)p < 0.05], indicating
that the probabilities estimated from the firstfludillisteners’ responses were correlated to the
probabilities estimated from the second half oflisteners responses.

Thed and for the NS stimulus configuration were more variable acraggects than
those for the b5y configuration. Table A-4 shows that in generahjeats had slightly lowed
values for the EE conditions and highvalues for the LNEE condition with respect to ttkeer
three conditions. The lo@ values observed in the EE conditions may be reli¢he level-
equalization procedure. The right-ear and leftstmnuli were scaled separately to the same
overall level, resulting in a slight reduction afaraural-level differences for those stimuli. If
listeners were relying on cues related to oveeail differences between the ears, performance
would have been poor. Highvalues for the LNEE condition indicated that Irstes perceived
both T+N and N stimuli as N stimuli. Such a pereaptould have been the result of temporally
consistent envelopes (from the LN stimuli) combimeth reduced interaural-level differences
(from the normalization procedure) leading to cstesit energies in each ear. The data from the
NoS condition were slightly less reliable on avera@ye.exception was S3, whose data were
very unreliable for N stimuli.

Tables A-2 through A-5 also show estimates of ttopg@rtions of predictable variance
(V) computed separately for P(Y|T+N), P(Y|N), and [F{Y. These quantities are estimates of
the upper bounds for predicting response varianoesa reproducible waveforms for particular
subject, cue-condition, and interaural-configunatimmbinations, and are basedrbnalues
using the formula described by Ahumada and Lov&Ir().

A.3.2 Comparisons between cue conditions

The primary purpose of this work was to investigae relationships between detection
patterns estimated under the various cue conditibms design of the experiment called for
three main comparisons between detection patteNBE vs. RNRE, RNEE vs. RNRE, and
LNEE vs. LNRE). These comparisons, along with conspas of the variances of the detection
patterns, indicated which of several possible ¢aesrall energy, temporal structure, temporal
envelopes, and temporal fine structure) was prignased for detection. The variance of a
detection pattern is calculated by (separately)mating the variance of thescores of the
individual P(Y|T+N) and P(Y|N) values. Figures Aafid A-2 show comparisons between
detection patterns estimated under the differemiustis conditions for 5, and NS stimuli,
respectively. The following description pertaingtuth figures. Each column corresponds to a
particular comparison and each row to a particsudnject. Each panel shows a scatter plot of the
z-scores of P(Y|T+N) (circles) and P(Y|N) (squafesin two cue conditions. Alt-scores were
computed as the inverse of the normal cumulatis&idution function ¢df) using P(Y|W).

Values of 0 or 1 were replaced with 1/48 or 47Kspectively, such that the inverxs#f was
defined. [Replacement with 1/48 occurred for 7haf 1000 (2 interaural configurations x 4
conditions x 5 subjects by 25 noises) P(Y|N) valinas were equal to 0 and replacement with
47/48 occurred for 25 of the 1000 P(Y|T+N) valuest tvere equal to 1.] The scatter plots in the
first column show comparisons between LNRE and RNREW). In this comparison, the
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temporal structures of corresponding waveformsspdiffered, but the overall energies were
positively correlated.rf 0.62; this correlation was reduced from 1 by gm@ping procedure;
when ramped, the overall energies of stimuli witffedent temporal structures but identical
magnitude spectra, differ). The scatter plots exdbcond column show comparisons between
RNEE and RNRE conditions. Corresponding waveforirspa this comparison had identical
temporal structures (and therefore identical “meé&gtmagnitude and phase spectra), but differed
in overall energies. In the third column, corresiing waveforms in the LNEE and LNRE
conditions are compared. This comparison was airtol that shown in the second column,
except stimuli were constructed using LN rathentR& phases. Thus, the waveforms in this
comparison had less dynamic envelopes with respebe RNEE-RNRE comparison.? Ralues
are shown for each panel and were calculated wsarglard linear regression.

By comparing R values across the three columns, inferences camabe about the cues
used for detection. Rralues near 0.62 in the first column and lofwRlues in the second and
third columns would suggest that subjects reliedwrall energies to perform the detection
task. Low R values in the first column and highf Ralues in the second and third columns
would suggest that subjects used temporal strutbyperform the detection task. Low Ralues
in the first column, high in the second, and lowha third would suggest that subjects used
temporal envelopes to perform the detection tabks& outcomes are summarized in Table A-1.

