
Modeling the Medial Olivocochlear Efferent in the 

Descending Auditory Pathway with a Dynamic Gain Control 

Feedback System 

by  

Afagh Farhadi 

 

Submitted in Partial Fulfillment of the 

Requirements of the Degree 

Doctor of Philosophy 

 

Supervised by  

Professor Laurel H. Carney 

 

Department of Electrical and Computer Engineering 
Arts, Sciences and Engineering 

Edmund A. Hajim School of Engineering and Applied Sciences 
 
 
 
 

University of Rochester 
Rochester, New York 

 
 
 
 

2023 



ii 
 

Table of Contents 

 
Biographical Sketch ...................................................................................................................... vi 

Acknowledgments ........................................................................................................................ viii 

Abstract ........................................................................................................................................... x 

Contributors and Funding Sources ........................................................................................... xiii 

Chapter 1. Introduction ........................................................................................................... 1 

1.1 Background ......................................................................................................... 4 

1.2  Modeling the MOC efferent system ................................................................. 7 

1.3. Test and refine the model using psychoacoustic data ................................... 12 

1.3.1. Forward Masking: studying the effect of temporal fluctuation in masker and 

hearing loss on tone detection thresholds ............................................................................ 14 

1.3.2. Forward Masking: studying the effect of tonal masker level and tone detection 

thresholds .............................................................................................................................. 18 

1.3.3. Forward Masking: Studying the effects of spectral properties of masker on 

detection of the tone ............................................................................................................ 20 

1.3.4. Simultaneous Masking: Studying the Overshoot effect ........................................ 26 

1.4. Study of the effect of efferent feedback on neural coding of speech sound 28 

1.3. Overview of the thesis ...................................................................................... 33 

Bibliography ................................................................................................................ 35 

Chapter 2.  Subcortical Auditory Model including Efferent Dynamic Gain Control with 

Inputs from Cochlear Nucleus and Inferior Colliculus ........................................................... 46 

2.1 Abstract ............................................................................................................. 46 

2.2 Introduction ...................................................................................................... 47 

2.3 Methods ............................................................................................................. 54 

2.3.1 Existing models ..................................................................................................... 54 

2.3.2 Proposed model with MOC efferents .................................................................... 56 

2.3.3 Adjusting the parameters of the MOC efferent model .......................................... 60 

2.4 Results ............................................................................................................... 63 

2.4.1. The physiological dataset ...................................................................................... 64 

2.4.2. Adjusting model parameters  ................................................................................. 66 



iii 
 

2.4.3. Validating the proposed model responses ............................................................. 70 

2.5. Discussion .......................................................................................................... 75 

Acknowledgements ...................................................................................................... 80 

Bibliography ................................................................................................................ 80 

Chapter 3.  Predicting thresholds in an auditory overshoot paradigm using a 

computational subcortical model with efferent feedback ........................................................ 92 

3.1 Abstract ............................................................................................................. 92 

3.2 Introduction ...................................................................................................... 92 

3.3 Methods ............................................................................................................. 96 

3.3.1 Model ..................................................................................................................... 96 

3.3.3 Procedure ............................................................................................................... 98 

3.4 Results ............................................................................................................... 99 

3.5. Discussion ........................................................................................................ 104 

Acknowledgements .................................................................................................... 104 

Bibliography .............................................................................................................. 105 

Chapter 4.  Effect of MOC efferent system on neural coding of vowel-liked sounds using 

a subcortical computational auditory model .......................................................................... 112 

4.1 Abstract ........................................................................................................... 112 

4.2 Introduction .................................................................................................... 113 

4.3. Methods ........................................................................................................... 120 

4.3.1. Computational Model ......................................................................................... 121 

4.3.2. Stimuli .................................................................................................................. 130 

4.4. Results ............................................................................................................. 133 

4.4.1. Effect of the MOC efferent activity on MTF shape ............................................ 133 

4.4.2. Effect of the across-frequency MOC efferent model on neural coding of single-
formant stimuli .................................................................................................................... 135 

4.4.3. Effect of the across-frequency MOC efferent system on neural coding of double-
formant stimuli .................................................................................................................... 139 

4.5. Discussion ........................................................................................................ 146 

Bibliography .............................................................................................................. 150 

Chapter 5.  Summary and Future Work ............................................................................ 157 

5.1. Summary and Novel results .......................................................................... 157 



iv 
 

5.2.  Future work ................................................................................................... 160 

5.2.1. Employing the proposed auditory model for studying the MOC efferent system 161 

5.2.3. Application of the proposed auditory model for improving hearing devices ...... 165 

5.2.4  Improving, refining, and extending the proposed efferent model ....................... 166 

Bibliography .............................................................................................................. 169 

 

   

 

List of Tables 

Table Title Page 

4.1 Parameter values and description for SFIE IC 122 

 

4.2 Parameter values and description for the proposed 

MOC efferent model. 

124 

 

List of Figures                                                                           

FIG. 2.1. Schematic of the peripheral afferent and MOC efferent pathways……………49 

FIG. 2.2. Effect of MOC efferent activity on IHC input-output function……………….53 

FIG. 2.3. Schematic illustrating overall structure of the new model components……….55 

FIG. 2.4. The MOC efferent model diagram with intermediate……………………........58 

FIG. 2.5. Distribution of MTF classes of the IC neurons………………………………..61 

FIG. 2.6. Six examples of BE IC neuron responses to AM noise stimulus……….…......64   



v 
 

FIG. 2.7. Percentage BE IC neurons with increasing rate over time………………………….….66 

FIG. 2.8. Distribution of the fit model parameters values for each neuron………………………67 

FIG. 2.9. Correlations between the physiology and models……………………………………...68 

FIG. 2.10.  Physiological data of BE IC cell and model responses to AM noise………………...69  

FIG. 2.11. AN and model responses to tones…………………………………………………….71 

FIG. 2.12. AN and model in response to increase in tone level……………………………….….73 

FIG. 2.13. Synchrony to the envelope of an AM tone for AN fiber and IC cell and model……...74  

FIG. 3.1. Overshoot stimuli. ……………………………………………………………………..98 

FIG. 3.2. the Model structure and the simulated neural responses to overshoot stimuli………..100 

FIG. 3.3. IHC influence on the effective modulation depth changes with efferent activity…….101 

FIG. 3.4. Psychoacoustic thresholds and Estimated model thresholds…………………………103  

FIG. 4.1. Neural fluctuations profile of vowel-liked sound…………………………………….117 

FIG. 4.2. Schematic illustration of the peripheral afferent and MOC efferent pathways……….119 

FIG 4.3. Schematic illustrating overall structure of the ascending auditory-pathway model…...123 

FIG.4.4. Schematic of the proposed MOC model with cross-frequency projections…………...125 

FIG.4.5. The IC model used in the MOC efferent feedback…………………………………….127 

FIG.4.6. Spectrum of the stimuli used in this study……………………………………………..132   

FIG. 4.7. MTF of the IC BE Model with and without a cross-channel MOC efferent activity…134   

FIG. 4.8. Enhancement of the neural fluctuating coding in IC BE rate…………………………135 

FIG.4.9. Model responses to single-formant stimuli in silent………………………………….136 

FIG. 4.10. Model responses to single-formant stimuli in noise………………………………..138 

FIG. 4.11. Model responses to double-formant stimuli in silent……………………………….140 

FIG 4.12. Model responses to double-formant stimuli in noise………………………………...142 

FIG. 4.13. Summary of the Neural Fluctuation (NF) enhancement. ………………………..….145 



vi 
 

Biographical Sketch 

Afagh Farhadi was born in Iran. She attended Iran University of Science and 

Technology, and graduated with the Bachelor of Science degree in Electrical Engineering 

in 2015. She began her doctoral studies in Electrical and Computer Engineering at 

University of Rochester in 2016. She received the Master of Science degree in Electrical 

and Computer Engineering from University of Rochester in 2018. She pursued her research 

in computational modeling of the efferent system in the descending auditory pathway under 

the direction of Dr. Laurel H. Carney. 

The following publications were a result of work conducted during doctoral study: 

Journal Publications: 

Farhadi, Afagh, Jennings, S. G., Strickland, E. A., & Carney, L. H.  "Subcortical Auditory 

Model including Efferent Dynamic Gain Control with Inputs from Cochlear Nucleus and 

Inferior Colliculus." Submitted to Journal of the Acoustical Society of America, Under 

Revision. 

Brennan, M. A., Svec, A., Farhadi, A., Maxwell, B. N., & Carney, L. H. (2023). Inherent 

envelope fluctuations in forward masking: Effects of age and hearing loss. The Journal of 

the Acoustical Society of America, 153(4), 1994-1994. 

Hamza, Y., Farhadi, A., Schwarz, D. M., McDonough, J. M., & Carney, L. H. (2023). 

Representations of fricatives in sub-cortical model responses: comparisons with human 

consonant perception. (Accepted to Journal of the Acoustical Society of America). 



vii 
 

 

 

  Conference Publications: 

Farhadi, A., Jennings, S. G., Strickland, E. A., & Carney, L. H. (2021, June). A Closed-

Loop Gain-Control feedback model for the medial efferent system of the descending 

auditory pathway. In ICASSP 2021-2021 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP) (pp. 291-295). IEEE. 

Farhadi, A., & Carney, L. H. Predicting thresholds in an auditory overshoot paradigm using 

a computational subcortical model with efferent feedback. accepted in IEEE Workshop on 

Applications of Signal Processing to Audio and Acoustics 2023 (WASPAA2023). 

Farhadi, A., Agarwalla, S., & Carney, L. H. (2023). A Subcortical Auditory Model With 

Efferent Gain Control Explains Perceptual Enhancement. Abstract accepted for 

presentation at the 46th Midwinter Meeting of the Association for Research in 

Otolaryngology, Orlando, FL, February 2023. Presented as a poster presentation. 

Maxwell, B. N., Farhadi, A., Brennan, M. A., Svec, A., & Carney, L. H. (2023). Simulating 

Physiological and Psychoacoustic Forward Masking in a Subcortical Model with Efferent 

Gain Control. Abstract accepted for presentation at the 46th Midwinter Meeting of the 

Association for Research in Otolaryngology, Orlando, FL, February 2023. Presented as a 

poster presentation. 



viii 
 

Carney, L. H., Farhadi, A., & Maxwell, B. N. (2022). Pitch Perception of Complex Tones: 

Predictions based on the Neural Fluctuation-Place Model. Abstract accepted for 

presentation at the 45th Midwinter Meeting of the Association for Research in 

Otolaryngology, held virtually, February 2022. 

Acknowledgments 

I would like to express my sincere gratitude to my advisor, Prof. Laurel H. Carney, for 

her patience and guidance throughout my PhD journey. She not only instructed me with 

invaluable knowledge about the fascinating world of auditory system, but also became a 

role model for me in both academic and personal life. Her success as a scientist and her 

remarkable qualities as a person have been a constant source of inspiration for me. I am 

truly grateful to her for making my PhD experience enjoyable and memorable. I would also 

like to extend my heartfelt thanks to Prof. Marc Bocko, who provided me with great support 

and also introduced me to my advisor. Additionally, I am grateful to Prof. Zhiyao Duan for 

his invaluable assistance and guidance, as what I have learned from him in his classes and 

during my committee sessions significantly influenced my research. Prof. Ross K. Maddox 

has constantly provided insightful feedback on my work in different scientific events and 

helped me to grow as a researcher. I am deeply grateful to my collaborators, Prof. Elizabeth 

A. Strickland, Prof. Skyler G. Jennings, Prof. Marc Brennan, and Prof. Adam Svec for their 

patience and unwavering support. They have been actively helping me overcome obstacles 

by providing exceptional guidance and innovative ideas. I am also grateful to the current 

and previous Carney lab members, Dr. Daniel Guest, Dr. Swapna Agarwalla, Dr. Braden 

Maxwell, Paul Mitchell, Johanna Fritzinger, Dr. Langchen Fan, Dr. Yasmeen Hamza, 



ix 
 

Doug Schwarz, Kris Abrams whose constant support, insightful perspectives, and 

constructive comments contributed significantly to the development of my work 

throughout my research journey. Prof. Kenneth S. Henry and his graduate students, 

Yingxuan Wang and Leslie Gonzales have also provided me with support and valuable 

feedback during my PhD studies. It is impossible to mention everyone who has helped and 

inspired me in my research, I would like to express my gratitude to the auditory 

neuroscience and hearing community as a whole. Attending conferences and being a part 

of this wonderful scientific family has been a constant source of motivation and inspiration 

for me. Finally, I would like to acknowledge my family in Iran—my parents Maryam 

Javadi and Houshang Farhadi and my brother Ashkan Farhadi—for their patience and non-

stop support despite the distance that separates us. Their support and their belief in me have 

been invaluable throughout these years. Lastly, I want to thank to my supportive and loving 

husband, Ahmad Azizimanesh, whose patience, understanding, and sacrifices helped me 

to overcome the challenges I faced during this journey. Thank you all for being a part of 

my thesis journey and for contributing to my growth as a researcher and as an individual. 

 

 

 

 

 



x 
 

Abstract 

Computational modeling is a powerful tool in hearing research, as it helps to test 

hypotheses regarding the underlying mechanisms involved in different auditory scenes, 

including speech in noise, which is one of the most challenging problems in hearing 

studies. The medial olivocochlear (MOC) efferent system is suggested to play a crucial 

role in enhancing auditory processing in noisy backgrounds. The MOC system is a part of 

the descending auditory system that includes pathways that ultimately project to the outer 

hair cells (OHCs) in the cochlea, which are responsible for cochlear amplification. The 

MOC system adjusts the gain of the OHCs dynamically based on the characteristics of the 

incoming sound signal. Auditory models have mostly been focused on the ascending 

pathway of the auditory system, which is responsible for transmitting sensory information 

from the cochlea to higher areas. However, the descending pathway or efferent system, 

which originates from higher auditory centers and projects back to lower levels of the 

auditory system, has received relatively little attention. My dissertation aimed to provide a 

more accurate and comprehensive model of the auditory system which included the 

efferent system in addition to ascending pathways to better understand the effect of the 

MOC efferent system in auditory processing. The MOC model that was proposed in this 

study incorporated a feedback projection from MOC neurons which dynamically adjusted 

cochlear gain based on inputs received by the MOC. The two primary inputs to the MOC 

that were examined in the model were the excitatory projections from wide-dynamic-range 

cells located in the cochlear nucleus, and the fluctuation-driven information from IC cells 

situated in the midbrain. The model parameters were optimized using previous actual 



xi 
 

neural recordings from IC cells in awake rabbits responding to AM noise. The model with 

efferents and the optimized set of parameters was successful in simulating the trend that 

was observed in recorded neural responses, whereas the model without efferent responses 

did not simulate the same trend. The optimized parameters also matched the physiological 

evidence for the dynamics of the MOC efferent system. The proposed model with efferents 

was tested using several psychoacoustical detection experiments and was found to predict 

human listener thresholds better than the model without efferents. For example, the model 

was used to predict thresholds for simultaneous masking focused on the overshoot effect, 

in which detecting a short tone in a longer noise masker is easier when there is a delay 

between the onset of the noise and the added tone. The results showed that the model with 

efferents was better at estimating human thresholds than the model without efferents. 

Specifically, the proposed model performed better with longer delay conditions, consistent 

with human performance, whereas the model without efferents showed the opposite trend, 

with worse performance for longer delays. These results demonstrate the significance of 

the efferent system in analyzing the mechanisms underlying various psychoacoustic 

phenomena, including not only simultaneous masking but also forward masking and 

auditory enhancement. Investigating the efferent system's influence on neural fluctuations 

will help reveal its potential role in speech perception. I will focus on neural fluctuations 

coding of speech-liked sound. The neural fluctuation coding benefits from the 

physiological nonlinearities in the normal auditory system at conversational levels. In 

contrast, level-dependent cues are not very informative at conversational levels, as the 

average rate of the majority of auditory-nerve responses saturate. Simulation results will 
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test the hypothesis that the efferent system can improve contrast in neural fluctuation 

profiles in response to vowel-like sounds. This result would have implications for the 

development of new strategies for improving speech intelligibility in noisy environments. 
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Chapter 1. Introduction 

Hearing speech in background noise is a very challenging task for listeners with 

hearing loss even with the assistance of state-of-the-art hearing aids. Listeners with healthy 

hearing not only outperform listeners with hearing loss, even with assistance of hearing 

aids, but also have better speech intelligibility in background noise than most advanced 

automatic-speech-recognition devices (Spille et al., 2018; Humes et al., 2013, Chou et al., 

2019). These findings highlight the importance of understanding the underlying 

mechanism in healthy periphery auditory system for speech in background noise. The 

auditory processing in the healthy peripheral auditory system is doing a great job to prepare 

the neural response to speech in noise sound, for speech perception at the level of auditory 

cortex. However, studying the auditory mechanism in human listeners is challenging with 

noninvasive methods. We could also benefit from the results of more invasive methods to 

study the hearing mechanism in animals. Computational modeling can help to make a 

bridge between human and animal models. An accurate comprehensive computational 

model that can simulate the neural response to any arbitrary desired sound is a very 

powerful tool which can provide valuable insight into the human auditory system. Using 

the computational model we can test different hypotheses in hearing research and learn 

more about the auditory system.   

In addition, hearing devices such as hearing aids, cochlear implants, automatic speech 

recognition (ASR) devices, and sound-localization units in AR/VR devices, can make 

progress benefiting from more accurate physiologically plausible auditory models. 
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Different studies show that the audio devices’ performance improves specifically in more 

challenging auditory scenes such as in background noise or with reverberation when these 

devices use physiological inspired models (Stern et al., 2012; Stern & Morgan, 2012, 

Schädler et al., 2016, Meyer and Kollmeier, 2011).  

The auditory system is a complex network of neural pathways that is responsible for 

processing sound information. However, most computational models of the auditory 

system only focus on the ascending pathway from the cochlea to the auditory cortex, 

ignoring the significant contribution of the descending pathway (Verhulst et al., 2018; 

Zilany et al., 2014; Zweig, 2015; Meddis et al., 2013, Meddis et al., 2001). The descending 

pathway is at least as large as the ascending pathway in terms of the number of projections 

(Schofield, 2011). The medial olivocochlear (MOC) efferent system is a subset of the 

descending pathway or the efferent system, which includes the projection from MOC 

neurons to outer hair cells adjusting the cochlear gain (Guinan, 2018). MOC system has 

been proposed to improve speech perception in noise (Brown et al., 2010; Yasin et al., 

2020; Martes et al., 2018). The aim of this project is to develop a new computational model 

that is more comprehensive and includes both the ascending and descending auditory 

pathways by modeling the MOC efferent system to investigate the role of MOC efferent 

system in different auditory tasks and speech perception in background noise. 

The auditory model proposed in this study includes input projections to MOC neurons 

from two sources: wide dynamic range (WDR) cells in the brainstem and inferior colliculus 

(IC) cells in the midbrain. These two feedback systems provide important and distinct 

information about the stimulus that MOC system uses for adjusting the cochlear gain at 
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different frequency channels. The WDR projections convey information about the stimulus 

level and function as a negative feedback gain control system. This pathway adjusts 

cochlear gain based on the overall level of the stimulus. If the sound is too loud or too soft, 

this feedback system ensures that there are variations in the neural responses across 

different frequency channels in response to a sound with a non-flat spectrum. To achieve 

this, the WDR negative feedback increases the gain for lower sound levels and decreases 

the gain for higher sound levels, maintaining an overall input level to the AN nerve at a 

moderate average rate. On the other hand, the IC midbrain cells carry more detailed 

information related to stimulus fluctuations. The IC projection dynamically adjusts the gain 

to enhance the response to stimulus peaks and reduce the gain for valleys in the frequency 

spectrum. This adjustment helps sharpen the response profile across the auditory-nerve 

population to the stimuli. The IC cells act as a positive feedback mechanism, contributing 

to an increased contrast in the rate profile of the auditory nerve. In summary, the model 

incorporates both WDR and IC feedback systems, each providing unique and essential 

information about the stimulus. The WDR feedback controls the overall gain based on the 

stimulus level, while the IC feedback enhances responses to peaks and reduces responses 

to valleys, increasing the contrast in the auditory nerve's rate profile. 

The proposed model will provide more physiological details and specific properties of 

the human auditory system with healthy hearing. The long-term benefits of this model 

include gaining a deeper understanding of the MOC efferent system and the human 

auditory system in general, as well as inspiring the development of hearing aids, ASR 

devices, and cochlear implants that are more effective in noisy background. 
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1.1 Background 

The role of the auditory periphery is to process the sound waveform and convert the 

sound waveform to neural coding suitable for perception of the sound in the brain. One 

interesting aspect of the auditory system is the presence of nonlinearities, which are 

essential for various aspects of auditory processing. In the auditory system, nonlinearities 

can arise at different stages of sound processing, including within the cochlea, auditory 

nerve, and central auditory pathways. Nonlinearities play a crucial role in enhancing 

auditory perception and improving the encoding of complex acoustic signals. Here we 

introduce a few examples of how nonlinearities in the auditory system that will shape the 

neural response to input sound.  