Because the upper limit of the expectédvRiues shown in the first column of Fig. A-1 is
known to be smaller than 1, no tests of signifigdifierences between correlations with column
1 are reported. Tests of correlated but non-ovpitgpcorrelations (Raghunathanhal, 1996)
were used to compare Ralues from the second and third columns; sigaifio/alues indicate
that altering the envelopes of the stimuli influeda@etection patterns (recall that energies were
uncorrelated and magnitude spectra were the sathenwiach comparison). Significamt €
0.05) differences betweerf Ralues for each comparison are denoted with ariskst Results
for the NNSp and NS interaural configurations are presented separatsiyw.

Differences between the variances of the detegadterns are presented in Fig. A-3.
Differences in variance between the RE and EE tomdi are shown in the upper row of each
panel and differences in variance between the RNLAhconditions are shown in the lower
row of each panel). Significant differences betwtdenvariancesp(< 0.05;t test for
homogeneity of variance for two dependent sam@asskin, 2000) of RE and EE detection
patterns are indicated with asterisks in the upperof each panel. Significant differences
between the variances of LN and RN detection pagtare indicated with asterisks in the lower
row of each panal
A.3.2.1. NS

Figure A-1 shows results for detection patternsreged with NS stimuli. All reported
R? values were significanp(< 0.05). S1 and S2 had the highe$v&ues for the conditions in
which temporal structures were preserved (columasd®3), but showed no significamt <
0.05) differences betweerf Ralues across the 3 comparisons. S3 through $Etiferaverage
subject) showed patterns of correlations similagaoh other. For each of these listenefs, R
values for comparisons in which temporal structures

® Please note that the threshold for significarfedéces between variances depends upon moreiiadength of
each bar shown in Fig. A-3, which shows only thfeedences in variances between the pairs of detegatterns
tested. The test aflependent samplesed for this procedure also depends on the coorlbetween each pair of
detection patterns tested, as well as the oveaathnce of each pattern (not shown in Fig. A-3).
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Different temporal structures Temporal structure preserved  Temporal structure preserved (LNN)
(correlated overall energies; r?  0.62) (different overall energies) (different overall energies)

S1

S2

S3

S4

S5

avg

Figure A-1. Scatter plots showing comparisons betved detection patterns estimated under the differentue
conditions for the NvS; interaural configuration. Each row represents a diferent subject, and each column a
specific comparison. R values are given for z{(P(Y|W)} and all B values were significant (p < 0.05). Each point
represents the z-score of a probability for an indiidual T+N (circles) or N (squares) waveform. If tle detection
patterns for each cue condition in each comparisowere identical, all points would fall along the digonal. Best-fit
regression lines are shown for each comparison. Ratthat waveform-overall energies are preserved in
comparisons in the first column, waveform-temporalstructures are preserved in comparisons in the send
column and, and temporal structures using LNN wavedrms are preserved in comparisons in the third colonn.
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Different temporal structures Temporal structure preserved  Temporal structure preserved (LNN)
(correlated overall energies; r?  0.62) (different overall energies) (different overall energies)
r * 1

S4

S5

avg

Figure A-2. Same as Fig. 1 except comparisons askown for the NyS interaural configuration. Stars
indicate significant differences (p < 0.05) betweecorrelations in the 2% and 3 columns.
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N.S
P(Y|T+N) 0=0 P(Y|N)

[ “]

NyS

[ “]

S1 S2 S3 54 85 5, S1 S2 S3 S4 S5 S,
Subject

Figure A-3. Comparison of variances of detection geerns from the four cue conditions (within each shject).
Each bar represents the difference of two variancesignificant differences p < 0.05) between RE and EE
conditions are shown in the top rows of panels A @B with an asterisk. Significant differencesf < 0.05)
between RN and LN conditions are shown in the botto rows of panel A and B with an asterisk.
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were preserved (columns 2 and 3) were higher tRarmRes for comparisons in which temporal
structures were not preserved (with correlatedallvenergies, column 1; tests of significant
differences were not performed because the uppdrdif the expected correlation in columnl
was 0.62). However, Ralues for column 1 did approach the expectednaaximum value for