The first nonlinearity discussed here is saturation of average discharge rate of auditory-

nerve (AN) fibers (Liberman, 1978; Costalupes et al., 1984). Even in the absence of 

external stimuli, AN fibers exhibit randomly timed spikes known as spontaneous rate. As 

the stimulus level increases, the spiking rate of the neurons typically rises until it reaches 

a saturation point at the synapse between inner hair cells and the AN. AN fibers can be 

classified into three groups based on their spontaneous rates: high-spontaneous-rate (HSR) 

fibers, medium-spontaneous-rate (MSR) fibers, and low-spontaneous-rate (LSR) fibers. 

HSR fibers, which are the majority, project to brainstem cells and initiate the ascending 

pathway (Liberman, 1978, Ye et al., 2000). These different groups of AN fibers have 

different nonlinear response properties, with HSR fibers saturating at relatively low sound 
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pressure levels (SPLs). Consequently, the majority of AN fibers have saturated average 

rates at conversational sound levels (55-66 dB) (Olsen, 1998). This saturation leads to 

reduced robustness of perception cues that rely on level-dependent information at these 

medium sound levels. 

Another nonlinearity in the auditory periphery, which is an independent mechanism 

from AN saturation, is inner-hair-cell (IHC) saturation. IHC saturation in the normal ear 

occurs gradually at 50-70 dB SPL (Russell and Sellick, 1983, Russell et al., 1986), which 

is around the range of sound levels at which we normally speak (Olsen, 1998). Due to IHC 

saturation, slow temporal fluctuations of AN fibers are reduced in frequency channels near 

spectral maxima; these channels are dominated by a single harmonic or spectral peak, 

called capture (Deng and Geisler, 1987; Deng et al., 1987; Miller et al., 1997; Sachs et al., 

2002; Zilany and Bruce, 2007). In response to a tone in a noise masker, the AN responses 

with CFs near the tone frequency are dominated by the added target tone, which pushes the 

IHC transduction nonlinearity further into saturation. However, for frequency channels far 

from spectral maxima, the AN responses to noise have large amplitude, low-frequency 

fluctuations due to cochlear filtering (Delgutte and Kiang, 1984a). 

The slow temporal fluctuations in AN fibers, known as neural fluctuations (Carney, 

2018), have a robust profile across various frequency channels. This profile preserves 

information about the stimulus even when the average firing rate of the AN becomes 

saturated. This cue effectively utilizes the saturation in IHC within specific frequency 

channels, along with low-frequency temporal fluctuations in other channels, to facilitate 

stimulus perception. Therefore, the limited dynamic range of IHC, which is nonlinear in 
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nature, not only affects this system but also serves as the underlying reason for the existence 

of the fluctuation profile cue. 

The occurrence of IHC saturation at conversational sound levels raises exciting 

questions about its potential role in shaping our vocal communication. It is possible that 

we naturally speak at specific sound levels to create a contrast in the depth of neural 

fluctuation across different frequency channels. This contrast serves as a cue for perceiving 

various stimuli and learning about the peaks and valleys within the stimulus spectrum.  

Another interesting physiological aspect of the auditory system that emphasizes the 

significance of neural fluctuation profiles is the modulation transfer function (MTF) of the 

IC cells in the auditory midbrain. The MTF represents the average neural spiking rate in 

response to amplitude-modulated stimuli as a function of modulation frequency. The 

auditory brainstem projects to these IC cells to transmit information to higher auditory 

processing stages in the brain. The MTF characteristics of these cells reveal that they are 

sensitive to the same frequency range as the neural-fluctuation frequencies observed in AN 

fibers (Kim et al., 2020). Consequently, the information encoded in AN fluctuations is 

conveyed by the IC cells through their firing rates. 

There are different types of IC cells based on their MTFs (Kim et al., 2020). Band-

enhanced (BE) cells are excited by low-frequency modulation in their input, while band-

suppressed (BS) cells are inhibited by low-frequency modulation. Hybrid IC cells have 

MTFs that with a combination of behaviors seen in both BS and BE cells. For instance, 

some hybrid cells have BS-like behavior at relatively higher modulation frequencies and 
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BE-like behavior at relatively lower modulation frequencies. There are other types of IC 

cells, such as non-responding and flat cells, which are not the focus of this study. 

In summary, the profile of neural-fluctuation depths across frequency channels serves 

as a robust cue in conversational sound levels, carrying essential information about the 

stimulus to higher stages within the auditory system. This cue arises due to the nonlinearity 

present in the transduction function of the IHC. Unlike level-dependent perception cues, 

neural-fluctuation profiles remain unaffected by the saturation of AN fibers at low to 

medium sound levels. Neural fluctuations are a robust coding for spectral information in 

the stimuli and maintaining this coding requires the control of the cochlear amplification 

and the efferent system, explained next, is responsible for this process.  

1.2  Modeling the MOC efferent system 

In hearing research, there is more focus on the ascending auditory pathway in the 

auditory system, which includes the process from the inner ear to the auditory cortex. This 

pathway involves the conversion of sound signals into neural responses, which are then 

analyzed and perceived as sound in the brain. However, it is fascinating to note that there 

exists a significant feedback in descending pathway that extends all the way from the 

auditory cortex, with projections at various stages in the auditory system, back to the 

cochlea. It should be noted that the efferent system includes an equally significant number 

of projections as the ascending pathway. This fact highlights that the efferent system is 

essentially half of the story in the auditory system, but it is still missing from most of the 

models for the auditory system (Guinan, 2018, Schofield, 2011). 
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The efferent system consists of both the lateral and medial efferent systems (Guinan, 

2018). The lateral olivocochlear (LOC) efferent system directly projects to inner hair cells, 

although its precise functioning is still not fully understood at this stage of research. On the 

other hand, the MOC efferent system projects to outer hair cells, which serve as amplifiers 

in the ear. The projections from MOC to OHCs adjusts the cochlear gain across different 

frequency channels. By adjusting the cochlear gain, the MOC system may help enhance 

auditory processing in challenging listening environments. 

The lack of information about the efferent system can be linked to challenges 

associated with studying this system. First, the projection in the descending pathway is 

highly complex, involving both contralateral and ipsilateral connections (Guinan, 2018, 

Schofield, 2011). This complex circuitry adds difficulty to understanding functioning of 

the efferent system. Additionally, the location of MOC neurons deep within the brainstem 

presents challenges in accessing and studying these cells. There is limited available 

physiology data on MOC neurons, further limiting our understanding of their properties 

and functions. Furthermore, many recordings of AN fibers and other tissues are often 

conducted using anesthetized animal models. However, anesthesia significantly affects 

efferent activity, leading to potential distortions in the recorded data (Aedo et al., 2015; A. 

R. Chambers et al., 2012; Guitton et al., 2004). This limitation highlights the need for 

caution when interpreting findings from such studies. Noninvasive methods, such as 

otoacoustic emissions (OAEs) and the cochlear microphonic, have been used to study the 

MOC system (Jennings & Aviles, 2023; Jamos et al., 2020, 2021; Lichtenhan et al., 2016; 

Smith et al., 2017). However, these methods require careful consideration of the potential 



9 
 

effects of the middle ear reflex (Sun, 2008, Guinan, 2018). Activation methods for studying 

the MOC system should be chosen with care to avoid unintended activation of the middle-

ear reflex, which can affect the gain of the system.  

In light of these challenges, we propose a model of the MOC efferent system. This 

model can serve as a valuable tool for designing future physiological and psychophysical 

experiments, facilitating the study of efferent function.  

Implementation of the proposed model with MOC efferent feedback system: 

There exists a robust and physiologically detailed model from previous study (Zilany 

et al., 2014) that can simulate the AN fiber response to any desire stimulus. Additionally, 

separate models for the midbrain auditory cells known as the IC cells were developed in 

the previous studies in the lab (Mao et al., 2013, Nelson and Carney, 2004), The output of 

the AN model serves as the input for the CN/IC model. The integration of these two models 

has proven to be highly successful in accurately simulating certain properties of the 

auditory periphery. However, as the efferent pathway is not included in these previous 

models, there were limitations in simulating some of the aspects of hearing that are related 

to MOC efferent system activity. We used this combination of AN and IC models to 

develop a subcortical auditory model with inclusion of the MOC efferent system. 

Incorporating the efferent system into the computational AN model was a challenging 

task due to the need for computing the cochlear gain for each stimulus sample in the time 

domain based on the AN and IC model responses to previous samples of the stimulus in 

the time domain. To address this challenge, the AN model underwent reconfiguration to 
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enable the computation of responses for the entire model, one sample at a time. The states 

of each filter had to be saved from each sample to the next for accurate processing. In this 

new configuration, the feedback signals, including the neural responses of the model to the 

current sample, were utilized to calculate the gain required for processing the next sample. 

Careful testing was conducted to ensure that the newly configured model, with the modeled 

efferent system disabled, produced responses that matched the responses of the previous 

version of the model. 

The proposed model for simulating the MOC efferent system incorporates two 

feedback systems. The first feedback system originates from the output of the AN LSR 

model, representing the projections from different types of WDR cells in the cochlear 

nucleus that project to MOC neurons. The second feedback system stems from the output 

of the IC model, which receives its input from the output of the HSR AN model. These two 

inputs are combined using a scaler that accounts for potential differences in their rates and 

the strength of their projections. Further investigation is required to fully understand these 

differences, and conducting physiological and anatomical studies would greatly benefit this 

aspect. The combined input signals are fed into the MOC block, processing them one time 

sample at a time. The MOC block includes a low-pass filter that follows the time constant 

of the efferent system. The output of the low-pass filtered input signal then passes through 

a physiologically plausible input-output function, which maps the input to MOC neurons 

to a scaler for adjusting the cochlear gain. The inputs to the MOC block carry information 

about the level and also spectral shape of the stimulus and MOC modify the cochlear gain 

for each frequency channel based on this information. 
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To incorporate the MOC model, three additional parameters were introduced to the 

existing list of model parameters. These parameters play essential roles in shaping the 

behavior of the MOC system and include: 

1. Time Constant or Cutoff Frequency of the Low-Pass Filter: This parameter 

determines the rate at which the MOC system responds to changes in the input 

signal. It controls the filtering effect of the low-pass filter, mimicking the time 

constant of the efferent system.  

2. Scaler for the IC Signal: This parameter accounts for potential differences in the 

rates and strengths of the input projections from the IC model. It enables the 

scaling of the IC signal to match the input from the AN LSR model. 

3. Nonlinear Input-Output Function Parameter of the MOC: This parameter 

characterizes the nonlinear relationship between the input to the MOC system and 

the resulting adjustment of cochlear gain. It defines the shape and magnitude of 

the input-output function, influencing how the MOC responds to different levels 

of input and regulates cochlear gain accordingly. 

The next crucial step in accurately modeling the MOC efferent system involved 

optimizing the model parameters using a previously recorded physiological dataset. 

Specifically, I utilized neural response recordings from IC cells in the midbrain of awake 

rabbits, caused by AM noise, to guide the parameter optimization process (Carney et al., 

2014). The goal was to align the model's neural responses with the actual neural responses 

observed in this dataset. 
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An intriguing finding from this analysis was that approximately 80% of the BE cells 

in the dataset exhibited an increase in rate over time. This observation deviated from the 

common trend of neural adaptation, but it aligned with our hypothesis regarding the 

influence of the efferent system over time on these response rates. By taking a different 

approach to studying the dataset, focusing on the change in neural rate over time, we gained 

valuable insights into the impact of the efferent system. This novel perspective opens up 

possibilities for revisiting other physiological datasets and exploring the efferent effects by 

examining changes in response rates over time. 

The model without the efferent system failed to simulate the observed trend of 

gradually increasing IC rates over time in response to AM noise, as seen in the 

physiological dataset. However, with the incorporation of the proposed model including 

the efferent system and subsequent adjustment of the parameters, we achieved successful 

simulation of the same increasing rate trend observed in the dataset. This outcome provides 

compelling support for the importance of implementing the efferent system and contributes 

to auditory models that more accurately simulate recorded responses in physiological 

datasets, particularly those obtained from un-anesthetized recordings. 

1.3. Test and refine the model using psychoacoustic data  

The efferent system has been proposed to influence the performance of listeners in 

psychoacoustic tasks. Psychoacoustic datasets are a valuable source to use for examine the 

efferent model's ability to simulate human auditory behavior. In this project the thresholds 

of listeners were compared with the model threshold in various psychoacoustic tasks, both 

with and without efferent activation in the model. 
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One potential approach to evaluate the impact of the efferent system is by exploring 

masking effects. Auditory masking occurs when the presence of a competing sound, such 

as noise, impairs the ability of human listeners to detect or perceive a target sound, such as 

a tone (Harris and Dallos, 1979; Moore and Oxenham, 1998). This phenomenon can be 

established in two forms: simultaneous masking and forward masking. Simultaneous 

masking occurs when the masker sound and the target sound are presented concurrently in 

the stimulus. The efferent system plays a role in this type of masking by modulating the 

cochlear gain based on the characteristics of the masker, thereby influencing the threshold 

for detecting the target sound. Forward masking, on the other hand, involves the perception 

of the target sound being affected by a preceding masker sound presented within a specific 

time interval. Here again, the efferent system could be involved in adjusting the cochlear 

gain in response to the masker and, based on the delay between the masker and target, it 

can have different levels of effectiveness on the perceptual threshold for detecting the target 

sound. 

Studying both forward and simultaneous masking effects can provide us with a better 

understanding of how the efferent system influences speech intelligibility in noisy 

environments. For example, in forward masking, observing the masker's impact on 

perceiving sounds that follow it can resemble the effects of co-articulation, where the 

preceding sound (for example a vowel) influences the articulation of the subsequent sound 

(for example a consonant). Similarly, simultaneous masking experiments can shed light on 

how the efferent system affects the neural coding of speech in the presence of background 

noise. These experiments offered a valuable means to explore the role of the efferent 
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system in shaping auditory perception and further emphasized the importance of 

incorporating this system in computational models of auditory processing. Moreover, 

incorporating the findings from these experiments into the model implementation led to 

improvements in the model's ability to simulate and replicate the observed behaviors in 

real-world listening tasks. By considering the simulation results from these masking tasks, 

we were able to refine and validate the model's implementation of the efferent system. 

For the purpose of testing the proposed model with psychoacoustic data, I will explain 

three collaborative projects briefly here.The fifth project, which is an independent study, 

will be discussed in more detail in Chapter 3 of the thesis.  

1.3.1. Forward Masking: studying the effect of temporal fluctuation in masker and 

hearing loss on tone detection thresholds 

This project was a collaboration with Marc Brennan, Adam Svec, Braden Maxwell, 

and Laurel Carney and was published in the Journal of the Acoustic Society of America 

(Brennan et al., 2023). 

 In this experiment, both the model with efferent and the model without efferent were 

used to estimate the threshold of human listeners in detecting a tone after the presence of a 

masker. To compare the model's threshold with that of human listeners, we utilized an 

existing psychoacoustic dataset collected by our co-authors, Brennan and Svec. 

The dataset consisted of human listeners’ thresholds for detecting a tone at 4000 Hz 

with duration of 10 ms after different time intervals (25, 75, or 150 ms) following a noise 

masker with a duration of 400 ms. Two types of maskers were examined: low fluctuation 
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noise (LFN) and Gaussian noise (GN). The Gaussian noise had a bandwidth of one third 

of the equivalent rectangular bandwidth (1/3 ERBN) centered at 4000 Hz. The Gaussian 

masker has a more fluctuating temporal envelope. The other masker used in this study was 

a low fluctuation noise, achieved by dividing the Gaussian noise by its envelope, using a 

Hilbert function, and repeating the procedure 10 times to obtain a noise with a flat 

envelope. For both maskers, the sound level was 80 dB SPL. In this dataset, the listeners 

were categorized into three groups based on their audiograms: normal hearing, mild 

hearing loss, and severe hearing loss. The psychoacoustic results revealed that, in general, 

the listeners exhibited higher thresholds or lower performance when detecting the tone after 

the Gaussian fluctuating masker. The difference between the threshold of tone detection 

after LFN and GN is referred to as Gaussian Noise Disruption (GND). For all groups of 

human listeners, GND is positive for the 25 ms interval, indicating that the threshold for 

detecting the tone is higher with the GN masker compared to the LFN masker. As the 

interval delay between the masker and target tone increases, GND and overall thresholds 

for both masker conditions decreases, indicating a reduction in the masking effect. Notably, 

the GND is significantly higher for listeners with mild hearing loss compared to the other 

two groups in the 25-ms condition.  

Efferent activity can provide an explanation for the observed trends in this dataset. 

Based on the MOC efferent system dynamics, our hypothesis suggests that the GN masker 

elevates the threshold more compared to the LFN masker due to a greater decrease in 

cochlear gain in response to the fluctuating GN masker. This effect is because of the 

increased rate of the BE IC cells in response to fluctuating masker. This higher IC rate are 
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part of the projection to the MOC, as a result, the efferent activity increases, leading to 

further suppression of cochlear gain. Consequently, the lower cochlear gain after the GN 

masker makes the detection of the tone more challenging. 

However, as the delay between the masker and target tone increases, the cochlear gain 

begins to recover due to the minimal response from the AN LSR and IC during the silent 

interval.  The recovery in cochlear gain during the silent interval reduces the differences 

between the effect of two maskers on detection of target tone. Additionally, with a longer 

silent delay, the gain at the onset of the target tone is higher, leading to an overall decrease 

in the threshold for both masker conditions. It is worth noting that the timing of the delay 

interval for masking release aligns with the time constant of the efferent system.  

To validate our hypotheses and gain a deeper understanding of the neural mechanisms 

underlying forward masking, we conducted experiments using both the model with efferent 

and the model without efferent. We replicated the same experiment that was conducted 

with human listeners and estimate the detection thresholds for different listener groups for 

both types of maskers and various interval durations. We simulate the hearing loss by 

changing the related parameters of the model based on the average audiogram of subjects 

in the psychoacoustic dataset. In our simulations, we utilized the output of the IC model 

within a specific time window, starting from 375 ms after the onset of the masker and 

extending until at least 50 ms after the end of the probe tone. We compared the maximum 

simulated IC rate between two intervals: one with the target tone and the other without the 

target tone. Based on the maximum IC rate, the model predicted the target interval, and we 

measured the accuracy of the model by conducting 50 repetitions at different tone levels. 
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This allowed us to estimate the detection thresholds for both the model with efferent and 

the model without efferent in this task. 

The simulation results strongly supported the role of MOC activity in forward 

masking, as the model with efferent successfully replicated the observed masking effects. 

In contrast, the model without efferent failed to simulate the GND effect for the 25 ms 

delay condition, which was significant for human listeners. However, it is important to note 

that the adjustment of cochlear gain by the MOC system alone cannot fully explain the 

GND effect. This is evident from the observation of a GND of approximately 10 dB in the 

model without efferent for the severe hearing loss simulation. We hypothesize that listeners 

may have confused the GN masker more than the LFN masker with the target. In the 

peripheral auditory system world, this can be explained: the increased IC rate in response 

to the fluctuating GN masker compared to the flat-envelope LFN masker can lead to a 

higher level of confusion, as these responses can be mistakenly interpreted as responses to 

the target tone by the IC cells. While this factor may contribute to the GND observed in 

the 25-ms condition, it cannot fully account for the differences observed among different 

groups of listeners based on their hearing status. 

The model incorporating the MOC efferent system not only successfully simulated the 

observed GND in different interval durations but also captured the trend observed in the 

psychoacoustic dataset, specifically the greater influence of temporal fluctuations in the 

GN masker on listeners with mild hearing loss compared to those with normal and severe 

hearing loss. This trend can be justified by the activity of the MOC efferent system. In the 

case of normal hearing, the high sound level and narrow bandwidth of the masker result in 
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strong input to the IHCs, pushing them into saturation. As a result, the responses of AN 

fibers become flat for both GN masker and LFN masker, leading to less observed GND in 

this group of listeners. In contrast, for mild hearing loss, the impaired cochlear gain causes 

the IHC response to the GN masker to be less saturated, resulting in more fluctuating AN 

fiber responses and higher rates of activity in the IC. The increased IC rate not only reduces 

the cochlear gain due to the projections of these cells to the MOC system and subsequent 

activation of MOC activity, but it also increases the likelihood of confusion between the 

response to the masker and the response to the target tone. Both factors contribute to 

making the detection of the tone more challenging after the GN masker compared to the 

LFN masker in listeners with mild hearing loss. In the case of severe hearing loss, the 

overall cochlear gain is already very low, leaving minimal room for gain reduction and 

limited increase in IC rate. Consequently, the differences in detection thresholds between 

the LFN and GN masker conditions are less obvious in this group. 

1.3.2. Forward Masking: studying the effect of tonal masker level and tone 

detection thresholds 

This project was a collaboration with Braden Maxwell, Marc Brennan, Adam Svec, 

and Laurel Carney and was presented at The Association for Research in Otolaryngology 

midwinter meeting (Maxwell et al., 2023).  

In this project, the focus was on investigating the relationship between masker level 

and the threshold for detecting a tone in the presence of a tone masker. Both physiological 

studies, which involved recording neural responses from IC cells, and psychoacoustic 
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studies with human listeners have demonstrated that as the tone masker level increases, the 

threshold for tone detection also increases. This phenomenon is known as growth of 

masking. Previous studies have suggested that the emergence of growth of masking occurs 

at the IC level, as it was not observed in AN fiber recordings. However, it is not clear how 

growth of masking emerges in the IC, and existing physiological auditory models for IC 

cells have not been able to fully explain this effect. An alternative approach to 

understanding the neural mechanisms underlying growth of masking is the involvement of 

MOC efferent activity. The MOC system includes the WDR projection, which carries 

information about the masker level. As the masker level increases, the WDR firing rates 

also increase, leading to an increase in MOC activity. This increased MOC activity results 

in a reduction in cochlear gain at the target frequency, making the detection of the target 

tone more challenging. In other words, it raises the detection threshold. In the context of 

this task, the WDR projection plays a crucial role in mediating the effect of growth of 

masking, particularly when the IC responses are low and not changing with masker level a 

lot due to the flat envelope of a tone masker. The contribution of MOC activity as a 

potential neural mechanism for growth of masking can provide an explanation for the lack 

of observation of this phenomenon in AN recordings. During experiments where animals 

are anesthetized, the efferent activity is significantly affected. Anesthesia suppresses the 

MOC efferent system, leading to reduced modulation of cochlear gain. As a result, the 

effects of growth of masking may not be observed in AN recordings under anesthesia. 

We performed simulations using both the model with efferent feedback and the model 

without efferent feedback at the AN and IC levels to estimate tone-detection thresholds. 
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The stimuli used in our study were matched to those used in the original studies. To 

estimate thresholds, we used a similar method to our previous work, comparing the 

maximum response of the model for two internal tasks: one with the target tone present 

and the other without. By adjusting the tone level, we determined the threshold 

corresponding to an accuracy of 70.7%. Our findings demonstrated that both the AN model 

and the IC model with efferent feedback exhibited similar thresholds and displayed the 

growth of masking effect, consistent with physiological and psychophysical evidence. 

However, the model without efferent feedback failed to simulate this effect, highlighting 

the crucial role of the efferent system in the growth of masking phenomenon. Furthermore, 

the model with efferent feedback successfully replicated the release from masking by 

increasing the delay between the masker and target tone. This release from masking can be 

linked to the recovery of cochlear gain during the extended silent interval, enabling 

improved discrimination of the target tone. Overall, our results emphasize the significance 

of the efferent feedback mechanisms in auditory processing and provide valuable insights 

into the neural mechanisms underlying the perception of masked tones. 

1.3.3. Forward Masking: Studying the effects of spectral properties of masker on 

detection of the tone  

This project was a collaboration with Swapna Agarwalla and Laurel Carney and was 

presented at The Association for Research in Otolaryngology midwinter meeting (Farhadi 

et al., 2023).  
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We also investigated the auditory enhancement effect as another psychoacoustic task 

to test and refine the model with MOC efferent feedback and explore the influence of this 

feedback system on the underlying neural mechanisms for auditory enhancement. Auditory 

enhancement involves the detection of a tone embedded in a background sound, which is 

enhanced when preceded by a precursor stimulus with same background sound but without 

containing the frequency of the target tone. This phenomenon is referred to as the "target 

sound popping out". In auditory enhancement, not only the detection of the target sound 

embedded in a background masker improves when proceed by the precursor described 

above (signal enhancement) but the presence of the precursor also enhances the 

effectiveness of the combination of the target and masker as a forward masker for the 

subsequent detection of a tone presented alone (masker enhancement).  This effect was 

observed and well-studied in the human listener’s psychoacoustic experiment.  

In our investigation of the auditory enhancement effect, we specifically focused on 

studying masker enhancement, which offers a more direct and accessible approach to 

studying auditory enhancement phenomenon. The main objective of this study was to 

predict masker enhancement effect in individuals with normal (NH) and impaired (HI) 

hearing, as previously explored by Kreft and Oxenham (2019). Surprisingly, their findings 

revealed unexpected effects of sound pressure level (SPL) and hearing impairment as the 

masker enhancement effect significantly decreases for hearing impaired listeners and for 

lower sound levels. These observations could not be easily explained by the conventional 

explanation of adaptation of inhibition as the underlying neural mechanisms for auditory 

enhancement. In this study, we explored the possible role of the MOC efferent system in 
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explaining the masker enhancement effect in different hearing and sound level conditions. 

To examine the underlying mechanisms of masker enhancement, we hypothesized that a 

subcortical model incorporating the dynamics of the efferent system could account for the 

observed effects.  

We simulate the same experiment as in the original study with five different stimulus 

conditions  

 MSK (Baseline): Masker that includes the frequency of the target signal. 

 ENH (Enhanced condition): Precursor added before the masker, but without the 

frequency of the target signal.  

 CON (No Enhancement): Control condition where the precursor contains the 

frequency of the target signal. 

 MSK0: Masker without the frequency of the target signal. 

 ENH0: Both the precursor and masker lack the frequency of the target signal. This 

condition serves as a control to assess the impact of masker and precursor 

duration. 

The precursor duration was 500 ms, followed by a masker and a tone probe with 

duration of 100 ms and 20 ms respectively, each separated by 20-ms gaps. The masker was 

four equal-amplitude, logarithmically spaced sinusoids geometrically centered around the 

target frequency. In a study by Kreft and Oxenham (2019), probe level was manipulated to 

determine the detection threshold for two models: normal hearing (NH) and hearing-
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impaired (HI). The researchers investigated three different level configurations for the NH 

thresholds.  

1- SPL matched to level that was used for HI (85 dB SPL/comp): In this 

configuration, the probe level for the NH model was set to match the level used 

for the HI model, which was 85 dB sound pressure level (SPL) per component.  

2- Sensation level (SL) matched to average HI SL: In this configuration, the probe 

level for the NH model was reduced to match the average sensation level (SL) of 

the HI listeners. Sensation level refers to the level of sound above an individual's 

hearing threshold.  

3- SPL and SL matched at same time. In this condition, the SPL is set 85 dB and SL 

matched to average HI listener using threshold equalizing noise (TEN). In this 

configuration, the probe level for the NH model was set to 85 dB SPL, similar to 

the first configuration. Additionally, the SL was adjusted to match the average SL 

of the HI listeners using TEN. TEN is a type of noise used to equalize hearing 

thresholds across different frequencies.  

In each two-interval trial, the decision variable was used to determine which interval 

contained the target tone and which interval did not. The decision variable involved 

comparing the maximum average rate of IC rate between the two intervals. The IC rate 

used in the decision variable was obtained from summing the responses of nine IC BE 

cells. These cells had CFs that covered the frequency range of the masker components. The 

decision variable time window 105-ms, which included the final 25 ms of the masker 

duration and the entire duration of the probe tone. Model thresholds for probe detection 
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were estimated by varying the probe level until a 70.7% accuracy in tone detection was 

achieved. 

The masker enhancement effect was measured by comparing the tone-detection 

thresholds with and without the precursor stimuli. In human listeners’ dataset, it was found 

that listeners with normal-hearing (NH) showed a significant masker-enhancement effect 

when the sound pressure level (SPL) was matched to hearing loss. However, when the 

sensation level (SL) or both SPL and SL were matched to those for hearing-impaired 

listeners, the enhancement effect was reduced. Additionally, listeners with hearing loss did 

not show a significant masker enhancement effect in the original psychoacoustic study.  

The simulation results of the model that included efferent gain control closely matched 

the thresholds and trends of masker enhancement observed in human listeners. However, 

the model without efferent gain control failed to capture these effects. The key finding is 

that the model with efferent gain control successfully predicted the masker enhancement 

observed in the NH SPL-matched condition, while showing little enhancement in all other 

conditions, which aligns with the psychophysical data obtained from human listeners. 

To gain a better understanding of how a computational model with a MOC efferent 

system contributes to more accurately estimating listeners' thresholds in an auditory 

enhancement task, we examined the simulated neural responses at different stages of the 

auditory pathway using the model. The responses of model stages were analyzed for a CF 

of 4 kHz. The stimuli were presented to both normal hearing (NH) and hearing-impaired 

(HI) models to investigate the mechanism behind auditory enhancement. The probe level 
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was set above the individual threshold for both the NH and HI model in these figures. In 

the NH model, the cochlear gain is reduced during the precursor. This reduction in cochlear 

gain resulted in a more effective masking of the target sound in the ENH condition, as 

indicated by a lower response to target tone in IC response to the stimuli with the precursor. 

The enhanced masking effect leading to increased threshold to detect target sound. On the 

other hand, in the HI model, the cochlear gain was already reduced due to the hearing 

impairment. The addition of the precursor had little effect on further reducing the already 

reduced cochlear gain. As a result, the enhancement observed in the HI model was less 

than NH condition leading to reduced auditory enhancement.  

We also investigated the neural responses that were used in the decision variable. The 

decision variable was calculated using the sum of the BE IC responses over different 

frequencies. Upon analyzing these neural responses, we observed that in the NH SPL-

matched condition, there was a reduction in the response to the probe. This reduction is 

consistent with the phenomenon of masker enhancement, where the presence of the 

precursor leads to a more effective masking of the probe tone. The smaller differences in 

the neural responses observed in other conditions, as well as in the HI condition, are in line 

with the reduced enhancement observed experimentally (Kreft & Oxenham, 2019). 

Interestingly, these simulated neural responses also had a stronger summed IC BE 

response during the masker phase for the ENH condition. This finding aligns with the 

concept of signal enhancement, indicating that the precursor may enhance the 

representation of the masker in the neural responses. The reason for this simulation result 

is that the efferent activity driven by IC BE neurons, which are excited by fluctuations, 
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reduces cochlear gain, further increasing low-frequency fluctuations in AN responses, and 

thus further increasing IC BE responses. As a result of reduction in the cochlear gain, AN 

HSR responses to the masker have strong fluctuations for low-CFs, where multiple 

component frequencies fall within AN tuning curves. These AN HSR fluctuations result in 

stronger IC BE masker response rates at low CFs, which would improve detection of the 

target (Auditory enhancement).  

 In summary, a subcortical model with MOC efferents simulated masker enhancement 

and also signal enhancement effects observed in NH and HI listeners in three sound-level 

conditions, whereas a model without efferents failed to do so. These findings support the 

hypothesis that efferent activity could explain auditory enhancement.  

1.3.4. Simultaneous Masking: Studying the Overshoot effect 

This work is accepted as a proceeding paper to 2023 IEEE Workshop on Applications 

of Signal Processing to Audio and Acoustics (Farhadi and Carney, 2023) and was presented 

at The Association for Research in Otolaryngology midwinter meeting (Farhadi and 

Carney, 2023).  

For the investigation of a simultaneous-masking temporal effect known as overshoot, 

psychoacoustic studies have demonstrated that the detection of a short tone added to a 

longer masker noise can be improved when there is a sufficiently long delay between the 

onset of the masker and the addition of the target tone. In contrast, when the delay between 

the onset of the tone and the onset of the masker is very short, the detection of the tone is 

more challenging.  
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To gain a deeper understanding of this phenomenon, we utilized both the model with 

the MOC efferent system and the model without the efferent system. The intermediate 

responses for both models at different levels of auditory pathway in response to overshoot 

stimulus is shown in Chapter 3, Fig. 3.1 We examined the computational model with and 

without efferent to estimate human listeners’ thresholds for the long and short delay 

conditions in the auditory overshoot experiment. Similar to the original study, the tone 

level was constant, while the masker level was adjusted to reach the threshold level. This 

threshold level represents the maximum noise level that the model can tolerate while still 

detecting the tone. In the short delay condition of 2 ms, the thresholds were found to be 

similar for both the model with efferent thresholds and the model without efferent 

thresholds. This similarity exists because 2 ms is too short of a delay for the efferent system 

to influence the cochlear gain considering the time constant of around 200 ms for the MOC 

efferent system. Therefore, the presence or absence of efferent system does not affect the 

thresholds in the short-delay condition. 

However, as the delay increased from 2 ms to 200 ms, we observed that the model 

with efferent thresholds exhibited improved thresholds, which is consistent with the 

findings observed in human listeners. The reason for this finding could be that due to the 

reduction in cochlear gain, as a result of efferent activity in response to masker noise, the 

IHC response is pulled away from saturation. As a result, the response to the tone would 

have a strong peak in the IC BE response, while for the model without efferent the IHC is 

saturated and the AN response is flat, and as a result the IC BE response is much weaker. 

The efferent system, given sufficient time, can effectively modulate the cochlear gain and 
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increase the auditory-overshoot effect. This improvement aligns with the behavior 

observed in human listeners. In contrast, the model without efferent thresholds showed 

worse thresholds as the delay increased, contrary to the behavior observed in human 

listeners.  More detailed information about this experiment and its findings are included in 

Chapter 3 of this thesis. 

1.4. Study of the effect of efferent feedback on neural coding of speech sound 

Improving speech intelligibility in background noise is an important long-term goal of 

this line of research. Many studies that work on speech enhancement focus on improving 

the acoustic waveform of the speech sound and test the improvement using neural-network 

based models for the auditory cortex (Fu et al., 2017; Tan and Wang, 2018). However, in 

this method, one important step is missing, the auditory peripheral system. The 

transformations that the auditory periphery applies to the audio waveform play an 

important role in translating the information in the acoustic sound to the neural response 

of AN fibers. Malfunctioning of the auditory peripheral system is in most cases the reason 

behind lower speech perception in listeners with hearing loss (Rance, 2005). Therefore, 

understanding the auditory periphery and focusing on improvement of the neural responses 

of the auditory system is potentially more effective for speech intelligibility purposes.   

Neural coding of vowels 

Speech is a complex phenomenon that involves the production of various sounds, 

including both voiced and unvoiced segments. Voiced segments are produced when the 

vocal cords vibrate, generating a periodic waveform. These segments include vowel sounds 

and certain consonants. For this project, we mostly focus on the vowel, an important sound 
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in any spoken language. Vowels have higher energy and stronger periodicity compared to 

the consonants, and in the existence of background noise, they carry more information than 

consonants (Parikh and Loizou, 2005; Rao and Carney, 2014), possibly due to the structure 

of vowel waveforms. The spectrum of a vowel waveform has several strong peaks that are 

called vocal formants. These strong peaks could preserve their structure even in the 

existence of the background noise. The formants in vowel sounds are the result of vocal-

tract resonances, and the frequency of the first two formants and their relationship are what 

researchers in the acoustic and linguistic area used for classification of vowels (Fant, 1960). 

Based on the frequencies of first two formants, vowels are distributed in a vowel space. 

This acoustical vowel space has the same distribution for most languages, regardless of the 

number of vowels in that language (Lindblom, 1986; Stevens, 1989; Engstrand and Krull 

1991, Livijn, 2000; Al-Tamimi and Ferragne , 2005). 

The spectral peaks or vocal formants of the vowel waveform can be coded in the neural 

fluctuation profile of AN fibers. Because of capture effect and IHC saturation, the AN 

fibers with CF close to the formant frequency will have flat responses; AN fibers with CF 

away from formant frequencies will have fluctuating responses (Carney and McDonough, 

2019; Carney et al., 2015; Young and Sachs, 1979; Deng and Geisler, 1987; Miller et al., 

1997). In BE IC cell responses, the flatness in the AN fiber response will be coded as a dip 

in average-rate responses of neurons tuned near the formant frequency in the IC response 

profile and a peak in responses of neurons tuned to frequencies further from formants.  
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 Effect of MOC efferent on neural coding of vowels 

As we discussed, the neural fluctuation profile is a reliable cue at conversational level 

for perceiving different sound including speech. Here we focus on improvement in the 

contrast across frequency channels in the neural fluctuation profile as a measure for 

improvement in speech intelligibility. We hypothesized that the MOC efferent system can 

improve this contrast and as a result can enhance speech intelligibility. In this work, the IC 

feedback in the MOC efferent model is hypothesized to improve this contrast in the IC 

pattern, as it will increase the gain in channel near formant frequencies and decrease the 

gain at other frequencies.  

For the stimuli tested with the model incorporating the MOC efferent system so far, 

we used simple and narrowband spectra, while speech signals are more complex and 

broadband. In response to a peak in the spectrum corresponds to the narrowband stimulus, 

the inner hair cell (IHC) becomes saturated, resulting in a flat envelope in the AN response. 

This leads to a decrease in the IC BE response and an increase in the IC BS response. The 

efferent system, through the IC BE projection pathway, enhances this profile by increasing 

the cochlear gain, further saturating the IHC and flattening the AN response. 

Simultaneously, for other frequencies, the non-saturating IHC and higher neural fluctuation 

in the AN result in an increase in IC rate and a decrease in cochlear gain, pulling the IHC 

away from saturation and increasing fluctuation in the AN response.  

For wideband stimuli, the fine-tuning implementation of WDR projection can flatten 

the profile of the AN response. If there is a peak in the stimulus spectrum, the CF-by-CF, 

WDR projection will have a high response to the peak, reducing the gain for that frequency 
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and pushing the IHC away from saturation. If the IHC is not saturated in that frequency, 

there will not be enough contrast in that neighborhood for the IC pathway to enhance, and 

it will not enter the positive feedback loop that continuously improves the contrast.  

 Updated structure for the MOC efferent model with wide WDR projection 

Anatomical and physiological evidence suggests that the MOC projection to the 

cochlea has a broader tuning compared to AN fibers (Guinan, 2018). Some studies indicate 

the presence of two distinct types of MOC projections (Liberman & Brown,1986; Brown, 

2014) with different bandwidth characteristics. While the specific differences between 

these two types and their input sources are not yet fully understood, our hypothesis that 

there are cross-frequency WDR-driven and within-channel IC-driven projections from  

MOC to OHCs  . In our model, we implemented this effect by separating the MOC neurons' 

projections based on whether they receive input from the WDR or IC pathway. The WDR-

driven projections are broader, allowing for a wider adjustment of the cochlear gain, while 

the IC-driven projections are sharper, enabling more localized and detailed adjustments. 

Essentially, the WDR-driven projections modulate the overall range of cochlear gain that 

the IC can work with across a wide frequency neighborhood, while the IC projections fine-

tune the gain for each specific cochlear frequency within that range, based on local peaks 

and valleys in that neighborhood. 

The observations in our model are consistent with findings from hearing aids that 

employ a higher number of channels (Holube et al., 2016; Bor et al., 2008; Plomp, 1988; 

Stone and Moore, 2008). Because of necessary compression feature in hearing aid 

implementation, when there is a peak in the stimulus spectrum, a fine tined hearing aid 
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amplifies the sound minimally. Conversely, for frequencies in the spectral valleys, the 

sound is amplified maximally. This results in a flatter spectral response or similar response 

across all frequencies, which can lead to a reduction in the perception of spectral 

information in the sound. 

For evaluating speech signals, we employed the wider WDR projection 

implementation described earlier and adjusted the bandwidth of the WDR projection to 

optimize the sharpness of the responses to a single formant frequency in a silent condition. 

 

Single-Formant Simulations  

We investigated the neural fluctuation profile using the adjusted parameters in 

response to a single-formant stimulus. The single-formant stimulus is harmonic complex 

with fundamental frequency of 200 Hz, duration of 300 ms, peak frequency at 2 kHz with 

a spectral slope of 50 dB/octave. This stimulus was chosen as a starting point as its 

spectrum is similar to a vowel spectrum but only has one formant frequency. Consistent 

with our hypothesis the IC BE response to single formant stimulus has a sharper response 

as it has low rates in peak frequency and higher rates in other frequency when compared 

to the model without efferent.  

We further explored the effects of adding background speech-shaped noise (Byrne et 

al., 1994) to the stimulus. The model with efferent MOC exhibited more robust responses 

with the addition of noise at different signal-to-noise ratio (SNR) levels, compared to the 

model without efferent. Additionally, we examined the impact of stimulus level variations 



33 
 

in a silent condition, and the results supported the hypothesis that the efferent system 

preserves the sharp responses in wider range sound levels, compared to the model without 

efferent. 

 Synthesized Vowel (double-formant) Simulations  

The next step we explore the neural response to double-formant synthesized vowels 

made using Klatt software (Klatt, 1980). This stimulus is very similar to the single-formant 

stimulus but since it has two formant peaks it better resembles a vowel signal. The 

properties of the synthesized-vowel stimuli used here were similar to those in Carney et 

al., (2023). The peak frequencies were 500 and 2100 Hz with a bandwidth of 100 Hz used 

for both formants. The duration of the stimuli was 300 ms and the stimulus level was 75 

dB.  The comparison between the models with efferent and without efferent shows a 

sharper response to peak frequencies in IC BE response affected by efferent activation.  

1.3. Overview of the thesis 

The first chapter of this thesis provides essential background information that is crucial 

for understanding the subsequent sections of this document. It begins with an explanation 

of the neural-fluctuation profile as a robust and significant cue for auditory perception, 

along with the underlying neural mechanisms. The importance of considering the 

descending efferent system in the auditory pathway is also highlighted. The architecture of 

the proposed model with MOC efferent is briefly reviewed, along with the process of 

parameter optimization. Furthermore, an overview of the psychophysical tests used to 

evaluate the model's performance in estimating human listeners' thresholds is presented. 

These results not only validate the model's accuracy in predicting human auditory behavior 
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but also emphasize the significant role of the MOC efferent system in various auditory 

tasks. Additionally, a brief exploration of the neural coding of vowels as components in 

speech signals and the effects of MOC efferent on the neural response profile is discussed. 

Finally, this chapter briefly study the impact of MOC efferent on improving speech 

intelligibility in noisy environments.  