an energy cue for S1, S2 angdS

Differences between the variances of the detegiagterns in the RE and EE conditions
are shown in Fig. A-3 A (upper row, for the®J condition). Recall that under an energy model
assumption, the variances of P(Y|T+N) and P(Y|NIfEE conditions are expected to be
smaller than the variances of P(Y|T+N) and P(Y [Nt RE conditions. P(Y|T+N) and P(Y|N)
are observed separately because overall energresaggealized separately for T+N and N
stimuli, maintaining the average level differenetvizeen groups. Figure A-3 A (upper-left
panel) show that of the 12 comparisons performe®{¥|T+N), 7 had significantly lower
variances for EE conditions. Figure A-3 A, (uppigiht panel) also shows the 12 comparisons of
RE and EE variance performed for P(Y|N). Here @&gpmparisons showed significantly lower
variances in EE conditions. While these resultsaloargue strongly for the use of energy as a
detection cue, note that in all but 3 of the 24 pansons considered, the variances of RE
detection patterns were larger than those of EEctien conditions. This finding suggests some
effect of energy equalization, but is consisterihvhe notion that energy was certainly not the
only cue used for detection. Nevertheless, thefgignt R values in the first column of Figs. A-
1 and A-2, and consistent changes in detectioreqattariance indicate that overall stimulus
energy played a role as a cue for detection. Tihisrfg will be considered in the context of a
basic energy model below.

Recall that if subjects were relying on cues relatethe magnitude of envelope
fluctuation to perform the detection task, the etpd variability of detection patterns in the LN
conditions would be significantly different thantime RN conditions. Under this hypothesi$, R
values in the second column of Fig. A-1 (RNRE vSBIHE) should also be significantly different
from those in the third column of Fig. A-1 (LNRE.\'INEE), because the temporal envelopes of
the stimuli are significantly different between tin® comparisons. No significant differences
were found. Further, Fig. A-3 shows results fromedt tests comparing the variances under RN
and LN conditions separately for P(Y|T+N) and P()Y|None of the comparisons yielded
significant differences in variance. Overall, thessults indicate that listeners’ decision
variables were not strongly affected by a direchimalation of temporal envelope fluctuations.

One of the main goals of this study was to exartlegpossible use of overall energy in
tone-in-noise detection. Previous work with roviegel and equal-energy stimuli has
demonstrated that subjects are able to use cuestbdn overall energy to perform a tone-in-
noise detection task (Kidet al., 1989; Richards, 1992; Richards and Nekrich, 1998pse
studies examined only tone thresholds and asketl listeners are capable of doing without
“natural’ differences in overall energy. The questproposed here was quite different, and was
inspired by the good energy-model fits achieveBavidsonet al (2006) using reproducible
stimuli. Here we ask if the “standard” tone-in-r@detection strategy is inherently different
from that of an energy detector, or if listeneray switch strategies in the face of roving-level
or equal-energy stimuli. Put more simply, given éhailability of overall energy cueBpware
listeners performing the detection task? In thiseginent, the average energy differences were
preserved across T+N and N stimuli in the EE camalit while keeping the overall energies of
all T+N waveforms equal and the overall energiesllol waveforms equal, allowing the use of
an energy-based detection strategy in either therREE conditions. The mere existence of a
detection pattern with significanf values in the EE conditions is evidence againstieeof a
detection cue based entirely on overall energy. él@nr, analyses of homogeneity of variance
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indicated that detection patterns in the EE cood&itended to have smaller variances (although
this level was above Bernoulli variability, as shohy the ? tests in Sec. A.3.1), as would be
expected if overall energy was used exclusivels decision variable. Comparisons of P(Y|W)
values between RNRE and LNRE conditions (which ¢@udelated overall energies but different
temporal structures) were also used to determilitainers were using overall energy as a
primary cue in the detection task. All subjects biphificant R values for this comparison and

3 of the 5 subjects hadf Ralues that approached the expected correlatioarf@nergy-based
model. Such results were further explored usingrargy model.

A simple energy-style model was implemented (tlitecaei-band model from Davidsoet
al., 2006) and used to predict the results of thegmtestudy. The model's decision variable was
simply the energy at the output of &drder gammatone filter centered at the tone fraque
Table A-6 shows the proportions of variance inlisteners’ detection patterns explained the
energy-model predictions. Note that Rilues were significant®alues for RNRE and LNRE
conditions for all subjects. The energy model watsused to predict EE stimuli, as energy
variations in the output of the 75-HZ"-arder gammatone filter had a range of energy
differences (within T+N or N

Table A-6. Proportions of variance in detection paerns estimated for NSy RE conditions by
a model based on overall stimulus energy. AllRvalues (computed as the square of the
correlation coefficient between energy model predtons and each subject’s detection
pattern) were significant (p < 0.001).