Chapter 2 has been submitted for publication in Journal of Acoustic Society of 

America (JASA) and explains the proposed MOC model structure and implementation in 

details. This chapter also discussed the process of optimization of the parameter proposed 

in this thesis using the physiological dataset including the neural responses of IC cells in 

awake rabbit in response to AM noise. Finally, this chapter includes the validation of the 

model for simulating the physiological dataset that were previously successfully simulated 

with model without efferent to make sure that MOC addition to the code is not disturbing 

those neural responses.  

Chapter 3 has been accepted in IEEE Workshop on Applications of Signal Processing 

to Audio and Acoustics. This chapter explains the independent study on testing the efferent 

model with psychoacoustic data from an overshoot experiment. In this chapter an 

explanation of the stimuli and the procedure is explained and the estimated threshold using 

the model with efferent and the model without efferent were compared to human behavioral 

data.  

Chapter 4 proposes a new implementation of the MOC efferent model with cross-

frequency projections and explores the effect of this model on simulation the neural 
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response to speech-like stimuli in different sound and noise levels. This chapter 

investigates the role of the MOC efferent system on enhancing of the neural-fluctuation 

profile coding of speech-like sound over time.  

Finally, in Chapter 5, a summary and discussion of all three projects is presented. Ideas 

for future work are discussed at the end of the thesis. 
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Chapter 2.  Subcortical Auditory Model including Efferent Dynamic 

Gain Control with Inputs from Cochlear Nucleus and Inferior 

Colliculus    

This chapter has been submitted for publication in Journal of Acoustic Society of 

America (JASA).     

2.1 Abstract                             

We developed an auditory model with a time-varying, gain-control signal based on the 

physiology of the efferent system and the sub-cortical neural pathways. The medial 

olivocochlear (MOC) efferent stage of the model receives excitatory projections from both 

fluctuation-sensitive model neurons of the inferior colliculus (IC) and wide-dynamic-range 

model neurons of the cochlear nucleus. The response of the model MOC stage dynamically 

controls the gain of simulated cochlear outer hair cells. In response to amplitude-modulated 

(AM) noise, firing rates of most IC neurons with band-enhanced modulation transfer 

functions in awake rabbits increase over a time course consistent with the dynamics of the 

MOC efferent feedback. These changes in the rates of IC neurons in awake rabbits were 

employed to adjust the parameters of the efferent stage of the proposed model. Responses 

of the proposed model to AM noise were able to simulate the increasing IC rate over time, 

while the model without the efferent system did not show this trend. The proposed model 

with efferent gain control provides a powerful tool for testing hypotheses, shedding insight 

on mechanisms in hearing, specifically those involving the efferent system. 
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2.2 Introduction 

The descending auditory pathway, or efferent system, is as large as the ascending 

pathway in terms of number of projections, but this part of the system not been as 

extensively studied as the ascending pathway. The efferent system consists of several 

feedback projections (Guinan, 2006; Warr, 1992) spanning all levels of the auditory 

pathway, from the auditory cortex to the cochlea. The focus of this study is the medial 

olivocochlear (MOC) system, which includes projections from MOC neurons to the outer 

hair cells, which directly control cochlear gain. Although several studies suggest the critical 

role of the MOC efferent system for interpreting data from psychoacoustic measures 

(Lopez-Poveda, 2018; Jennings, 2021; Lauer et al., 2022), it is still unclear the extent to 

which the gain control by the MOC efferent system is involved in hearing. Understanding 

the role of the efferent system in auditory processing is essential to gain a comprehensive 

understanding of auditory function. In this study, we develop a computational model for 

the sub-cortical auditory system, providing a tool for exploring efferent mechanisms of 

cochlear gain control.  

Despite several studies of the physiology of the efferent system (Guinan, 2006; 

Gummer et al., 1988; Liberman & Guinan, 1998), many aspects of this system are not well 

understood, such as the effects of anesthesia, the role of higher-level projections, and the 

independent effects of the MOC and middle-ear muscle reflexes. This gap in understanding 

is potentially explained by its complexity and the limited experimental methods for 

understanding the efferent system (Schofield, 2011). Most of the information available is 

based on a relatively small number of recordings from single neurons located deep in the 
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brainstem in anesthetized animals (Guinan, 2018); however, anesthesia suppresses MOC 

responses (Aedo et al., 2015; Chambers et al., 2012; Guitton et al., 2004). Noninvasive 

methods used to study MOC effects on cochlear gain include measurements of either 

otoacoustic emissions (OAEs) (Guinan, 2006) or the cochlear microphonic (Jennings & 

Aviles, 2023; Jamos et al., 2020, 2021; Lichtenhan et al., 2016; Smith et al., 2017), with 

and without MOC activation by electrical stimulation or contralateral broadband noise. 

These methods provide useful insights about the efferent system; however, they do not 

provide information about higher-level projections in the pathway, such as those from the 

IC or auditory cortex to the MOC (Delano et al., 2007). Furthermore, care must be taken 

to separate effects of the middle-ear muscle reflex on OAEs (Sun, 2008, Guinan, 2018). 

Here we propose a model of the MOC efferent system that can help in designing future 

physiological and psychophysical experiments for studying efferent function. 

A new framework for auditory coding proposes an explicit role for the efferent 

system.  Carney (2018) suggests that low-frequency temporal fluctuations in auditory-

nerve (AN) responses can be a reliable cue for auditory perception. It is often assumed that 

AN average-rate profiles encode the spectrum of complex sounds; however, the majority 

of AN fibers, the high-spontaneous-rate (HSR) fibers, have average rates that are saturated 

at conversational speech levels (55–65 dB SPL, Olsen, 1998). Therefore, in many 

conditions, average discharge rates of HSR AN fibers do not contain enough information 

to explain perception of complex sounds (Bharadwaj et al., 2014; Carney, 2018; Liberman, 

1978). On the other hand, temporal fluctuations of HSR AN responses, referred to as neural 

fluctuations, have robust information at conversational speech levels, potentially encoding 
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peaks and valleys in the stimulus spectrum because the fluctuation depths are smaller for 

AN fibers tuned near peak frequencies and larger for other frequency channels (Carney et 

al., 2015; Carney, 2018). If neural fluctuations play a key role in encoding complex sounds, 

then these fluctuations should be involved in the efferent gain-control system to maintain 

contrasts in the neural-fluctuation profile. Interestingly, neurons in the auditory midbrain 

(inferior colliculus, IC) are sensitive to low-frequency (i.e., <100Hz) fluctuations of their 

inputs, and the IC projects to MOC neurons (Joris et al., 2004; Huffman & Henson, 1990; 

Krishna & Semple, 2000).                          

The MOC efferent system receives several convergent inputs; the model presented 

here focuses on subcortical pathways, specifically inputs from the IC and cochlear nucleus 

FIG. 2.1. (color online) Schematic illustration of the peripheral afferent (black arrows) and 

MOC efferent (red arrows) pathways. Here for a simple presentation we have shown the 

afferent pathways on the left side and the efferent pathways on the right side, but anatomically 

both pathways exist on both sides of the brainstem.  
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(CN). MOC neurons receive descending projections from IC cells in the midbrain and 

exhibit band-pass modulation transfer functions (MTFs) that are possibly inherited from 

these inputs (Gummer et al., 1988a; Huffman & Henson, 1990; Schofield, 2011). MOC 

neurons also receive ascending projections from cells types in the CN that have wide 

dynamic ranges (WDR), including T-stellate cells (Blackburn & Sachs, 1990; Guinan, 

2018; Romero & Trussell, 2021) and neurons in the small cell cap, which receive low- and 

medium-spontaneous-rate AN inputs (Ye et al., 2000; Fekete et al., 1984) (Fig. 2.1). For 

the proposed model, IC projections to the MOC provide neural-fluctuation information to 

the MOC gain-control system, as follows: 1) IC neurons that are excited by fluctuations 

(band-enhanced (BE) IC cells) reduce cochlear gain in response to fluctuating inputs, 2) 

this reduction in cochlear gain increases AN fluctuation depth by reducing inner-hair-cell 

saturation, 3) this increase in AN fluctuation depth results in a further increase in IC activity 

until the gain stops decreasing, either because a minimum cochlear gain is reached or when 

fluctuation-driven feedback is balanced by WDR driven feedback (described below). This 

fluctuation-driven feedback loop, in which IC activity ultimately reinforces IC activity, is 

effectively a positive feedback loop. Note that, a decrease in AN fluctuation depth results 

in positive feedback in the opposite direction, that is a reduction in IC responses ultimately 

leads to a further reduction in IC responses.  

The positive-feedback mechanism described above could contribute to spectral 

coding of complex sounds, as follows (see Carney, 2018): 1) AN frequency channels tuned 

near local peaks in the stimulus spectrum have responses that are “captured” by the spectral 

peak, and thus have relatively small fluctuations (Deng et al., 1987; Delgutte and Kiang, 
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1984; Young and Sachs, 1979). Consequently, for these frequency channels, BE IC cells 

would have lower response rates. Activity of MOC neurons reduces cochlear gain in a 

frequency/place-specific manner (Guinan, 2018); therefore, input to the MOC from BE IC 

channels near a spectral peak would be relatively small, as compared to that from channels 

driven by large fluctuations. The relatively higher cochlear gain for channels near spectral 

peaks would drive IHCs closer to saturation, resulting in further reduction in the neural 

fluctuations in AN HSR responses over time (i.e., positive feedback). 2) For frequency 

channels tuned away from spectral peaks, AN fluctuations are larger and BE IC cells 

therefore have higher response rates. The higher rates in the BE IC input to the MOC would 

result in a reduction in cochlear gain, reducing IHC saturation and further increasing 

fluctuation amplitudes in the AN response. Overall, the IC input to MOC neurons provides 

a positive feedback that would enhance the fluctuation contrast across AN channels tuned 

near spectral peaks, and thus the rate contrast across IC channels. This feedback potentially 

enhances the neural representation of spectral peaks and valleys at the level of the IC (see 

Figs. 2 and 3 in Carney, 2018).   

In the proposed model, the other input to the MOC stage is from the WDR neurons 

in the CN, which carry the stimulus sound-level information. This level-dependent input 

to the MOC acts as a negative feedback system, i.e., an increase in stimulus level would 

increase activity of the WDR neurons which excite MOC neurons, ultimately reducing 

cochlear gain. This negative feedback is hypothesized to keep the operating point of the 

saturating IHC transducer function near its knee point, to ensure sufficient baseline 

fluctuation contrast across frequency channels. The IC feedback signal, described above, 
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would then enhance this baseline contrast. If there were no contribution to gain control 

from the WDR cells, the AN channels could all have fluctuating or flat responses when 

exposed to stimuli with low or high levels, respectively, regardless of the peaks and valleys 

in the stimulus spectrum. Both extremes would reduce the contrast in fluctuation depth 

across IC frequency channels.  

According to the neural-fluctuation profile framework and the feedback 

mechanisms of the MOC efferent system described above, sustained fluctuations in a 

stimulus could cause a progressive decrease in cochlear gain over time. As a result, in 

response to amplitude-modulated (AM) noise, the average rate of BE IC neurons is 

expected to increase over a time course of 100-200 ms due to the MOC-related reduction 

in cochlear gain. The rationale for this prediction is that the low-frequency fluctuations of 

AN fiber responses to modulated noise stimuli excite IC neurons with BE MTFs. BE IC 

neurons are assumed to excite MOC cells, and MOC activity decreases cochlear gain. 

Reduction in cochlear gain effectively decreases the slope of the IHC transduction 

nonlinearity and therefore increases the effective modulation depth at the output of the IHC 

(Fig. 2.2), ultimately increasing the BE IC response. Thus, IC rates would increase over 

time until the efferent control system is stabilized. Interestingly, re-examination of IC 

responses to AM noise in awake rabbits (Carney et al., 2014) supported this hypothesis and 

revealed rates that increased over a time course that is consistent with the dynamics of 
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MOC efferent gain control (Farhadi et al., 2021). This increase in IC  rate is an unexpected 

effect in neural responses, which typically adapt and therefore exhibit a decrease, rather 

than increase, in the neural rate over time. We quantified the increase in IC average rate 

over the time course of responses to AM noise, and used that information to tune the 

parameters of the MOC efferent model proposed in this work.  

Here, we refine and test an AN and subcortical model with both fluctuation- and 

wide-dynamic-range-driven gain control (Farhadi et al., 2021). We first introduce the novel 

control system used to implement the MOC efferent pathway. Next, we describe how the 

parameters of the MOC efferent model were adjusted based on a physiological dataset from 

a previous study of IC responses to AM noise from awake rabbits (Carney et al., 2014). 

We then show that the model with efferents outperforms a model without efferents in 

simulating the dynamics of physiological responses in the IC response to AM noise stimuli. 

FIG.2. 2. (color online) Effect of MOC efferent activity on IHC input-output function. Left 

panel: The effective modulation depth in IHC output voltage is limited due to the saturation. 

Right panel: with the same input pressure, effective modulation depth is increased due to the 

MOC efferent activity and decrease in gain. 
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This finding supports the hypothesis that the efferent system is potentially the underlying 

mechanism for the increase in rate of IC cells over the time course of AM noise. 

Implications of the proposed model for responses to other sounds, and interactions with 

other neural mechanisms involved in long-term changes in response rates, will be 

discussed. 

2.3 Methods 

We adapted existing models that were designed to simulate responses of AN fibers 

(Zilany et al., 2009, 2014) and IC cells (Mao et al., 2013) to implement the proposed 

model with MOC efferent gain control. First, we briefly introduce the original AN and IC 

models. Then, we describe the modifications that were applied, including changes to the 

structure of the existing models and new extensions added to simulate the MOC efferent 

system. Finally, we introduce the methods used to estimate the MOC efferent-system 

model parameters.   

2.3.1 Existing models  

For the original Zilany et al. (2009, 2014) AN model, the stimulus first passes 

through a filter that simulates the middle-ear transfer function. The output of the middle-

ear filter is the input to the cochlear-model stage (Fig. 2.3). Cochlear tuning is modeled 

using two filters, a relatively sharp chirping filter in the signal path tuned at the 

characteristic frequency (CF) and a wider bandpass filter in the feedforward control path 

tuned slightly higher than CF (Zhang et al., 2001; Tan & Carney, 2003; Zilany & Bruce, 

2006). The output of the control-path filter and OHC model stage adjusts the time 

constant (and thus the gain and bandwidth) of the chirping filter. The cochlear-gain 
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parameter (COHC) in this model can be varied from 1 (normal OHC function) to 0 

(completely impaired OHC function) to simulate hearing loss related to OHC 

impairment. The IHC is modeled with a nonlinear transduction function followed by a 

low-pass filter. Hearing loss from decreased IHC sensitivity is implemented by varying 

the CIHC parameter between 1 (normal IHC function) and 0 (completely impaired IHC 

function).  

We used the BE IC model from Mao et al. (2013), which consisted of a band-pass 

filter centered at the best modulation frequency (BMF) of the IC cell. The response of a 

simulated HSR AN model was the input to the IC model; this structure is a simplified 

FIG. 2.3. (color online) Schematic illustrating overall structure of the new model 

components (red) with respect to the Zilany et al. (2014) AN model and Mao et al. (2013) 

IC/CN model (black). After (Zilany et al., 2009) and  (Farhadi et al., 2021). The new model 

components include the two feedback signals from IC and WDR cells to the MOC unit (dashed 

red box), where the two input signals are scaled and summed before going through a first-order 

low-pass filter. The low-pass filtered signal goes to the rational input-output MOC function, 

which maps the input signal to a cochlear-gain scaler between 0 and 1, for that time sample.   
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version of an IC model for  AM tuning that also included a CN stage (Nelson and Carney, 

2004).  

2.3.2 Proposed model with MOC efferents 

One of the challenges of including the efferent system in the computational AN 

model was to reconfigure the implementation of the model to work sample by sample. In 

previous IC model implementations (e.g., Mao et al., 2013), the AN model output for the 

entire stimulus waveform served as the input to the IC stage. In the sample-by-sample 

configuration of the proposed efferent model (Fig. 2.3), a new value of COHC(t) was 

applied to each sample to adjust cochlear gain based on the output of a new stage: the 

model MOC (Fig. 2.3, dashed red box).  The dynamics of the MOC system were modeled 

with a first-order low-pass filter, thus the output of the MOC model was a function of the 

current and previous time samples of the MOC input signal, which was a combination of 

the IC-model rate function (time-varying rate, in spikes/sec) and the CN WDR response 

provided by a LSR AN-model rate-function. For simplicity, we used the LSR AN model 

response to represent all WDR inputs to the MOC, such as the T-stellate cells in the 

anteroventral cochlear nucleus (Oertel et al., 2011; Romero & Trussell, 2021) and cells in 

the small cell cap of the CN that receive exclusive inputs from LSR and MSR AN fibers 

(Fekete et al., 1984; Ryugo, 2008). In the sample-by-sample implementation, the 

previous states of all the filters of the AN model were preserved in order to process each 

time sample of the simulated model response.  

In the proposed model, the output of the MOC efferent stage controlled the gain 

parameter based on the current and previous samples of the neural signals at the input to 
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this stage. Specifically, the output of the MOC stage, a scaler between 0 to 1, was 

multiplied by the OHC gain parameter (COHC) to modulate the cochlear gain. This 

multiplication occurred for every time sample. The model with this new sample-by-

sample configuration was tested to ensure that it matched the response of the original 

model when the efferent stage was deactivated. 

The two inputs to the proposed MOC model (Fig. 2.3, red) were the descending IC 

feedback signal and the ascending WDR signal, which were combined to determine the 

degree of cochlear gain reduction. Specifically, the excitatory input to the MOC stage 

was the sum of the IC and the WDR rate functions. A constant scalar, KIC, was applied 

to the IC rate signal to approximately balance the amplitudes of the two inputs to the 

MOC (Table 4.1). The MOC system was modeled with a low-pass filter representing 

dynamics of the MOC efferent system, followed by a decaying rational function (Eqn. 1) 

that mapped the MOC inputs to an output signal that modulated the cochlear-gain 

parameter, COHC, on a sample-by-sample basis. The rational function, chosen to be 

second-order to ensure asymptotic behavior for both small and large input signals, was 

described by   

 

𝑀𝑜𝑢𝑡(𝑡) =
1

1 + [𝐵 × {𝑀𝑖𝑛(𝑡)}2]
                ,                      (𝐸𝑞𝑛. 1) 

 

where 𝑀_𝑖𝑛 (𝑡) is the sum of the responses from the WDR and IC paths to the MOC 

unit after low-pass filtering, and B is a constant that adjusts the shape of MOC input-output 
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function (Fig. 2.3). The optimization of the value of parameter B is discussed later (Section 

C of the Methods). Figure 2.4 shows the intermediate responses at each level of the 

FIG. 2.4. (color online) The MOC efferent model diagram with intermediate responses at 

different levels of auditory periphery in response to tone-in-noise stimulus. The stimulus 

(black) is initially a wide band noise; after 200 ms a tone is added to the noise for a duration 

of 300 ms. The response of the model AN (HSR) stage (blue) shows that during the noise-only 

stimulus (first 200 ms) the fluctuation depth increases over time as the gain decreases (green), 

and as a result the IC (purple) rate increases. After the addition of the tone (200 -500 ms) the 

fluctuation depths in the AN HSR response is reduced, resulting in a drop in IC response rate. 

As the In1 input to the MOC block (on the right side of this figure) decreases, the gain starts 

to recover (green). After the offset of the tone (500-700 ms) the gain decreases again, and the 

AN fluctuations and IC rate increase.  
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composite model to a tone-in-noise stimulus. The first 200 ms of the stimulus is noise only 

(Fig. 2.4, black). The BE IC response to this initial noise is robust (Fig. 2.4, purple); 

because of the fluctuation in AN HSR rates (Fig. 2.4, blue), thus driving the MOC model 

and decreasing the cochlear gain (Fig. 2,4, green). Between 200 and 500 ms, a tone at the 

model CF (5 kHz) was added to the noise, resulting in saturation of the IHC (not shown) 

and flattening the neural fluctuations in the AN HSR response. As a result of the reduced 

AN HSR neural fluctuations, the BE IC rate response decreased. The reduced IC rate 

resulted in a weaker MOC input and thus a relative increase in cochlear gain (Fig. 2.4, 

green). Note that the mean rate of the AN HSR fiber was not changed appreciably by the 

addition of the tone, due to rate saturation; however, the model WDR rate function 

increased during presentation of the tone. After the tone ended, the IHC was no longer 

saturated, AN fluctuations reappeared, and the IC response increased. The increase in the 

IC response excited the MOC stage, which resulted in a reduction in cochlear gain. The 

changes in the WDR response rate (Fig.2.4, red) also influenced cochlear gain; as described 

above, the WDR signal maintains the IHC operating point such that the IC response has an 

effect on cochlear gain. In contrast to the CF channel tuned to the tone frequency (Fig. 2.4), 

AN fibers tuned away from the tone would have responses that were dominated by the 

noise masker; at moderate sound levels, these responses would have strong fluctuations.  

In summary, a flat AN response flanked by fluctuating responses provides a cue for 

detecting a tone in noise. Model code will be made freely available as downloadable files. 
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2.3.3 Adjusting the parameters of the MOC efferent model  

Parameters of the MOC efferent model include those of the MOC input/output function, 

B (Eqn.1, Fig.2.4), the scaler constant for IC rate (KIC), and the low-pass filter (LPF) time 

constant (cut-off frequency). We adjusted these parameters based on an existing 

physiological dataset that contained IC responses in awake rabbits to AM wideband noise 

(Carney et al., 2014). 

Stimuli 

The stimulus for both the physiological dataset and the model simulation during the 

parameter fits was a sinusoidally amplitude-modulated (SAM) wideband noise (100 Hz to 

20 kHz) with modulation depths that varied from -30 to 0 dB (fully modulated) in 5 dB 

steps, and an unmodulated wideband noise with the same bandwidth. The modulation 

frequency was matched to the best modulation frequency (BMF) of the recorded cells, and 

was in a ranging from 50 to 100 Hz.  The stimulus spectrum level was 36 dB re 20µPa 

(RMS: 76 dB SPL overall level). The duration of the stimuli was 500 ms, including 50-ms 

raised-cosine ramps. 

Physiological data and analysis 

The physiological dataset included previously published extracellular, tetrode 

recordings of responses in the central nucleus of the IC in three awake rabbits. Stimuli 

were presented to the contralateral ear. Details of the physiological methods can be found 

in Carney et al. (2014). Briefly, IC cells were classified based on their MTFs into BE, 

band-suppressed (BS), hybrid, flat and unusual types (Kim et al., 2015, 2020) (Fig. 2.5). 
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BE IC cells are excited over a band of modulation frequencies, whereas IC BS cells are 

suppressed over a band of modulation frequencies (Kim et al., 2020). Hybrid cells have 

rates that are enhanced over one band of modulation frequencies, and suppressed over 

another range (Kim et al., 2020). The focus of this study was on BE cells because this IC 

MTF type was hypothesized by Gummer et al., (1988b) to project to MOC neurons, 

based on the BE MTFs reported for MOC neurons. MTF shapes were classified similar to 

Kim et al. (2020), using a criterion ratio of 1.2 peak MTF rate to the reference rate 

response to an unmodulated wideband noise which yielded approximately equal numbers 

 

FIG. 2.5. (color online) Distribution of MTF classes of the IC neurons in the physiological 

dataset (Carney et al., 2014) using the MTF-categorization method of Kim et al. (2020)  (D. O. 

Kim et al., 2020) 
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of BE and BS MTFs (Fig. 2.5). The frequency of the peak rate in the MTF identifies the 

cell’s BMF.  The physiological responses used in this study had stimulus modulation 

frequency that was within an octave of the recorded cell’s BMF.  

To analyze the physiological responses to AM noise, a Gaussian filter was used to 

smooth the spike trains to avoid aliasing introduced by PSTH bin-widths (Lehky, 2010). 

The standard deviation of the Gaussian filter was inversely proportional to each cell’s 

BMF; the number of points in the filter was six times the standard deviation of the Gaussian 

window. Responses were averaged over 50 repetitions of the stimulus. 

Trends in firing rate over the course of the response, after an initial 200 ms which 

included the onset response, were characterized using a simple linear regression. Based on 

the efferent model framework, the BE IC rates were hypothesized to increase over time as 

a result of reduction in cochlear gain and increase in the temporal fluctuation depths in AN 

responses. The sign of the linear model’s slope indicated whether the response increased 

or decreased over time. BE IC responses with rates that increased over time were used to 

find the parameters in the MOC efferent model by maximizing the correlation between the 

BE IC spiking rate and the model responses to a stimulus with a modulation depth of -10 

dB. A modulation depth of -10 dB was chosen here because the majority of the IC neurons 

had strong increases in rate over time at this modulation depth as compared to higher 

modulation depths, for which IC rates sometimes saturated.  A brute-force method was 

used to search a reasonable range of parameters and find a set of parameters values that 

maximized the correlation between the model response and the physiological data over the 

analysis window. Parameters were estimated for each neuron in the dataset.  We 
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simultaneously fit the time constant, τMOC, the rational function parameter, B (Eqn. 1), and 

the IC constant scaler, KIC. A 300-ms -duration analysis window was used for both 

physiological and model responses. The analysis window started 200 ms after stimulus 

onset and continued until the end of stimulus. Properties of the model such as CF, BMF, 

and modulation frequency were matched to each cell in the physiological dataset. Based 

on the parameter value fits for each of the 33 neurons in the dataset, a distribution of the 

parameters was established, and the means of the distributions were chosen for the final 

model parameter values. The sensitivity of the model to the parameter values was studied 

by comparing the average correlation between the physiological and the model responses 

when each model parameter was either set to the value fit to each neuron or to the mean 

parameter value for the population.  

2.4 Results 

Section A below reviews our hypothesis regarding the MOC efferent model response 

to AM noise stimuli, analysis of the physiological dataset in response to AM noise, and 

implementation of the MOC efferent model with its parameters (KIC, B, and τMOC). 

Section B describes the distribution of the optimum parameters in the dataset and compares 

the responses of models with and without the MOC efferent control system to physiological 

data. In section C we use the new model with MOC efferent control to simulate responses 

to a few different stimuli and compare these responses with physiological data from the 

literature. 
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2.4.1. The physiological dataset 

Consistent with our hypothesis, the IC rates increased over time in most IC neurons 

with BE MTFs. Figure 2.6 presents six examples of BE IC neuron responses that illustrate 

the trend of increasing rate over time; these examples were chosen as they have different 

BMFs and CFs. The left panel in each example in Fig. 2.6 is the rate MTF, and the right 

panel is the IC response to AM noise modulated at a frequency near the neuron’s BMF, 

with a range of modulation depths (different colored lines). The gray time range is the time 

FIG. 2.6. (color online) A-F) Six examples of BE IC neuron smoothed responses to AM 

noise stimulus.  The left-hand panel in each example is the MTF for AM noise stimuli; the 

vertical green lines indicate BMF. The right-hand panels show smoothed PSTHs that illustrate 

the time course of the rate during responses to AM noise stimuli with a modulation frequency 

near each neuron’s BMF and a range of modulation depths (see legend).  
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window after the onset response over which we analyzed the increase in rate. All of the 

examples in Fig. 2.6 had increasing rate over time during the analysis window, especially 

in response to lower modulation depths. In some neurons (e.g., Fig. 2.6B) the rate was 

nearly constant over time in response to fully modulated noise, but the IC rate was high for 

this modulation depth from the beginning of the analysis window. In the framework of our 

hypothesis, this observation suggests that because of the strong modulation in the stimulus, 

the fluctuation in AN PSTHs was large enough to maximize the IC rate, such that a change 

in cochlear gain as a result of MOC efferent activity could not further increase the IC rate. 

In these examples, the PSTHs in response to the unmodulated noise stimulus also showed 

an increasing trend in rate. This trend in the noise responses could also be explained by 

efferent-system activity, because unmodulated wideband noise includes inherent temporal 

fluctuations after peripheral filtering, which would increase IC rate and lower the cochlear 

gain.  

The trend of increasing rate over time (See Methods Section C) occurred in 

approximately 80% of neurons with BE MTFs in response to modulation depths less than 

-15 dB (Fig. 2.7). This percentage decreased at high modulation depths (see Fig. 2.6). As 

described above, the decrease at high modulation depths can be explained by a ceiling 

effect on the IC rate. In general, neural response rates are typically expected to decrease 

over time during sustained stimuli, as a result of rate adaptation, making this increase in 

rate particularly striking. The finding that 80% of the BE IC cells had rates that increased 

over the time course of the AM noise stimuli is consistent with the hypothesis that MOC 

efferent activity results in an increase in BE IC rates over time.   
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2.4.2. Adjusting model parameters  

The distribution of the optimized parameters for neurons in this study was very broad 

(Fig.2.8). The median of the distribution for each parameter was used as the final value for 

that parameter (KIC=30, 𝜏MOC=260 ms, B=0.01) (Eqn.1). The median of the estimated time 

constant distribution was 260 ms, which was used to determine the cutoff frequency of the 

LPF in the MOC’s model, 𝜏MOC. This value agrees with values of the time constant that 

have been suggested for the MOC efferent system based on other types of physiological 

and psychophysical measurements (Backus & Guinan, 2006; Roverud & Strickland, 2010; 

Warren & Liberman, 1989).  

FIG. 2.7. Percentage BE IC neurons with increasing rate over the time course of wideband 

AM noise stimuli. 
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The median correlation between the model and physiological responses during the 

analysis time window was calculated for models with and without the efferent feedback 

system (Fig. 2.9). The low median correlation of 0.025 between data and the model without 

efferent response (Fig. 2.9-A) demonstrates that the model without efferents did not 

simulate the increasing trend in rate over time in the physiological dataset; instead, the 

response of that model showed a decrease in rate consistent with neural adaptation that 

arises in the AN model responses (Zilany et al., 2014). Simulations using a MOC efferent 

model with parameters identified for each neuron resulted in a correlation of 0.98 between 

FIG. 2.8. (color online) Distribution of the fit values of, A) time constant (𝜏MOC), B) the 

rational function parameter (B), and C) the IC scaler (KIC) for the model for 29 neurons in this 

study for which the rates increased during the SAM stimuli, the MTF type was BE, and the 

modulating frequency of the stimulus matched the BMF of the cell. 
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the data and model responses (Fig. 2.9-B). The correlation reduced to 0.68 after replacing 

the individual values with the median values of the distributions estimated for each 

parameter, and some of the correlations in this condition are negative, consistent with the 

wide distribution of the optimum parameters for each neuron (Fig. 2.9-C). This result 

shows that the model was sensitive to the parameter values, but still simulated the increased 

rate in response to AM noise using median parameters values.    

Figure 2.10 shows responses to AM noise for three representative BE IC cells (left 

column), for models without MOC efferents (middle column), and for the model with 

efferents, using the mean values for the model parameters (right column). The models had 

BMFs and CFs that matched the example neurons.  The model with MOC efferent feedback 

simulated the increase in rate over time, consistent with the hypothesis that a model with 

FIG. 2.9. (color online) Correlations between the physiology and models A) without 

efferents, B) with efferents, with all parameters individually identified for each neuron, and C) 

with efferent parameters fixed at the median of the distributions. 
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the MOC efferent system could simulate the response to AM noise more accurately than 

the model without efferents.  

 

 

 

FIG. 10. Physiological data from a BE IC 

cell in awake rabbit, and IC model responses to 

AM noise with modulation depth of -10 dB 

without and with efferent activation for three 

example neurons (A,B, and C). The CF and 

BMF of the model were matched to the example 

neuron (BMF is 50 Hz and CF is 3650 Hz in this 

example neuron) the median values for the 

model parameters were used (Fig. 9-C). 
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2.4.3. Validating the proposed model responses 

Model responses to tone stimuli were compared to responses of the previous model 

to verify that introducing the efferent gain-control pathways did not adversely affect the 

model’s ability to predict AN responses to basic stimuli. It is important to note that the 

physiological data used for comparison were recorded from ANs of anesthetized animals, 

in which the MOC efferent system was likely suppressed (Guitton et al., 2004). Thus, 

complete agreement between the physiological responses of AN fibers in anesthetized 

animals and the responses of the AN stage of the model with MOC efferents was not 

expected, especially for complex stimuli (such as AM tones). However, for pure-tone 

stimuli, Rhode and Kettner (1987) and May and Sachs (1992) showed that anesthesia does 

not significantly affect post-stimulus time histograms (PSTHs) or rate-level functions of 

primary-like neurons in the cochlear nucleus (and one presumed AN fiber). Therefore, we 

validated the proposed model by comparing simulated responses to some baseline stimuli 

in physiological examples. 

Model Response to pure tones and recovery of spontaneous rate 

Figure 2.11 shows data and simulated responses to a 500-ms tone at CF followed by 

500-ms of silence. The purpose of this task was to study both the tone response and the AN 

model’s recovery to spontaneous rate.  Recovery of spontaneous activity depends on 

stimulus level and on the spontaneous rate of the fiber (Kiang, 1965). Here we compare 

model responses to physiological recordings from two HSR fibers with CFs of 1.82 and 

10.34 kHz from Kiang (1965) (Fig. 2.11). The model response during the tone is 

comparable to the physiological examples, and the model shows the same initial pause and 
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time course of recovery after the stimulus as in the physiological responses. Note that the 

response to a pure tone would primarily activate the CN input to MOC efferent pathway. 

The IC stage of the model would mainly respond at the onset and offset of the tone, when 

the onset/offset ramps form a fluctuation in the stimulus envelope and therefore elicit a 

response from the fluctuation-sensitive IC neurons. 

FIG. 2.11. AN and model responses to tones at CF:  A) Unit 43 : CF = 1.82 kHz, 55 dB 

SPL, SR = 60.6 s/sec; B) Unit 41: CF = 10.34 kHz, 30 dB SPL, SR = 51.7 s/sec; C, D) 

Responses to the same tones for the model without efferents, and E, F) with MOC efferents. 

For all model simulations (C to F) the AN model type was HSR with CFs matching the AN 

fibers in the physiological study. The stimulus sound level was matched to stimuli for the 

physiological data from Kiang (1965, permission requested.)  
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Model response to an increment in tone level 

One of the paradigms tested in Zilany et al. (2009) was the model response to an 

increment in tone level. The purpose of this example is to evaluate the response to an 

increment in a tonal pedestal. In the physiological data (Westerman & Smith, 1987) the 

AN fiber response to a tone at the fiber’s CF (5.99 kHz, HSR) was recorded in anesthetized 

cat. Over the first 300 ms of the stimulus, the tone level was 5, 10, 15, or 20 dB above 

threshold, and for the second 300 ms, the tone level increased to 43 dB above threshold. In 

the physiological responses, the transient response to the pedestal increased with pedestal 

level, but the transient response to the increment decreased with increasing pedestal level.  

The same trend was observed in the response of the AN model with and without MOC 

efferents. The increase in rate over time that followed the first transient response was 

observed for the model with MOC efferents (Fig. 2.12C, for initial tone levels of +5 and 

+10 dB), but not for physiological responses in the anesthetized gerbil (Fig. 2.12A). This 

discrepancy between the MOC model predictions and the physiological data may be due 

to the effects of anesthesia on the empirical AN recordings. The increase in rate during the 

low-level tones (Fig. 2.12-c, +5 and +10 dB) reflects the recovery of cochlear gain after an 

initial decrease in response to the onset of the stimulus. Responses in unanesthetized 

animals are not available for these stimuli, therefore, it is not possible to confirm this 

interpretation at this time. 
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Model response to AM stimuli  

Here the model response was compared to the response of an HSR AN fiber with CF 

of 20.2 kHz to an AM tone with a carrier frequency at CF (Joris & Yin, 1992). The effect 

of modulation depth on the synchrony to modulation frequency was studied for modulation 

depths ranging from 0 to 1. The modulation frequency was 100 Hz and level was 49 dB 

SPL. A comparison of synchronization to AM frequency as a function of modulation depth 

showed that the model with MOC efferents had increased synchrony with modulation 

depth. However, the synchrony of the model response was weaker than that observed 

physiologically because of the reduction in cochlear gain as a result of MOC efferent 

activity. Complications for comparison exist due to the difference between dynamic ranges 

FIG. 2.12. A) Actual neuron physiological data from gerbil from Westerman and Smith 

(1987, with permission) in response to increase in tone level. The AN model response to the 

amplitude increment response paradigm B) without efferent system C) with MOC efferent 

system  
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of the model and this physiological example, as noted by Zilany et al. (2009) (Fig. 2.13-

A). Furthermore, model responses to AM tones, which consist of both carrier and sideband 

frequencies, may be shaped by the effective bandwidths of MOC projections, discussed 

below. AM responses of the model with efferents, however, cannot be directly compared 

to physiological responses, which are not available for AN fibers in unanesthetized 

animals. However, we do have access to IC responses to AM noise in awake rabbit. Figure 

13 B compares the synchrony to AM noise for the IC stage of the model with MOC 

efferents to actual responses from an IC cell in awake rabbit (Carney et al., 2014). This 

result confirms that, for the model with efferents, the increase in synchrony in the AN 

FIG. 2.13. (color online) A) Synchrony to the envelope of an AM tone at CF for an AN 

fiber with CF = 20 kHz (Joris & Yin, 1992; permission requested) and for an HSR model fiber 

with matching CF with and without efferent activation.  Modulation frequency of 100 Hz; level 

= 49 dB SPL. B) IC model with and without activation of the MOC efferent system and IC 

physiology synchronization-modulation depth plots for responses to AM noise stimulus at CF 

5330 Hz, BMF 80 Hz, modulation frequency 64 Hz and stimulus level 36 dB SPL.   
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model with increasing modulation depth results in appropriate synchrony at the level of the 

model IC. 

2.5. Discussion 

        In this work, we modified an existing model of the peripheral auditory system 

to simulate both the ascending pathway and MOC efferent feedback with both CN and IC 

inputs. The physiological data and simulation results are consistent with the hypothesis 

that the MOC efferent system influences neural fluctuations over time (Carney, 2018), as 

observed here by the increasing responses of BE IC cells over the time course of an AM 

noise. The simulation results support the hypothesis that a sub-cortical model with MOC 

efferent gain control better simulates IC responses to AM noise compared to a model 

without efferents. 

One of the components of the proposed model is a LPF that was implemented to 

simulate the dynamics of the MOC efferent system. The time constant (or cut-off 

frequency) of this filter was adjusted based on the physiological dataset. The dynamics of 

the MOC efferent system based on the fit parameter agree with the reported dynamics in 

the literature for the MOC efferent fast effect. Backus and Guinan (2006) used stimulus-

frequency otoacoustic emission (SFOAE) measurements to estimate the human MOC-

reflex time constant. They reported an overall onset time constant of 277±62 ms and 

decay time constant of 159±54 ms. Warren and Liberman (1989) estimated the MOC 

response to have a time constant of 250 ms in barbiturate-anesthetized cats. Roverud and 

Strickland (2010) used an optimized psychophysical technique to estimate the time 

course of cochlear-gain reduction. They estimated an average exponential decay of 100 
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ms, which is faster than the time constant estimated by Backus and Guinan. Yasin et al. 

(2020) used a computational model of human hearing that included MOC efferent 

feedback and evaluated the model’s speech recognition for different MOC efferent time 

constants. Their results suggest the improvement in recognition of speech in AM noise is 

highest for a MOC efferent time constant of 200 ms. In general, all of the time constants 

suggested in the literature for the MOC efferent system are in the same range as our 

results based on rabbit midbrain physiology. However, the MOC efferent system time 

constant could differ between rabbits and humans. Using the proposed MOC efferent 

model to simulate human psychoacoustic experiments could better inform our 

understanding of the time constant for human listeners.  

The dynamics of the efferent system support its potential role in improving speech 

perception (Yasin et al., 2018). Specifically, the latency and time constant of the MOC 

efferent system (Backus & Guinan, 2006; Roverud & Strickland, 2010; Warren III & 

Liberman, 1989) are comparable to typical phonemic durations (Jacewicz et al., 2007; 

Umeda, 1977). Therefore, the MOC efferent system would presumably affect auditory 

neural responses, both within the time course of phonemes and also in running speech, 

for which the perception of a phoneme would be influenced by the previous phoneme 

(co-articulation) (Chambers et al., 2017; Recasens, 1984, 2018).  

Another important component of the proposed model MOC efferent system was the 

input-output function that maps the MOC input to a gain factor that scales the cochlear-

gain coefficient between 0 and 1. The second-order rational function used in this model 

was chosen based on its asymptotic behavior at low and high input levels. The direct 
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input-output function of MOC neurons is not known, but several related functions have 

been reported.  The shape of the proposed input-output function was similar to the MOC 

efferent attenuation as a function of input sound level shown in Russell and Murugasu 

(1997). Also, the asymptotic trend of this function for higher values is similar to the 

asymptotic responses shown in Liberman (1988) for MOC efferent activity as a function 

of input sound level. Finally, the proposed function is similar to the relationship between 

stimulus level and OHC power gain, which would be modulated by MOC signals, in an 

electrical-mechanical model for OHCs (Rabbitt & Bidone, 2023; Rabbitt, 2023).  

Comparing the Proposed model with previous AN models that included the efferent 

system 

Several previous AN models include efferent signals driven by the periphery (Clark et 

al., 2012; Giguere & Woodland, 1994; Kwan et al., 2019; Smalt et al., 2014; Yasin et al., 

2020). In some of these previous implementations, cochlear gain was set to remain 

constant over time, omitting the dynamics of MOC efferents (Brown et al., 2010; Ferry & 

Meddis, 2007; Giguere & Woodland, 1994; Jennings et al., 2011). Smalt et al. (2014) 

proposed a model based on the Zilany et al. (2014) AN model, but with an efferent 

system modeled by a time-varying gain-control feedback system. However, in this model, 

a local gain-control system was implemented based on the output of model OHCs, which 

is inconsistent with the overall structure of the MOC efferent system, which depends on 

outputs from the OHCs, IHC, AN, CN, IC, and other structures (Smalt et al., 2014; 

Schofield, 2011). None of these models simulated the descending input to the MOC 

efferent system from the midbrain. The focus of the current study was to include both 
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peripheral and midbrain inputs to a dynamic MOC efferent system in a model for AN and 

BE IC responses. 