P(YW)
S RNRE  LNRE
s1 0.67 0.79
s2 0.73 0.84
s3 0.35 0.56
sS4 0.34 0.67
S5 0.68 0.80

Savg 0.67 0.82

waveforms) of less than 0.65 dB SPL (compared3al8. SPL for RE stimuli). Such small
variations in energy would be undetectable duaternal noise.

Tests of correlated but non-overlapping correlaisinowed that the energy model
predicted significantlyd < 0.05) more variance in LN detection patternsitiltaRN detection
patterns for all subjects but S5. These resultsatd that listeners behaved more like energy
detectors for stimuli that had envelopes with reduituctuations. The results from Fig. A-2
showed a small effect of waveform temporal strugttut did not produce a striking pattern of
R? values indicating envelope dominance as a detectie (i.e., significantly different’Rialues
in the second and third columns). Taken togetheisd results support the notion that overall
energy prevails as a cue for detection when ivalable, and that temporal variations in the
stimuli also act as cues for detection when ovenadirgy is made unreliable.

These findings suggested that when studying diotie-in-noise detection (with or
without reproducible stimuli) it is important toguent the use of overall energy as a detection
cue (e.g., roving stimulus levels or equalizingnstius energies). The use of such a simple



102

energy cue effectively dominates data that couldxXpored to learn about other cues important
for detection of target signals in noise.

Corresponding waveforms in each of the cue conwtia the present study had the same
spectral shapes, and detection patterns from dable conditions were significantly correlated
for most subjects. This indicates that spectrgbshmay have played a role as an additional
detection cue. Greest al. (1992) reported on spectral shape discriminatid2z0eHz wide bands
of Gaussian noise (with components spaced in SaElzments) centered at 1000 Hz. They
suggested that for stimuli falling within a singletical band the envelope power spectrum was a
likely cue. Their model used a weighted sum ofrtbemalized powers in 5 different modulation
channels, and under-predicted listeners’ threshoyd3to 5 dB when the signal was added to the
center component of the spectrum. It is unclearthdresuch results are meaningful for the
present study, given the 500-Hz signal frequeneyliere, due to the possibility that listeners
may employ different strategies or operate usifigreint cues at the two signal frequencies.
Nevertheless, the model described by Gregead. (1992) is suggested as a candidate for future
study in Ch. 4.

A.3.2.2 NS

Comparisons between detection patterns estimatbdNgS stimuli are shown in Fig.

A-2. Recall that the reliability of thedS data was relatively poor compared to that of th&N
data (see Tables A-2 through A-5), consistent whigntightly clustered z{P(Y|W)} values near
the center of in each panel in Fig. A-2. This cuisty would tend to obscure differences across
the various cue conditions for some subjects.

If the magnitude of envelope fluctuations werated to the detection scheme used for
NoS stimuli, one would expect the variances of theedihn patterns to be significantly
different when estimated using LN rather than Rssl. Figure A-3 B, bottom shows that no
significant differences in the variances of P(Y|T-4M P(Y|N) between RN and LN conditions
were observed, indicating that the magnitude ottape fluctuations was not a primary cue for
detection. The results of S4 showed significaniiher R values for the second comparison
than for the other two comparisons (but not becafiseduced variance in the LN conditions),
suggesting that this listener incorporated tempfinal structure or the temporal structure of the
entire waveform as part of the detection strat@tme R values for the comparisons in the
second and third columns of Fig. A-2 were not digantly different for the remaining subjects.