Limitations and Future directions 

Other physiological and psychoacoustic studies can be used to further fine tune 

the model's parameters and structure. For example, forward-masking studies with long-

duration maskers would be expected to activate the MOC efferent system (Krull and 

Strickland, 2008; Brennan et al., 2023). At the level of the IC, further animal studies of 

the temporal properties of responses to complex sounds would contribute to this 

modeling effort, such as investigating the changes in synchrony of IC responses to the 

envelope of AM stimuli over time. Another direction for future work is to study the 

influence of efferent activity on the responses of other MTF types in the IC, such as BS 

or Hybrid MTFs. Here we focused on BE MTFs, as their increase in their rate over the 

time course of AM stimuli cannot be confused with rate adaptation. 

The peripheral model studied here is a monaural model, with “one-sided” 

brainstem and midbrain stages. A binaural model would be a powerful tool for studying 

the crossed and uncrossed effects of the efferents. The proposed model in this study 

consists of a single CF channel, and MOC controls for each frequency influence the gain 

of the related CF channel. However, studies have shown that some projections from 

MOC neurons to OHCs have a broad distribution across CF channels (Brown, 2014; Lee 

& Lewis, 2023). To move towards a more comprehensive model, a future direction of 

research could be to explore a cross-frequency projection of the MOC control system that 

affects a range of CFs. A broader distribution of MOC projection could benefit 
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simulations of the neural response to complex stimuli such AM noise and also speech 

signals. Another direction for future work on this model is inclusion of a more advanced 

IC model, instead of the simple bandpass filter used for modulation filtering in  BE IC 

neurons in the current model.  

In general, recording from AN fibers requires an anesthetized animal preparation, 

but anesthesia suppresses MOC efferent activity (Guitton et al., 2004). As a result, there 

are no examples in the AN physiological literature for comparison to the AN model 

response with active MOC efferents. However, recording from more accessible levels of 

the auditory pathway, such as the IC in awake animals, could provide further information 

regarding the MOC efferent system. Recording from the CN in awake animals or 

recording from AN fibers in decerebrate animals could also potentially be beneficial for 

studying the MOC efferent system (Kim et al., 1990a, 1990b; Kawase et al., 1993). 

Other phenomena could explain the increase in IC response rates over time in 

response to AM noise, either in addition to or instead of efferent activity. For instance, 

adaptation of inhibition (Viemeister & Bacon, 1982) could be an alternative explanation 

for the increase in rate we observed in IC responses to AM noise. Adaptation of 

inhibition has been suggested as an explanation for auditory enhancement, in which a 

target signal embedded in a masker is preceded by the same masker but without the target 

frequency. Adaptation of inhibition could explain an improvement in the threshold of 

detecting the tone (Byrne et al., 2011). However, neural mechanisms underlying 

adaptation of inhibition are not clear. Enhancement effects and its properties, such as 

time constant and level-dependence, may be further examined using the MOC efferent 
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model in the future to see if such effects are consistent with MOC feedback. Preliminary 

results suggest that the subcortical model with efferent feedback can also explain several 

aspects of auditory enhancement (Farhadi et al., 2023). 
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 Chapter 3.  Predicting thresholds in an auditory overshoot paradigm 

using a computational subcortical model with efferent feedback 

This chapter is a reformatted proceedings paper that was accepted for presentation at in 

IEEE Workshop on Applications of Signal Processing to Audio and Acoustics 2023 

(WASPAA2023). 

3.1 Abstract                             

The threshold for detecting a brief tone in a long-duration gaussian-noise masker is 

elevated for a tone presented near masker onset compared to a tone later in the masker. 

This phenomenon, referred to as overshoot, has been hypothesized to reflect the dynamic 

control of cochlear gain by the medial olivocochlear (MOC) component of the efferent 

system. In this study, we used a subcortical computational model of the auditory system 

that included the MOC efferent system to predict listener thresholds in the overshoot 

paradigm. Our simulation results matched listener thresholds, including the trend of 

decreasing thresholds as the delay of the tone with respect to noise onset increased from 2 

to 200 ms. A model without MOC efferents had the opposite trend, with thresholds 

increasing in longer delay conditions. These findings support the hypothesis that the MOC 

efferents are involved in the overshoot effect.   

3.2 Introduction 

Human listeners with normal hearing are known to outperform both individuals with 

hearing loss and automatic speech recognition (ASR) devices in hearing speech in noise 
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[1-3]. Understanding the mechanisms involved in hearing in background noise for the 

normal-hearing auditory system has significant implications for improving the 

performance of ASR devices and hearing aids. 

Simultaneous masking, for which the presence of one sound interferes with the 

perception of another sound, is a common focus of hearing research [4-5]. Studying the 

mechanisms underlying simultaneous masking can lead to more insights into how the 

auditory system processes complex acoustic stimuli, such as speech in noise [6-7]. The 

overshoot effect is an aspect of tone detection in simultaneous masking [8]. In the 

overshoot paradigm, listeners are asked to detect a brief tone in a longer duration noise; the 

tone occurs either immediately after the onset of the noise or after a varying delay. 

Detection thresholds show an improvement in performance for tones that are delayed after 

the onset of the noise masker [8-12]. The improvement in detection threshold for this task 

is called the overshoot effect. The overshoot effect is measured in different stimulus and 

hearing conditions.  

Despite much research on the overshoot effect, the neural mechanisms underlying 

overshoot are not fully understood [13]. One suggested mechanism is adaptation of 

auditory-nerve (AN) fibers [14]. When the masker noise is presented, the AN response 

adapts, or decreases, while the onset response to an increment or added tone remains strong. 

Thus, there is a higher proportional response to the tone when it is added to the masker 

noise after a delay [14]. However, Bacon and Healy [15] argue that neural adaptation of 

AN fibers cannot fully explain overshoot, as it cannot account for spectral features of the 

overshoot effect, such as frequency dependency for detection of tones in tonal maskers. 
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Also, for listeners with normal hearing the amount of enhancement is about 10-15 dB, 

whereas the magnitude of the temporal effect that can be explained based on neural 

adaptation is only 3-5 dB [8, 16]. 

One suggested mechanism for overshoot is the MOC reflex [16-20], a component of 

the efferent system in the descending auditory pathway [21]. The efferent system comprises 

various projections that extend from locations spanning from the cochlea to the auditory 

cortex [22]. Here, we focus on two excitatory projections to the MOC efferent neurons, 

one from wide-dynamic-range cells in the brainstem that convey level-dependent stimulus 

information, and the other from IC cells in the midbrain that transmit information about 

fluctuations in stimuli [21,23-25]. These two signals combine to adjust the activity of MOC 

neurons, which project directly to the outer hair cells (OHCs) and modify cochlear gain 

[21]. Previous studies suggest that the time constant of the MOC reflex ranges from 100 to 

200 ms [26-28].   

Several studies have provided evidence for the effect of the MOC reflex on overshoot. 

One study [29] investigated the timing that results in the strongest overshoot effect and 

found that the delay of 100-200 ms resulted in the maximum overshoot effect, consistent 

with MOC efferent dynamics [26-28]. This finding supports the hypothesis that MOC 

efferent activity plays a role in the overshoot effect. Another study [30] show that the 

overshoot effect varies with changes in the noise-masker sound level, with the most 

significant impact observed for mid-level maskers. Because MOC neurons receive level-

dependent information from wide-dynamic-range (WDR) brainstem cells, the level 

dependence of the overshoot effect could be explained by MOC activity. On the other hand, 
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the dependence of overshoot on spectral properties reported in other studies [16, 30, 31] 

could be explained by efferent activity through IC projections to MOC neurons. IC neurons 

are sensitive to AN response fluctuations. Another interesting study [32] found that cutting 

the efferent bundle decreased the overshoot effect. Furthermore, several studies [35,22,21] 

found that hearing loss, whether permanent [19, 20, 33] or temporary, caused by factors 

such as aspirin intake [35] and noise exposure [36], can reduce overshoot. Although these 

findings could be related to different mechanisms that are disrupted by hearing loss, they 

could also indicate the inefficiency of the MOC reflex in listeners with hearing-loss [33] 

and support its role in overshoot and its effect on cochlear gain.    

A computational model that simulates neural responses to arbitrary stimuli is a 

valuable tool for further understanding the effect of the MOC reflex on the overshoot effect. 

In this study, we replicated a psychoacoustic overshoot experiment [34] and compared the 

temporal effect for a peripheral model with and without the MOC reflex. The MOC efferent 

model used in this work, proposed by Farhadi [37, 38], includes a projection from WDR 

cells in the cochlear nucleus in the auditory brainstem, as well as a projection from IC cells 

in the midbrain. The WDR projection is a negative feedback loop that decreases cochlear 

gain as the stimulus level increases, keeping the inner hair cell (IHC) near the knee point 

of its nonlinear transduction function. IC cells carry fluctuation-dependent information and 

work as a positive feedback system that increases the fluctuation depth in AN fiber 

channels that are fluctuating and flattens AN responses that are less fluctuating [37-39]. 

The model parameters were optimized by fitting the response of IC band enhanced 

(BE) cells in awake rabbits to amplitude-modulated noise stimuli. The model was adjusted 
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to replicate the observed trend of increasing firing rate throughout an AM stimulus, which 

was not seen in the model without efferent [37,40,41]. This optimized model has been 

demonstrated to improve the ability to predict human performance in psychophysical tasks 

[42]. The dynamics of the efferent system were modeled using a low-pass filter with a time 

constant of 200 ms, which is consistent with studies of efferent system dynamics and falls 

within the range suggested by psychoacoustic studies as being most relevant to the 

overshoot effect [26-28]. 

3.3  Methods 

3.3.1 Model 

A computational model of the auditory system was used to simulate the neural 

response of the auditory system to a classic overshoot stimulus. The auditory model used 

in this study not only simulated the neural pathway in the ascending auditory periphery but 

also included the MOC efferent feedback control system. The MOC efferent system 

implemented here was comprised of two projections to MOC neurons: 1) from WDR cells 

in the brainstem and 2) from IC cells in the auditory midbrain. These two projections both 

increased the MOC efferent activity which suppressed the cochlear gain for each frequency 

channel independently. The two feedback signals to the MOC system were summed after 

scaling, and then were lowpass filtered to simulate the dynamics of the efferent system. 

Finally, the low-pass-filtered sum of the input signals was the input to the MOC input-

output function. The input to the MOC at each time sample was mapped to an output gain 

factor between zero and one. With this implementation, an increase in the input signal to 

the MOC resulted in a decrease in the gain factor. This gain factor modulated the cochlear 
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gain directly. The MOC efferent system adjusted the gain dynamically for each time 

sample according to the previous inputs to MOC block (For more specifics and details of 

the peripheral model, see [37]).  

The responses of eight characteristic frequencies (CFs), ranging from 2.5 to 6.5 kHz 

and centered around the target frequency were simulated. Based on the simulated neural 

responses, the thresholds of the models with and without efferent feedback were estimated.  

An IC model with a band-enhanced (BE) modulation transfer function (MTF) and best 

modulation frequency (BMF) of 100 Hz was used to estimate the model threshold. The 

BMF of 100 was selected based on the median BMF of IC cells in physiological studies 

[43] and is typical of values used in previous modeling studies using similar methods. 

3.3.2. Stimuli  

The target stimulus was a 10-ms tone probe with a frequency of 4 kHz. The masker was a 

wideband noise with a bandwidth of 20 to 40 kHz; the duration of the masker was 400 ms 

with 5-ms on/off cos2 ramp durations. The estimated thresholds were compared for two 

conditions: one in which the tone was added to the noise after a short (2-ms) delay, and the 

other in which the tone was added after a long (200-ms) delay. These two delay conditions 

were examined in this study to replicate the psychoacoustic task [44]. The tone level was 

fixed at one value, which varied from 40 to 90 dB SPL, with 10 dB increments, and the 

masker level was tracked to find the detection threshold.  
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3.3.3 Procedure 

A two-interval task was used to estimate the threshold for detecting the target stimulus. 

Each trial consisted of two intervals, separated by a 500-ms silent period. One interval 

contained the target stimulus and the masker noise, and the other interval contained only 

noise. The decision variable was based on the increase in rates of IC neurons with BE 

responses during an analysis-time window of 20 ms, temporally centered around the probe 

tone. The IC responses were summed over CFs. A 70.7% correct criterion was used for 

threshold. The procedure was repeated for 50 trials to estimate the threshold signal-to-noise 

ratio (SNR) for each of the two models: one with efferent pathways included and one 

without efferent pathways. 

Figure 3.1. Overshoot stimuli with short (top- 2ms) and long (bottom- 

200ms) delay of tone onset from noise masker onset 
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3.4 Results 

Figure 3.2 displays the structural schematic of the subcortical model, featuring the 

medial olivocochlear (MOC) efferent system. The simulated neural responses at various 

levels of the auditory pathway are presented, including the IC cells (green), high-

spontaneous-rate AN fibers (blue), and cochlear gain factor (orange), in response to the 

stimulus (black). By simulating neural responses at different stages of the auditory 

pathway, the model enables us to trace the peripheral and central processes that shape the 

responses to the overshoot stimulus. This representation provides a comprehensive and 

clear understanding of how the MOC efferent system may influence auditory processing 

of the overshoot stimulus. The simulated neural responses are shown for the models with 

and without the efferent system, and for stimuli with short (2-ms) and long (200-ms) delays 

after the onset of noise. For the short-delay condition, the responses at all levels were 

similar because the model with efferents did not have enough time to adjust the cochlear 

gain before tone onset. Therefore, there are no significant differences between the efferent 

and non-efferent models at the IC level, where the decision variable was applied. Note that 

the illustrated responses are for a single fiber, for one repetition, and with a CF matched to 

the tone frequency, while a range of characteristic frequencies were used to evaluate the 

threshold. The IC rate response to the tone appeared to merge with the response to the onset 

of the noise for both models, which resulted in a strong peak at the beginning of the IC 

response. The neural responses to the stimulus with a tone added at a short delay agrees 
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with our hypothesis that the MOC reflex does not have a significant effect on the short-

delay condition. 

Figure 3.3 provides a more detailed illustration of the effect of the efferent model on 

the delayed tone response (cf. blue arrows in Fig. 3.2). In the long-delay condition, efferent 

activity reduces cochlear gain over the time course of the wideband noise. With the addition 

of the tone at 200 ms, the model with the efferent pathways responds with a strong peak in 

the IC rate as a result of the tone onset. For the model without efferent pathways this strong 

Figure 3.2. the Model structure used for this study with MOC efferent simulation and the 

simulated neural responses to overshoot stimuli (black), at different stages including cochlear 

gain factor (orange) AN HSR (blue) IC BE (green) in the subcortical model. For a magnified 

image of the delayed tone responses (blue arrows) see Figure 3.B. 
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peak is not observed because the maximum cochlear gain remains constant during the noise 

masker in the model without efferents. This relatively high cochlear gain in response to a 

peak in the stimulus results in saturation of the IHC. As a result of IHC saturation, the 

response of the high-spontaneous-rate AN fiber is flattened. The flattened response 

observed in the HSR fiber response occurs, despite the modulation in the stimulus, because 

of the IHC saturation. The flat AN HSR response results in a lower rate in the BE IC 

response to the tone, as these BE IC cells are excited by low-frequency fluctuation in AN 

HSR fibers. In contrast, for the model with efferents, since the gain is reduced in response 

to noise, the IHC is pulled away from saturation, and the modulation in the stimulus results 

in modulation of the AN fiber response, resulting in a peak in IC BE response. 

 

Figure 3.3. A) IHC influence on the effective modulation depth changes with 

efferent activity. B) Effect of IHC saturation in AN HSR Response to delayed tone 

without efferent activity on left and with efferent activity on right. 
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The simulated neural responses, and the intuition behind them, matches the estimated 

thresholds for both models - with and without efferents. In the short-delay condition, the 

threshold for psychoacoustic data and both models - with and without efferents - are the 

same. For the long-delay condition, there is an increase in the noise level at threshold in 

the physiological data, indicating that listeners can tolerate a higher level of noise, or in 

other words, their performance is improved. For the model with efferents, the same trend 

was observed: the noise level at the estimated threshold was higher for the long-delay 

condition compared to the short delay. This result shows that better performance was 

estimated using the model with efferents. On the other hand, for the model without 

efferents, the trend was opposite, such that for the longer-delay stimuli, the noise level at 

threshold was lower compared to the short delay. This result indicated worse detection 

performance for the long delay compared to short delay, which is opposite to the threshold 

trend observed for human listeners in psychoacoustic experiments. 
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Figure 3.4. A- psychoacoustic thresholds in human listeners thresholds are from Strickland (2004) 

[44] B) Estimated thresholds for model without efferent. C) estimated thresholds for the model with 

efferents. 
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 3.5. Discussion 

A comparison between simulations using models with and without an efferent system 

supports the hypothesis that the dynamic gain control by the MOC reflex plays a significant 

role in simultaneous masking, especially for the overshoot effect. Moreover, the threshold 

predictions (Fig. 3.4) demonstrated better accuracy for the model with efferents compared 

to that without. These results show that the model with the MOC reflex, which agrees with 

anatomical and physiological information, can also be more comprehensive and accurate 

in simulating psychoacoustic tasks and estimating human behavioral thresholds. This new 

model can serve as a powerful tool for testing different hypotheses in hearing and lead to 

more insight about auditory mechanisms.  

A future direction for this work could be to use the model with efferents to study the 

effects of different factors in the overshoot paradigm, such as modulation of the masker 

(i.e., flat or fluctuating masker), changes in the delay between the masker and tone onsets, 

and hearing loss, to further test the hypothesis that overshoot is affected by the efferent 

system. 
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Chapter 4.  Effect of MOC efferent system on neural coding of 

vowel-liked sounds using a subcortical computational auditory model  

4.1 Abstract                             

Improving speech intelligibility in background noise is a significant challenge in 

hearing research. Individuals with hearing loss face difficulties in understanding speech in 

noise mostly due to dysfunction in their auditory peripheral system. Understanding the 

neural coding to speech sound in the healthy auditory system can be an important guide for 

improving speech intelligibility and inspire new algorithms for improving hearing devices. 

In this study, we employed computational modeling to investigate how the healthy hearing 

auditory system encodes speech sounds. Our focus was on exploring the hypothesis that 

the medial olivocochlear (MOC) efferent system enhances the neural coding of speech by 

analyzing neural fluctuation profiles as a robust coding at conversational-level speech. We 

utilized a subcortical auditory model that integrated within channel IC-driven projections 

conveying fluctuation information and WDR-driven cross frequency projections 

incorporating sound level information. We specifically examined vowel-like sounds with 

single and double formants and assessed the impact of MOC activity on neural coding at 

different sound and noise levels. Additionally, we compared the robustness of the 

modulation transfer function (MTF) shape across varying sound levels with and without 

MOC activity. Our simulation results demonstrate that the MOC efferent system can 

dynamically enhance neural coding of vowel-liked stimuli by sharpening the contrast in 

neural fluctuation profiles during 300 ms stimuli at supra-thresholds sound and noise 

levels. Furthermore, MOC activity helped maintain the MTF shape in the IC model when 
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sound levels varied. These findings emphasize the potential significance of MOC efferent 

activity in understanding speech perception in noisy environments. 

4.2 Introduction 

Understanding speech in background noise is difficult for listeners with hearing loss, 

even when they use advanced hearing aids in comparison with listeners with healthy 

hearing. Individuals with normal hearing perform better than even the most advanced 

speech recognition devices when it comes to dealing with background noise (Spille et al., 

2018; Humes et al., 2013, Chou et al., 2019). These differences in speech perception among 

healthy hearing, impaired hearing and machine hearing, show that the healthy auditory 

system is developed for processing speech in challenging real-life environments with 

multiple sources of noise. Understanding how the auditory system accomplishes 

understanding speech in noise becomes particularly intriguing, as it can inspire designing 

more impactful hearing-aid devices.   

This chapter focuses on neural coding of vowel-like stimuli. Vowels are periodic 

waveforms produced by vibration of the vocal cords and shaped by resonances of the vocal 

tract. The vowel spectrum includes peaks that are associated with the harmonics of the 

fundamental frequency (F0), which relates to the pitch of an individual's voice. 

Additionally, there are peaks known as vocal formants that are specific to each vowel 

sound. Frequencies of the first two formants and their relationship, can be used to classify 

vowels (Fant, 1960). Studying vowels is crucial for understanding the robustness of the 

healthy auditory system in background noise, as vowels have relatively high energy and 

their periodicity remains robust in noise.  
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The neural fluctuation code, proposed by Carney in 2018, provides a robust framework 

for understanding the neural coding of speech. The neural fluctuating coding relies on the 

differences in amplitude of low-frequency neural fluctuations in the responses of auditory-

nerve (AN) fibers across different frequency channels. Interestingly, despite other codes 

that rely on average-discharge-rate information versus sound level (Sachs and Young, 

1979; Young and Sachs, 1979; Delgutte and Kiang, 1984), neural fluctuations are 

maintained despite AN saturation at conversational levels (Liberman, 1978; Costalupes et 

al., 1984; Carney, 2018). The spectral information of vowel sounds can be coded by the 

neural-fluctuation profile (Carney et al., 2015). In response to a vowel, AN fibers have 

lower-amplitude neural fluctuations in channels near the formant frequency (Deng et al., 

1987; Delgutte and Kiang, 1984; Young and Sachs, 1979) and higher amplitudes in other 

frequency channels because the inner hair cells (IHCs) in the auditory system become 

saturated at the formant-frequency channels, which are local maxima in the spectrum. 