NoS detection patterns were obscured by the unreliadiere of the data collected under
those conditions. Unreliable detection patterndccbave occurred for a number of reasons. One
possible reason is the fact that level-equalizatias performed binaurally, and may have led to
the slightly lower dvalues in EE conditions with respect to RE coodii(as shown in Table A-
4) and also to the pattern of significant differesan variances of P(Y|T+N) only between EE
and RE conditions (Fig. A-3). Hennirg al. (2005) performed a tone-in-noise detection
experiment using 30-Hz wide, 110-ms duration noeatered at 500 Hz. They used a 40-dB
dichotic rove that should have had a similar effeaqualizing overall energies across the two
ears. They found that thresholds increased slightdyobserved here with the slightly lower d
values) for dichotic-rove conditions with respexicbnditions where the levels were not roved or
were roved diotically. As in the Hennimg al. (2005) study, if listeners had adopted a strategy
such as lateralization during training (which makes of interaural level differences), the level
equalization scheme could have led to less reliedsalts during testing. The present results do
not point to the consistent use of particulagENwvaveform features by any of the subjects in this
study.
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A.3.3 Comparisons between subjects and between irderal configurations

Tables A-7 and A-8 show intersubject correlatitorshe four cue conditions in the
experiment. (Correlations are presented in ternté, @i the square of the correlation coefficient,
which can be interpreted as the percentage ofn@ia one subject’s detection pattern that is
explained by the variance in another subject’sali&te pattern.)

Table A-7. Comparisons between subjects’ [P(Y|W)]nesented in terms ofr?, the
square of the correlation coefficient.

Interaural Intersubject P(Y|W)
configuration Comparison RNRE LNRE RNEE LNRE

NoSo S1-S2 0.61* 0.86* 0.67* 0.69*
S1-S3 0.57* 0.76* 0.58* 0.72*
S1-S4 0.51* 0.76* 0.71* 0.69*
S1-S5 0.72* 0.78* 0.72* 0.78*
S2-S3 0.52* 0.72* 0.51* 0.58*
S2-S4 0.50* 0.78* 0.59* 0.62*
S2-S5 0.62* 0.80* 0.61* 0.66*
S3-S4 0.52* 0.80* 0.52* 0.76*
S3-S5 0.54* 0.65* 0.49* 0.57*
S4-S5 0.54* 0.73* 0.55* 0.59*

NoS S1-S2 0.54* 0.37* 0.43* 0.15*
S1-S3 0.57* 0.39* 0.57* 0.26*
S1-S4 0.44* 0.53* 0.49* 0.47*
S1-S5 0.53* 0.43* 0.57* 0.13*
S2-S3 0.81* 0.80* 0.65* 0.64*
S2-S4 0.35* 0.25* 0.35* 0.05
S2-S5 0.68* 0.80* 0.58* 0.54*
S3-S4 0.35* 0.28* 0.26* 0.15*
S3-S5 0.71* 0.77* 0.66* 0.56*
S4-S5 0.37* 0.22* 0.40* 0.00

*p<0.05
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Table A-8. Comparisons between subjects for [P(Y|TN)] and [P(Y|N)] considered
separately, presented in terms of?, the square of the correlation coefficient.

Interaural Intersubject P(Y|T+N)
configuration Comparison RNRE LNRE RNEE LNRE
NoSo S1-S2 0.49* 0.72* 0.44* 0.04
S1-S3 0.44* 0.62* 0.37* 0.43*
S1-S4 0.30* 0.59* 0.53* 0.24*
S1-S5 0.57* 0.65* 0.45* 0.50*
S2-S3 0.49* 0.54* 0.39* 0.20*
S2-S4 0.19* 0.74* 0.32* 0.33*
S2-S5 0.51* 0.66* 0.28* 0.04
S3-54 0.27* 0.56* 0.30* 0.37*
S3-S5 0.40* 0.66* 0.27* 0.28*
S4-S5 0.35* 0.68* 0.31* 0.35*%
NoS S1-S2 0.02 0.00 0.06 0.01
S1-S3 0.04 0.07 0.15 0.04
S1-S4 0.22* 0.27* 0.30* 0.30*
S1-S5 0.03 0.00 0.35*% 0.03
S2-S3 0.53* 0.61* 0.23* 0.49*
S2-54 0.09 0.01 0.13 0.00
S2-S5 0.30* 0.72* 0.10 0.27*
S3-54 0.09 0.01 0.05 0.01
S3-S5 0.46* 0.46* 0.32* 0.33*
S4-S5 0.17* 0.01 0.20* 0.10
Interaural Intersubject P(Y|N)
configuration Comparison RNRE LNRE RNEE LNRE
NoSo S1-S2 0.31* 0.70* 0.29* 0.34*
S1-S3 0.31* 0.60* 0.56* 0.63*
S1-S4 0.23* 0.58* 0.69* 0.69*
S1-S5 0.61* 0.52* 0.50* 0.32*
S2-S3 0.15 0.52* 0.38* 0.41*
S2-54 0.36* 0.52* 0.57* 0.42*
S2-S5 0.33* 0.61* 0.20* 0.30*
S3-54 0.35*% 0.71* 0.51* 0.72*
S3-S5 0.30* 0.28* 0.40* 0.26*
S4-S5 0.30* 0.47* 0.41* 0.22*
NoS S1-S2 0.04 0.01 0.00 0.04
S1-S3 0.01 0.13 0.17* 0.03
S1-S4 0.12 0.27* 0.27* 0.49*
S1-S5 0.01 0.00 0.02 0.09
S2-S3 0.13 0.12 0.00 0.00
S2-S4 0.01 0.01 0.04 0.04
S2-S5 0.08 0.17* 0.01 0.22*
S3-54 0.01 0.00 0.01 0.01
S3-S5 0.02 0.16 0.00 0.00
S4-S5 0.02 0.04 0.09 0.29*

*p <0.05
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Compared to previous work (Davidsenal. 2006), these correlations were slightly lower, athi
may have been a consequence of the reduced nuifniténolus presentations (approximately
48 vs. 96) and increased within-subject variabil@prrelations were lower for comparisons
made in the b5 condition than in the § condition. These reduced correlations between
interaural configurations were partially a consegpgeof the lower reliability of the data from
the NS configuration; but, in general, intersubject c@atiens were lower for dichotic than for
diotic configurations (e.g., Evilsizet al, 2002; Isabelle, 1995). There was a relationship
between intersubject correlation and threshold-tewels, particularly for the §6

configuration. Subjects with similar thresholds madre correlated detection patterns. For
example, correlations between S1 and S4, S2 andr8353 and S5 were significant for T+N
stimuli in all four cue conditions in both interaliconfigurations. These subjects’ thresholds
differed at most by only 1 dB. Very low intersuldjeorrelations occurred for pair-wise
comparisons between S1 and S2, S1 and S3, anddS$%ufor T+N stimuli; these subjects’
thresholds differed by at least 10 dB. Similar @at$ of correlations also occurred for responses
to N stimuli, although not as frequently.

There was a relationship between cue conditioniedsubject correlation for responses
in the N\Sy configuration. Detection patterns were most simbetween subjects in the LNRE
condition. High between-subject correlations cdudda consequence of highvalues and
relatively highd values observed for the LNRE condition (model-aatsparisons are also
relatively higher for the LNRE conditions, as désed in Ch.3), but likely also reflects the use
of similar strategies among subjects for the LNREdition.

Perhaps the most valuable information to come filmese comparisons was that subjects
with high NbS thresholds (and thus with small MLDs, such as 81 $4) tended to have
correlated P(Y|N) values, both between subjectsbatdeen interaural correlations, whereas
subjects with low NS thresholds (and thus large MLDs, such as S2,18858&) tended to have
low intersubject correlations and low correlatitvesween interaural configurations. Tables A-2
through A-5 reveal that S1 and S4 had slightly mefi@ble detection patterns (with higher
predictable variances) which could account for pathis effect. A review of Evilsizegt al.

(2002, Table A-4, S2) reveals high correlationsMeein P(Y|N) values for the subjects with the
highest NS thresholds, indicating that this phenomenon wasin@ue to this study. Overall,
this finding suggests that subjects with higheetthresholds used strategies that were similar
both across subjects and across interaural coafigms. Subjects with lower thresholds used
strategies for pE5 stimuli that were not correlated across subjectsitih strategies used for
NoSp stimuli.

Tables A-9 and A-10 show correlations between dietepatterns estimated using®y
stimuli and using B stimuli. Values of? are reported within each cue condition for each
subject. The strongest between-configuration catigels occurred for subjects S1 and S4 across
cue conditions. Recall that corresponding noise&@laveforms were identical across the two
interaural configurations. This pattern of corrielas is consistent with the fact that S1 and S4
had the highest thresholds fogN stimuli and also the smallest differences betwéss and
NoS thresholds. The high correlation values suggestttiese listeners were using a strategy for
NoS stimuli that was similar to the strategy used f@&\stimuli, accounting for the small
differences
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Table A-9. Comparisons between interaural configuraons for [P(Y|W)] presented in terms
of r?, the square of the correlation coefficient.