Other channels are not saturated. This contrast in neural fluctuations is then carried to 

higher levels in the auditory pathway, the brainstem and the auditory midbrain. IC cells in 

the midbrain are sensitive to the low-frequency fluctuations in their inputs and can code 

the differences in neural fluctuation amplitude with different average IC response rates 

(Langner and Schreiner 1988; Krishna and Semple 2000; Nelson and Carney 2004; review: 

Joris et al., 2004). 

Neural fluctuations are a robust cue, and interestingly, can play a role not only in 

processing of sound in the ascending auditory pathway, but also in the feedback control 

loop that adjusts cochlear gain in the healthy auditory system (Guinan, 2018; Carney, 



115 
 

2018). The efferent system, consisting of various projections from different stages of the 

auditory system (Guinan, 2018), is proposed to play a crucial role in speech intelligibility, 

especially in noise (Brown et al., 2010; Yasin et al., 2020; Martes et al., 2019). In this 

study, we focus on the medial olivocochlear (MOC) efferent system, which projects to the 

outer hair cells and adjusts the cochlear gain across different frequency channels (Guinan, 

2018). Previous models of the MOC efferent system (Clark et al., 2012; Giguere & 

Woodland, 1994; Kwan et al., 2019; Smalt et al., 2014; Yasin et al., 2020) have usually 

only included the projection from the cochlear nucleus (CN) to the MOC, and the MOC 

efferent system was considered as an automatic gain control system, reducing gain at 

higher sound levels and increasing gain at lower sound levels. However, studies of the 

MOC efferent system have shown that there are additional projections to MOC neurons 

carrying different types of information (Schofield, 2011; Guinan, 2018), thus gain control 

is not solely determined by sound levels. In this work we will use the Farhadi et al. (2022) 

subcortical auditory model that incorporates the MOC efferent system, including 

projections to MOC neurons from both wide dynamic range (WDR) cells in the CN and IC 

cells in the midbrain. The WDR cells provide sound-level information and the IC 

projection includes neural-fluctuation information in the AN fiber response, conveying 

spectral and temporal information about the stimulus.  

Our hypothesis for this chapter is that the MOC efferent system’s gain adjustment 

sharpens the neural fluctuation profile by maintain maximal gain at the spectral peaks (e.g., 

formants in vowel stimuli) and decreasing the gain at other frequencies. These processes 

enhance the contrast in the neural fluctuation profile, and consequently in the IC rate 



116 
 

profile, between the response to formant frequencies and non-formant frequencies. The 

rationale behind our hypothesis is that when the spectral peak corresponds to the formant 

frequency, the IHC becomes saturated, leading to a decrease in neural fluctuation 

amplitude and a subsequent decrease in the response of band-enhanced (BE) cells in the 

inferior colliculus (IC) (Fig. 4.1). These IC BE cells are a specific class of IC cells:  their 

rates increase when there is low-frequency fluctuation of their input. IC BE cells are 

hypothesized to project to MOC neurons. The reason for this argument is that as MOC 

neurons receive descending projections from IC cells and also these cells have a band-pass 

modulation transfer functions (MTFs) and hence it is likely that the reason for their band-

pass MTF functions be the projection from IC BE cells specifically to these neurons 

(Gummer et al., 1988a; Huffman & Henson, 1990; Schofield, 2011).  The decrease in 

neural-fluctuation amplitudes in AN fibers tuned near formant frequencies results in a 

decrease in the IC BE firing rate for formant-frequency channels. Consequently, by 

decreasing the IC BE rate, the input to the MOC neurons is reduced. This reduction in 

MOC input decreases MOC activity, which in turn allows the cochlear gain to increase 

specifically at the formant frequencies, as MOC activity typically suppresses the cochlear 

gain. For other frequency channels, that are not tuned near spectral peaks, IHCs are not 

saturated and the temporal neural fluctuations increase the firing rates of IC BE cells. This 

increased rate further increases MOC activity, resulting in a decrease in the cochlear gain 

for these frequency channels. This process dynamically enhances the contrast in the neural-

fluctuation profile. In summary, the reduction in cochlear gain in non-formant-frequency 

channels pushes the nonlinearity of the IHC away from saturation, amplifying the neural 
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fluctuation amplitude even more. As a result, the firing rates of IC BE cells and MOC 

Fig.4.1. Neural fluctuation in responses to a vowel-liked sound of AN fibers and the 

neural coding of the fluctuations in the profile of response rates of IC BE cells. AN fibers 

tuned near formant frequencies have relatively flat temporal fluctuations, resulting in a dip 

in the IC BE response profile. The IC BE response profile is enhanced (green) with 

activation of MOC efferent. 
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activity increase, leading to further reduction in gain for these frequency channels. 

However, for the formant frequency channel, the increased gain pushes the IHC closer to 

saturation, resulting in even less neural fluctuation amplitude, lower IC BE firing rates, and 

less gain reduction.  

The subcortical model proposed by Farhadi et al. (2022) has demonstrated better 

performance in predicting various psychoacoustic tasks than models without efferents 

(Brennan et al., 2023; Farhadi et al., 2023; Farhadi and Carney, 2023; Maxwell et al., 

2023). This model was designed as a channel-by-channel system, where the adjustment of 

cochlear gain in each frequency channel depended only on the projections from the IC and 

WDR cells associated with that specific frequency. While this channel-by-channel 

implementation of the MOC system could account for trends in less complex 

psychoacoustic and physiological datasets, it poses challenges when applied to more 

complex wideband stimuli, such as speech. For wideband stimuli such as speech, a 

channel-by-channel automatic gain control based on the WDR projection can flatten the 

spectrum. A channel-by-channel WDR projection decreases gain for spectral peak 

frequencies and increases gain for other frequencies, resulting in neural responses with 

minimum contrast across frequency channels and diminishing the spectral information of 

the stimulus in the neural response similar to the challenges with multi-channel 

compressive amplification in hearing-aid devices (Holube et al., 2016; Bor et al., 2008; 

Plomp, 1988; Stone and Moore, 2008). The compression in the hearing aid is a nonlinearity 

that lowers the amplification for higher sound levels, and if it is implemented with a high 

number of channels, it can reduce the spectral information of the input sound.  
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Additionally, there is evidence suggesting the existence of two types of MOC 

projections with different bandwidth properties (Liberman & Brown,1986; Brown, 2014). 

Our hypothesis proposes that WDR-driven MOC projections could project to a wider band 

region of the cochlea compared to projections from the MOC that are driven by fluctuation 

(Fig. 4.2). In the proposed implementation of the MOC efferent system, WDR driven MOC 

Fig 4.2. Schematic illustration of the peripheral afferent (black and green arrows) and MOC 

efferent (red and yellow arrows) pathways. This schematic shows the projections from MOC neurons 

to OHC of both on-CF (within-channel projections: hypothesized in this work to initiates from IC 

input to MOC neurons) and also projections to neighboring CFs (cross-frequency projections : 

hypothesized in this work to initiates from WDR input to MOC neurons). Here for a simple 

presentation, we have shown the afferent pathways on the left side and the efferent pathways on the 

right side, but anatomically both pathways exist on both sides of the brainstem.  
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signals project to a wider bandwidth of frequency channels in cochlea and fluctuation-

driven MOC projection (that get their input from IC model) influence only the within 

channel cochlear gain. We propose that the WDR projection adjusts the cochlear gain 

within a range that ensures the IHC operates near its knee point. This WDR projection 

allows the higher stimulus amplitude near spectral peaks to saturate IHCs, while avoiding 

saturation for other frequencies. The IC projection, potentially with its finer-tuned 

characteristics, can adjust the cochlear gain more precisely. 

In this study, we used the subcortical auditory model proposed by Farhadi et al. (2022), 

but with a broader bandwidth for the WDR projection. Our primary focus is to observe 

how the inclusion of the MOC efferent system enhances the coding of neural fluctuations 

over time. Initially, we investigate the neural response to single-formant stimuli and 

observe how the MOC efferent system sharpens the coding of neural fluctuations over time. 

Then, we transition to more complex vowel-like stimuli, two-formant stimuli or 

synthesized vowels. We illustrate the hypothesized effect of the MOC efferent system on 

sharpening neural-fluctuation coding across different sound levels and SNRs. 

4.3. Methods 

 First, we provide an abstract explanation of existing models that do not include 

the efferent system and can simulate responses of AN fibers (Zilany et al., 2009, 2014) 

and IC cells (Nelson and Carney, 2004). Then we briefly introduce the subcortical model 

that includes the MOC efferents, with IC and CN projections to MOC neurons, proposed 

by Farhadi et al. (2022). Finally, we describe the modifications that are introduced in this 

study to the previous MOC efferent model to include a wider projection to the cochlea of 
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the WDR inputs and a fine-tuning projection to the cochlear of the IC inputs to the MOC. 

After introducing the model, we will explain the properties of vowel-like stimuli and the 

background noise that was used in this study.    

4.3.1. Computational Model 

 In this section we will explain the peripheral model for the ascending auditory 

pathway and then explain the step-by-step modifications applied to this model to include 

more detail properties of the MOC efferent system.   

Zilany AN model for the ascending periphery 

 The Zilany et al. (2014) model simulates the responses of auditory-nerve fibers in 

response to any desired input sound. In this model, the sound first goes through a middle-

ear filter (Fig. 4.3). After that, there are 3 parallel filters to model cochlear tuning. These 

filters include a sharply tuned chirping filter at the characteristic frequency (CF), a 

broader bandpass filter tuned slightly higher than CF, and a control-path filter that in 

combination with the outer hair cell (OHC) model modifies the time constant, 

consequently affecting the gain and bandwidth of the chirping filter (Zhang et al., 2001; 

Tan & Carney, 2003; Zilany & Bruce, 2006). The output of the IHC model is the input to 

the synapse model, which simulates the spike rate of AN fibers for all three groups of AN 

fibers based on their spontaneous rates (high (HSR), medium (MSR) and low (LSR)). 

The output of the synapse model with HSR properties provides the input to the CN and 

IC models that will be described below.  
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Farhadi et al. (2022) model with inclusion of MOC efferent system 

 The subcortical model described above has only ascending projections. In Farhadi 

et al. (2022) the MOC efferent system was added to this model to simulate a part of the 

descending efferent system (Fig. 4.3). To implement the feedback loops in the MOC 

system, the model was reconfigured to a sample-by-sample process instead of the 

previous implementation where the output for the entire stimulus waveform was 

simulated and was the input to the IC stage. In the Farhadi et al. (2022) model, the output 

of the IC is one of the two inputs to the MOC block (Fig. 4.3), and the other input is from 

the low-spontaneous rate (LSR) fibers, which represent the WDR cell types in the CN 

that project to MOC. In the MOC stage of the model, these two excitatory projections 

combine and are low-pass filtered to simulate the dynamics of the MOC efferent system 

with a physiologically plausible time constant. The output of the LPF goes through an 

input-output function that maps the input to the MOC to a gain factor between 0 and 1. 

The gain factor modulates the cochlear gain. Farhadi et al. (2022) is a time-varying, 

within-channel, gain-control model based on the physiology and anatomical information 

of the MOC efferent system. The parameters of this model were adjusted using a 

physiological dataset (Carney et al., 2014) consisting of the neural response of IC cells in 

awake rabbits in response to Sinusoidal Amplitude Modulation (SAM) noise. 
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Proposed MOC model with cross-frequency WDR projection 

 Farhadi et al. (2022) model showed a better performance compare to the model 

without the inclusion of the MOC efferent system in various psychoacoustic tasks in 

terms of predicting human behavior (Brennan et al., 2023; Farhadi et al., 2023; Farhadi 

and Carney, 2023; Maxwell et al., 2023). However, for more complex stimuli, such as 

speech signals in a background noise, a more detailed MOC model includes both within-

channel and cross-channel projections. MOC projections based on what is suggested in 

FIG 4.3. Schematic illustrating overall structure of the ascending auditory-pathway model 

including the Zilany et al. (2014) AN model and SFIE (Nelson and Carney 2004) IC/CN model 

(black). Addition of the MOC efferent system as a descending auditory pathway was 

implemented in Farhadi et al. (2022), including two feedback signals from IC and WDR cells 

to the MOC unit. (red)   
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anatomy studies for MOC efferent system seems to be essential (Liberman & 

Brown,1986; Brown, 2014). The WDR projection in the MOC as a negative feedback 

loop in a within-channel automatic gain control system can result in a neural response 

with minimum contrast across frequency channels, regardless of the spectrum of the 

stimuli. This feedback, if implemented with a channel-by-channel projection, will lower 

the gain for spectral peaks and increase the gain for spectral dips, resulting in a flattened 

response profile across frequencies.  

 In this study, we change the implementation of the MOC system so that the IC 

projection is only affecting the cochlear gain of the CF-frequency channel, while the 

WDR projection affects gain over a wider frequency span. Therefore, the WDR signal 

associated with one specific frequency channel influences the gain factors associated with 

not only one CF but a range of frequencies (Fig. 4.4). To adjust the gain factor for each 

frequency, the IC signal associated with that specific frequency is low-pass filtered, 

scaled, and mapped to a value between 0 and 1 by an MOC input-output function. WDR 

signal associated with the specific CF associate with a neighboring of specific CF will go 

through the same process but with different properties for the input-output function and 

all outputting a value between 0 and 1. The geometric mean of the gain factor output of 

all WDR-driven was multiplied to IC-driven MOC output, resulting in a final gain factor 

between 0 and 1, which modulated the cochlear gain for the specific CF.   
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FIG. 4.4. Schematic of the proposed MOC model with fine-tuning IC projection from on-CF 

(green) frequency and the wide-tuned WDR projection. In this figure all the feedback signals 

influencing the gain for a sample frequency of “i” is showed. For WDR all the neighboring CFs 

within 0.5 Octave of the specific frequency are involved in gain adjustment for this frequency 

channel. Each WDR signal (both on-CF and off-CF) and the IC signal (on-CF) goes through a low 

pass filter with similar properties for all signals. WDR signal after low-pass filter will go through 

the WDR input-output nonlinearity and then the geometric mean (GM) of these gain factors are 

calculated as one value for WDR-driven MOC. The Lowpass-filtered IC signal goes through 

Fluctuation-driven input-output nonlinearity and the output is the IC-driven gain factor. At the end 

the WDR-driven gain factor and IC-driven gain factor, which have values between 0 and 1, are 

multiplied together, resulting in a final gain factor with a value between 0 and 1 for the specific 

frequency, “i". The same structure exists for other frequency channels. 
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The IC model used in the MOC feedback system in Farhadi et al. (2022) was a bandpass 

filter (Mao et al., 2013) but has been updated in this study to a more detailed IC model, 

SFIE model (Nelson and Carney, 2004). The SFIE model consists of two stages: CN and 

IC models, both functioning as coincidence detectors with inhibitory and excitatory 

inputs from the same frequency. The inputs to the CN model are the convolution of the 

AN fiber rates and appropriate alpha functions representing excitatory and inhibitory 

synaptic inputs, and the output of the CN model is convolved with a different set of alpha 

functions to create inputs to the IC model. The schematic diagram (Fig. 4.5) represents 

the SFIE model, with line thickness showing the relative strength of inhibitory and 

excitatory inputs. The alpha functions displayed in the figure have different time 

constants for excitatory and inhibitory inputs at each stage. Equation 1 describes the 

response of the IC model, including a delay (D) to account for the synaptic delay of the 

inhibitory response. The parameter A scales the output rate to a reasonable average rate, 

and S indicates the relative strength of inhibitory to excitatory input. The CN model's 

parameters are specified in Nelson and Carney (2004), and the IC model's parameters are 

listed in Table 4.1. Figure 4.5 illustrates the modulation transfer function (MTF) of the IC 

model.  

 

𝑟𝐼𝐶(t) = A [t𝑒
−𝑡

𝜏𝑒𝑥𝑐 ∗ r𝑐𝑛(t) − 𝑆𝐼𝐶,𝑖𝑛ℎ(t − 𝐷𝐼𝐶) × 𝑒
−(𝑡−𝐷𝐼𝐶)

𝜏𝑖𝑛ℎ ∗ r𝑐𝑛(t − 𝐷𝐼𝐶)]                       

 (𝐸𝑞𝑛. 1) 
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Parameter Description Value 

τex Excitation time constant (S) 0.0016 

τinh Inhabitation time constant (S) 0.0023 

D Inhibitory delay (S) 0.0032 

A alpha function area 1 

Sinh Inhibitory strength 0.9 

FIG.4.5. The IC model used in the MOC efferent feedback is the SFIE model (Nelson and 

Carney, 2004) A) Schematic of the CN/IC model (from Nelson and Carney, 2004) and alpha 

functions at each stage of the model. The thickness of the projection lines shows the relative 

strength of the projections B) The noise MTF of the SFIE model for a BE IC cell using the 

parameters in table 4.1 and with inclusion of MOC efferent activity at 65 dB SPL. The 

horizontal dotted line shows the unmodulated rate, the vertical line shows the BMF (64 Hz). 

Table 4.1 Parameter’s value and description for SFIE IC 

model.  
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 The new parameter introduced to this model is the bandwidth of the WDR 

projections, while also other parameters such as scalers for WDR and IC and parameters 

associated with the input-output function of the WDR pathway and IC pathway were re-

adjusted, as the implementation differed and the IC rates differed because of using SFIE 

IC model. We kept the low-pass filter property intact as it was physiologically reasonable 

and had been adjusted in the Farhadi et al. (2022) model. The other parameters were 

adjusted using speech-like stimuli to improve the sharpness of the response-rate profile 

for all different stimuli with different properties. However, we cannot be certain that 

these parameters accurately replicate a healthy human auditory system. This study 

investigates the feasibility of sharpening of the neural fluctuation profile using a model 

with MOC efferent feedback. While a more accurate adjustment of these parameters 

based on physiological datasets can be an interesting future work of this study, it is out of 

the scope of the current computational modeling study, as there is not enough information 

about the MOC efferent projection properties due to the various challenges that such 

physiological and anatomical studies face. The parameters that were used in the MOC 

model are described in Table 4.2. Equation 2 also shows the equation for calculating the 

gain factor for an example frequency (i). In this equation n indicates the number of CFs 

that falls within the band of BWWDR. 

 The IC model used in this study for both models with and without efferents is the 

SFIE model with a best modulation frequency (BMF) of 64 Hz, which is the median 

value of population of rabbit IC neurons (Kim et al., 2020), and a BE MTF shape. A total 

of 100 CFs with a linear space in the range of 150 Hz and 3 KHz were simulated. 
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Analysis windows of 100-ms duration were used to find the average IC rate and gain 

factor over those windows to evaluate the effect of MOC efferent activity over the 

stimulus time. All the simulated responses were averaged over 10 repetitions. 

 

 

Table 4.2. Parameter’s value and description for the proposed MOC efferent model.  

 

Parameter Description Value 

BWDR 

"beta" parameter in the MOC input-output nonlinearity 

for the WDR MOC pathway. 0.01 

BIC 

"beta" parameter in the input-output function of the IC 

projection. 0.01 

OWDR 

"offset" parameter in the MOC input-output nonlinearity 

for the WDR MOC pathway.  (Spikes/Sec) 0 

OIC 
"offset" parameter in the MOC input-output nonlinearity 

for the IC MOC pathway.  (Spikes/Sec) 50 

KWDR 

Scalar value multiplied with lowpass-filtered WDR signal 

before signal is passed through MOC input-output 

nonlinearity. 6 

KIC 

Scalar value multiplied with lowpass-filtered IC signal 

before signal is passed through MOC input-output 

nonlinearity. 3 

Fcutoff Cutoff of the lowpass filter used in the MOC stage (Hz). 0.64 

BWWDR Width of the WDR cross-channel spread (octaves). 0.5 

BWIC Width of the IC cross-channel spread (octaves). 0 
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1 + (𝐵 × 𝐿𝑃𝐹(𝐼𝐶𝑖(𝑡)−𝑂𝑖𝑐)
2)
                          (𝐸𝑞𝑛. 2) 

 

4.3.2. Stimuli 

To maintain the proper function of the positive feedback loop that incorporates the IC 

fluctuation-driven projection, it was essential to ensure that the bandpass-shaped property 

of the IC model is maintained at the sound levels we are simulating the neural response. In 

this study, first we examined the changes in the modulation transfer function (MTF) shape 

of the IC model under different sound levels ranging from 10 dB to 90 dB, comparing the 

MTFs of the model with efferent activity and the model without efferent activity. Then we 

used the model to explore the neural coding to vowel-liked stimuli in silence and also in 

background noise. 

SAM noise: For the sinusoidally amplitude-modulated (SAM) noise MTF analysis, 

the stimulus duration was set to 500 ms, and the CF was 1 kHz. The modulation frequency 

varied from 2 Hz to 512 Hz, with 21 linearly spaced modulation frequencies. The wideband 

noise had a bandwidth from 100 Hz to 8,000 Hz. The modulation depth was set to 0 dB 

(fully modulated noise). Each condition was repeated 50 times and the average smooth 

response was used for analysis. 
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Single-Formant Stimulus: The first speech-like stimuli that were used in this study 

were single-formant stimuli, a harmonic complex with a triangular spectral envelope over 

a log-frequency axis with a center spectral peak, similar to vowel spectrum. The peak 

frequency was 2 kHz and the fundamental frequency (Fo) was 100 Hz. The slope of the 

spectral envelope (G) was set to 50 dB per octave. The duration of the stimulus was 300 

ms, with 25-ms cos2 on/off ramps. 