P(Y|W)

S RNRE LNRE  RNEE  LNRE
s1 051  054* 064" 053
s2 0.19*  0.14* 043" 029
s3 028  028* 020" 025
S4 057  0.49*  0.66*  0.68*
S5 0.17¢  023* 029~ 027
Saw 047*  0.45*  0.66*  0.67*

*p<0.05

Table A-10. Comparisons between interaural configuations for [P(Y|T+N)] and [P(Y|N)]
considered separately, in terms of?, the square of the correlation coefficient.

P(Y[T+N) P(Y|N)

S RNRE _ LNRE ___RNEE __ LNRE RNRE _ LNRE _ RNEE __ LNRE
S1 0.02 0.03 0.18* 0.04 0.66* 0.75* 0.56* 0.56*
S2 0.19* 0.31* 0.00 0.07 0.00 0.00 0.01 0.03
S3 0.00 0.01 0.00 0.17* 0.01 0.00 0.08 0.08
S4 0.17* 0.01 0.37* 0.40* 0.85* 0.79* 0.80* 0.89*
S5 0.01 0.10 0.00 0.02 0.02 0.00 0.09 0.01
Sag  0.00 0.17* 0.16 0.01 0.50* 0.60* 0.54* 0.72*

*p<0.05

between NS, and NS thresholds in these listeners. Correlations betveteraural
configurations for responses to T+N stimuli weigngicant in only a few cases and were, on
average, smaller than correlations reported fqgaeses to N stimuli.

Consider again that correspondingShland NS waveforms were identical when the
tone was not present, but were very different wihertone was present. One might then expect
P(Y|N) values to be more similar between the tweraural configurations than P(Y|T+N)
values, provided that the same or similar detecttostegies were used for each interaural
configuration. However, such a pattern of interbaoarelations would suggest of the use of
different strategies for T+N and N trials. Giveathsteners had no way of knowiagpriori
which trials contained the tone, the use of aatpatonditional on tone presence would have
been impossible. The application of a diotic datecstrategy to b5 stimuli would not
necessarily have produced P(Y|T+N) values that wereelated across interaural configurations.
However, even the partial use (e.g., on some }rnidla diotic strategy would certainly cause
increased tone thresholds with respect to the Liadroe binaural detection strategy.

A.4 Conclusions and future directions.

The primary conclusion of this work was that if caleenergy was available as a cue for
diotic tone-in-noise detection, listeners tendedde the energy-based cue, which explained up
to 87 percent of the variance in P(Y|W) for diationuli. Accordingly, unless researchers are
interested in examining the role of energy in tan@oise detection, future studies should
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employ a scheme to make energy cues unreliabkidies of NS, detection in order to reveal
less obvious and more interesting detection stiedeg

There are several considerations worth emphasiainipe design of studies that
compare detection patterns estimated using intexteatimuli with arbitrary manipulations.

First, one must be sure that the stimulus manimratdo not affect thresholds in the individual
cue conditions to the point that the data may becameliable. Second, the assessment of
listeners’ strategies based upon the changes ivatti@nce of detection patterns [or alternatively,
internal-to-external noise ratios (see Siegel aolb@n, 1989)] is not recommended because the
necessary tests lack statistical power and thegeest intersubject variability. Third, when
comparing across cue conditions, a carefully setetontrol” or “baseline” condition should be
provided such that differences between this baselndition and other conditions may be used
when relative differences in correlations are snkaflally, a large number of trials is necessary
(>>50) to establish highly reliable detection patse This number is larger than the numbers
used in previous studies that did not interleawe @anditions within blocks. Future studies will
make use of these recommendations to more direbHgrve the roles of temporal envelope and
fine structure in diotic and dichotic tone-in-nogetection.

In Ch. 2, a more direct strategy was used to exatfie roles of envelope and fine
structure in diotic and dichotic signal detecti®he experiment described in Ch. 2 incorporated
much of what was learned from this study, includehguble the number of trials for more
reliable data, manipulation of stimulus componeavithout assumptions about individual cues
(other than energy; e.g., thd mioment of the stimulus envelope), energy equatiagor NoS
stimuli (to effectively remove overall energy ap@ssible cue), and no energy equalization
under NS conditions in order to prevent unnecessary intadaiimulus manipulations. Chapter
3 will address prediction of the detection patterokected in the present study using traditional
binaural decision variables, as well as variouspimal detection schemes.
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