Double-formant stimulus (synthesized-vowel stimuli): The double-formant stimulus 

was generated using the Klatt (1980) vowel-synthesizer software with resonators and 

impulse-train inputs. The formant frequencies were 500 Hz and 2100 Hz and BW for each 

formant is 70 and 90 Hz respectively. The duration of the stimulus was 300 ms, with 5 ms 

cos2 on/off ramps durations. The F0 was 100 Hz for this stimulus.  
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Background Noise: In order to evaluate the robustness of the neural coding of vowel-

like stimuli in background noise, we used long-term-average-speech-spectrum (LTASS) 

noise based on the spectrum described by Byrne et al. (1994). LTASS is a wideband noise 

with a spectrum similar to the long-term average spectrum of real speech.  This noise has 

been used in several studies for speech-intelligibility experiments. 

FIG.4.6. Spectrum of the stimuli used in this study.  A) Single-formant stimulus with peak 

frequency at 2 kHz and F0 of 100 Hz spectrum slope of 50 dB per octave.  B) Double-formant 

(Formant Frequencies 500, 2100 Hz and F0 of 100 Hz. C) LTASS speech-shaped background 

noise (Byrne et al., 1994). All three stimuli had overall level of 65 dB SPL.  

A B C 
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4.4. Results 

 First, we will examine the impact of MOC efferent activity on the robustness of the 

MTF shape of the IC model at various sound levels. Then, we will investigate the neural 

response to a single-formant stimulus at different sound and noise levels, both with and 

without MOC efferent activation. The next section follows the same procedure but with a 

more vowel-like stimulus, a double-formant stimulus. We will analyze the dynamic effect 

of MOC activity using analysis time windows throughout the duration of the stimuli. 

4.4.1. Effect of the MOC efferent activity on MTF shape 

 The IC model response is influenced by the MOC efferent system, which in turn 

affects the cochlear gain. However, the cochlear gain adjustments due to the MOC efferent 

activity also impact the response of the IC because adjustments in the cochlear gain change 

the modulation depth of the neural fluctuations in AN HSR response, which is the input to 

the CN and then IC model. Decreasing the gain enhances the effective modulation depth 

in neural fluctuation of the AN response. As a result, we anticipate a higher IC rate in 

response to AM noise with MOC activation, resulting in a stronger and more robust MTF 

shape. Preserving the MTF shape in the IC model is crucial for the effective operation of 

the IC positive feedback. The IC feedback’s role is to enhance contrast in the neural 

fluctuation profile (see introduction of this chapter) and this process relies on the sensitivity 

of IC cells to low-frequency modulation in AN response.  

 In Fig 4.7, the MTFs of the IC model are presented for 5 different noise levels. At 

very low sound pressure levels (SPLs), the MTF shape remains relatively unchanged with 
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MOC activation. This is because the WDR input to MOC is minimal, resulting in low MOC 

activity and minimal gain reduction. Therefore, the model responses with and without 

MOC activation are expected to be similar. As the sound level increases, the MTF shape 

for the model without MOC activation quickly becomes flatter. This means that, for an 

average sound level of 50-70 dB SPL, the IC model response without MOC activation 

becomes less sensitive to modulation at the BMF frequency. In contrast, the model with 

MOC activity maintains the MTF shape over a wider range of sound levels. Considering 

the ability of human listeners with healthy hearing to discriminate vowels at 50-70 dB SPL, 

as well as the physiological response to AM noise in awake rabbits, the model with the 

Fig. 4.7. MTF of the IC BE Model with (green) and without (black) a cross-

channel MOC efferent activity.  Noise was varied between 10 to 90 dB SPL. The 

horizontal dotted line shows the IC rate in response to an unmodulated noise, the 

vertical line shows the BMF (64 Hz). 
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cross-frequency MOC efferent system more accurately simulates the neural response to 

AM noise.  

4.4.2. Effect of the across-frequency MOC efferent model on neural coding of 

single-formant stimuli 

  In this section, we investigated the impact of the cross-frequency MOC efferent 

system on neural coding of single formant stimuli, as a simple representation of a vowel-

like stimulus. Our hypothesis suggests that MOC efferent activity enhances the neural-

fluctuation profile throughout the duration of the stimulus. To facilitate better comparisons 

between the model's responses at different time windows and to compare them with the 

responses of the model without MOC efferent activation, we introduce two criteria that 

indicate an enhancement in neural fluctuation coding. 

 Figure 4.8 presents depth and sharpness as two measures for assessing the 

enhancement in neural fluctuation coding. Depth refers to the maximum difference 

between the rate at the formant frequency and the edge frequencies, while sharpness 

Fig.4.8. Enhancement of the neural fluctuating coding in IC BE rate can be measured by sharpness 

and depth of the response at the local maxima frequency the stimulus spectrum 



136 
 

represents the bandwidth of the response at half of the depth. Increased values in both depth 

and sharpness indicate an enhancement in the neural fluctuation profile. 

 Figure 4.9 displays the IC BE response of the proposed model with cross-channel 

MOC efferent activity to a single-formant stimulus with peak frequency of 2 KHz and 

spectral slope of 50 dB/Octave (see Figure 4.6.A). The top row illustrates the cochlear gain 

factor that multiplies with the cochlear gain. Each color in the plot shows the average gain 

factor over a different non-overlapping time analysis window to show the time-varying 

Fig.4.9. Top row: the averaged gain factor adjusting the cochlear gain for each CF frequency over 

time analysis windows. Bottom row: the average IC BE model response to a single formant centered 

at 2 kHz using three different time analysis windows, along with the average response of the model 

without MOC activation (dotted black line). Each column corresponds to one sound level (65 dB SPL, 

75 dB SPL, and 85 dB SPL), showing the response and gain factor. 
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gain control of the MOC efferent system. Noticeably, in Fig. 4.9, the gain has sharper local 

maxima around the peak frequency of the stimulus, which is 2 kHz and expicifically for 

the time analysis window that are are later in time.The bottom row shows the average IC 

BE rate over the three different time windows, and the average response of the model 

without efferent activation. We observe that, across all sound levels, the response of the 

model with cross-frequency MOC activation has a sharper response at target frequency in 

comparison with the model without dynamic gain control and it gets sharper over time. The 

sharpening effect appears to be more distinct at the moderate sound level of 75 dB SPL.  

The depth of the response, which serves as another measure for evaluating the enhancement 

of the coding of the neural fluctuation profile, either increased in the model with MOC 

efferent activation compared to the model without efferent responses, or did not show 

significant changes throughout this experiment at different sound pressure levels (SPLs). 

 Figure 4.10 illustrates the response of proposed model with cross-frequency MOC 

system to a single-formant in background noise. Each column represents a different signal-

to-noise ratio (SNR), ranging from 15 dB SNR and gradually increasing the noise to 

achieve 0 dB SNR. The stimulus level remained constant at 65 dB SPL, while the speech-

shaped noise level varies. 

 The first row of Fig. 4.10 displays the spectrum of the stimulus, consisting of the 

single formant and the speech-shaped noise. The second column shows the averaged gain 

factor over the three different time analysis windows. Due to the presence of background 

noise, the peak at the target frequency (2 kHz) is not as pronounced as it was in Fig. 4.9 

with the single formant in silence. The shape of the peak on the lower side is also less 
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distinct, mainly influenced by the spectral properties of the speech-shaped noise, as the 

noise level was higher at lower frequencies and rolled off at higher frequencies. The third 

row in Fig. 4.10 presents the average IC BE responses over the time analysis windows. 

Over time, not only does the response become sharper, but the depth of the response also 

increases. These observations indicate an enhancement in neural coding at the IC BE in 

response to the single-formant stimulus in the presence of background noise. However, this 

enhancement becomes weaker as the noise level increases. 

Fig.4.10: Top row: the stimulus spectrum comprising of a single formant stimulus and speech-

shaped noise. Middle row: the averaged gain factor adjusting the cochlear gain for each CF frequency 

over the time analysis windows. Bottom row: the IC BE model response to the single formant stimulus 

centered at 2 kHz with a speech-shaped background noise, averaged over three different time analysis 

windows. The average response of the model without MOC activation is represented as a dotted black 

line. Each column corresponds to a different signal-to-noise ratio (SNR): 15 dB, 10 dB, and 5 dB. 
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4.4.3. Effect of the across-frequency MOC efferent system on neural coding of 

double-formant stimuli 

 In this section, we will examine the influence of the cross-frequency MOC efferent 

system on the neural coding of double formant stimuli, which more closely resembles a 

vowel stimulus. Using the two-formants stimuli in this study guide us to better adjust the 

constrains on the bandwidth of WDR projection so that considering the bandwidth of the 

typical formants in a vowel the WDR projection could still discriminate between the two 

peaks. The two formants in this stimulus are located at frequencies of 500 Hz and 2000 Hz. 

Figure 4.11 illustrates the gain factor (top row) and the average IC BE response (bottom 

row) over time windows for sound levels of 65 dB, 75 dB, and 85 dB SPL. In response to 

both formants, there is a peak in the gain factor plots at all sound levels. However, the peak 

becomes shallower as the sound level increases for both formants. The top row of Fig. 4.11 

also shows that the cross-frequency MOC efferent activity sharpens the peak at the formant 

frequencies over time. 

 In the bottom row of Fig. 4.11, the average IC rate of the model with cross-

frequency MOC implementation exhibits a sharper response at the high-frequency formant 

compared to the model response without efferent activation. This sharpness further 

increases over time, as observed by comparing the different colored plots in each figure of 

the bottom row. The depth of the response either improves or remains unchanged when 

compared to the model without efferent activation, across all sound levels. Similar to the 

single formant response (Fig. 4.9), the enhancement in neural fluctuation coding is most 

pronounced in the middle column, where the sound level is in the middle range. 
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 Responses to double-formant stimuli in the presence of background speech-shaped 

noise are depicted in Fig. 4.12. Similar to Fig. 4.10, the top row displays the stimulus 

spectrum, which in this case represents the double-formant in noise. The stimulus spectrum 

level remains constant at 65 dB SPL. In Fig. 4.12, each column represents a different 

spectrum level of the noise, resulting in various signal-to-noise ratios (SNRs) ranging from 

Fig.4.11: Top row: the averaged gain factor adjusting the cochlear gain for each CF 

frequency over time analysis windows. Bottom row: the average IC BE model response to a 

double formant with formant frequencies at 500 and 2100 Hz over three different time 

analysis windows, along with the average response of the model without MOC activation 

(dotted black line). Each column corresponds to one sound level (65 dB SPL, 75 dB SPL, 

and 85 dB SPL), showing the response and gain factor. 
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15 dB to 0 dB. Compared to the single-formant stimulus, the effect of noise was more 

pronounced in Fig. 4.12, particularly for the higher-frequency formants, due to the lower 

energy of the higher-frequency formants when compared to the lower-frequency formants. 

In Fig. 4.12, the second row displays the averaged gain factor. It is evident that at lower 

sound levels, there is a local peak in the gain factor at both formant frequencies. However, 

as the noise level increases, the local maximum at the second formant becomes weaker, 

while remaining robust for the first formant. The effect of these gain adjustments can be 

observed in the third row of Fig. 4.12, which shows the average IC BE rates for the three 

analysis windows. The dip in response to the first formant remains strong and consistent 

across different noise levels. However, for the second formant with the higher frequency, 

the depth of the response is initially strong at lower noise levels but gradually decreases 

with increasing noise level. The enhancement of neural coding in the IC BE response, 

considering both sharpness and depth criteria, increases over time and is more pronounced 

compared to the model without efferents.  However, this enhancement effect diminishes as 

the noise level increases, eventually becoming indistinguishable in the response to the 0 

dB SNR stimulus. 
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Fig.4.12. Top row: The stimulus spectrum consists of double-formant stimulus and speech-shaped 

noise. Middle row: the gain factor adjusting the cochlear gain for each CF frequency averaged over 

time analysis windows. Bottom row: the IC BE model response to double formant with formant 

frequencies at 500 and 2100 Hz in a speech-shaped background noise. These responses averaged over 

three different time analysis window and shown with different shade of blue colors. Also the average 

response of the model without MOC activation is plotted (dotted black). Each column corresponds to 

a different SNR (15, 10, and 5 dB). 
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Figure 4.13 provides a quantitative overview of the results related to neural fluctuation 

(NF) enhancement, considering the depth and sharpness of the representation of F2 in IC 

BE response profile. In the absence of background noise (silent condition, Fig. 4.13, top), 

the sharpness of the dip in the IC BE response profile increased from the model without 

efferents to the model with efferents. In addition, for the model with efferents the sharpness 

increased over time. However, the depth either decreased or remained similar in both 

models and over time. Consequently, the combined effect, which was the product of depth 

and sharpness, improved for both single-formant and double-formant stimuli in the silent 

condition when compared to the model without efferents, particularly during the later time-

window analysis. This improvement was not as prominent at the 85-dB SPL sound level 

and became more noticeable at medium sound levels (ranging from 65- to 75-dB SPL), 

which align with conversational levels (Olsen, 1998). 

In the results with background noise (Fig. 4.13, bottom), an increase in the depth of 

the dip of the IC BE response profile was observed when comparing the model with 

efferents to the model without efferents. However, the improvement in depth was relatively 

smaller compared to the enhancement in sharpness. When considering the combined effect, 

for both single-formant and double-formant stimuli in the presence of noise, the 

enhancement effect was stronger in the model with efferents compared to the model 

without efferents, particularly during later time windows. While there were examples 

where the enhancement effect was not consistently present across all time windows, at least 

one time window had a higher enhancement compared to the model without efferents. For 

instance, in the case of a 5-dB SNR, the last window had a lower enhancement compared 
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to the model without efferents, but the other two windows had higher enhancement effects. 

For this result, the most noticeable difference between the models with and without 

efferents was observed at the medium noise level (10-dB SNR). 
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Fig.4.13. Summary of the Neural Fluctuation (NF) enhancement criteria for both stimuli (left: 

single formant, right: double formant) in silence (top) and in noise (bottom). All values are normalized 

to the criteria value for the model without efferents. Black bar is associated with the model without 

efferents and the colored bars are associated with the model with efferent for different time analysis 

windows. (Blue: W1 (10-100ms), Purple: W2 (100-200 ms), Red: W3 (200-300 ms). For each 

combination of the stimuli and noise/silence there are three subplots. The first subplot shows the depth 

of the response, the second subplot shows the sharpness of the response and the last subplot shows the 

combination of the two by calculating the depth multiplied by sharpness. 
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4.5. Discussion 

In this study, we used a subcortical auditory model that incorporated the MOC efferent 

system to investigate the role of the MOC efferent system in neural coding of speech sound. 

We made modifications to the MOC model structure, so that it includes both within-

channel and cross-channel MOC projections to the cochlea. The WDR-driven MOC 

projection served as a dynamic automatic gain control system, maintaining neural 

fluctuation at different sound levels by keeping the cochlear gain within a range by 

maintaining the operating point of inner hair cells (IHCs) near the knee point of their input-

output functions. The cross-frequency implementation of WDR-driven projection ensured 

that the spectral information of the stimulus was preserved and not removed by flattening 

of the response spectrum by narrowband automatic gain control of this feedback. On the 

other hand, the fluctuation-driven MOC projection was implemented using within-channel 

projections, allowing the fluctuation amplitude of each frequency channel to influence the 

cochlear gain at that specific frequency. This finer adjustment of gain, based on the peaks 

and valleys in the stimulus spectrum, enhanced the contrast in the neural-fluctuation profile 

over time. 

This new implementation of the subcortical auditory model was then used to explore 

the enhancement in neural-fluctuation coding using simulated neural responses at the level 

of IC BE neurons to SAM, single-formant, and double-formant stimuli. Our study explored 

the effects of sound level and speech-shaped noise on neural coding, both with and without 

efferent activation, analyzing various time windows to investigate the dynamic effects of 

the MOC efferent system.  
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The simulation results presented in this chapter showed an enhancement in neural 

fluctuation coding for different test stimuli. This enhancement was evaluated based on two 

criteria in the IC BE rate profile: response sharpness and response depth. When considering 

various sound levels, the simulation results revealed that the model with efferent activation 

exhibited sharper responses to stimuli compared to the model without efferent activation. 

Furthermore, the sharpness of the response increased over time in the efferent model. In 

the case of stimuli presented in noise, the model with efferent activation consistently 

simulated a sharper response over time, outperforming the model without efferent 

activation for both single-formant and double-formant stimuli in terms of enhancement of 

neural-fluctuation coding. Notably, these results not only demonstrated sharper responses 

but also had improved response depth, as the model with efferent activation had higher 

simulated rates at the edges of spectral peaks. This improvement was observed because of 

the increase in neural-fluctuation amplitude due to the addition of noise. The increased 

neural fluctuations contributed to a positive feedback loop that enhanced the contrast 

between the responses at the peak and the edges of spectral peaks, as discussed in the 

introduction. 

It is noteworthy that the enhancement in neural-fluctuation coding for vowels in noise 

was mainly observed for average sound levels and lower SNR values, rather than more 

challenging conditions such as very low or very high sound levels or negative SNRs. This 

observation aligns with the findings of Jennings, 2021, that suggested that the MOC 

efferent activity is more beneficial in suprathreshold conditions.  This observation suggests 
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that MOC efferent activity may be more important in everyday life conditions, rather than 

near-threshold situations. 

Considering the feedback control system associated with the MOC efferents, there is 

a requirement for some level of initial contrast in neural fluctuation for the fluctuation-

driven feedback to further improve the contrast through a positive feedback loop. For very 

high levels of noise, the contrast may not be sufficient for this positive feedback to enter 

the enhancement loop effectively. This intriguing finding provides valuable insight into 

understanding individual differences with hearing loss. While the audiometric thresholds 

of human listeners may be similar across individuals, variations in the performance of the 

MOC efferent system, whether due to misfunctioning of the system itself or dysfunction 

of peripheral signals at the input to the system, can contribute to differences in speech 

comprehension in noisy environments, particularly in more complex but supra-threshold 

conditions. 

It is important to note that the parameters and structure of the proposed MOC model 

may not definitively represent an accurate model of this complex system. Many aspects of 

the anatomy and physiology of the MOC efferent system remain unknown (Guinan et al, 

2018). However, in this study, our focus was primarily on evaluating the potential of such 

a model to improve neural contrast through simulation and modeling. This work can serve 

as inspiration and guidance for future experiments and studies aimed at better 

understanding the mechanisms involved. Additionally, it can inspire new ideas for 

enhancing the signal-processing capabilities of hearing-aid devices and other automatic 
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hearing devices by considering the improvement of neural-fluctuation contrast as a coding 

mechanism for speech comprehension and learning from the processes of normal hearing. 

Lastly, in this study, our focus was on how the MOC system may enhance neural-

fluctuations as a robust coding mechanism, particularly at conversational sound levels. This 

coding benefits from the inherent nonlinearities in the normal auditory system for coding 

information conveyed to central and, eventually, cortical levels for the final goal of sound 

perception. However, the extent to which the enhancements observed in the simulation 

results of this study can contribute to improved speech perception remains an intriguing 

question that falls outside the scope of this study. The results presented here encourage 

further investigation as an important future direction. A potential initial step towards 

achieving this goal could involve predicting formant-discrimination accuracy for 

suprathreshold noise levels, which would require additional data collection with 

physiological and psychoacoustical measurements. In summary, our work supports the 

hypothesis regarding the potential of the MOC efferent system to enhance neural coding 

of speech sounds. Our work also suggests the need for further exploration and 

consideration of the role of the MOC efferent system in speech perception in noise, as well 

as the improvement of computational models relating to MOC efferent system. 
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Chapter 5.  Summary and Future Work 

This thesis proposed an auditory subcortical model that simulated both ascending and 

descending neural projections in the auditory system by including a model for the MOC 

efferent system. The impact of incorporating the MOC efferent system into an existing 

ascending subcortical model was evaluated in predicting human behavior in different 

psychoacoustic forward and simultaneous masking tasks. The simulation results showed 

better performance for the model that included efferent feedback in terms of accuracy in 

estimating human subjects’ thresholds for the studied psychoacoustic tasks.  Additionally, 

this study explored the effect of the MOC efferent system activity on the neural coding of 

speech-shaped signals. We tested the hypothesis that the efferent system enhances the 

representation of vowel-like sounds in neural responses. Simulation results of neural 

response the speech shape stimuli aligned with our hypothesis.  

5.1. Summary and Novel results 

The first chapter of this thesis provides background information on the auditory system 

to aid in understanding the subsequent chapters. It briefly discusses the nonlinearities found 

in a healthy auditory system and their potential benefits for speech perception in healthy 

auditory system. Chapter one also emphasizes the significance of the MOC efferent system 

in hearing research and the importance of incorporating this feedback in auditory modeling. 

The remainder of the chapter provides a brief overview of the three main aims of the thesis. 

Aim 1 focuses on modeling the MOC efferent system, aim 2 involves testing and refining 

the model using psychoacoustic data, and aim 3 examines the potential impact of efferent 

feedback on the neural coding of speech. 
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Chapter 2 provides a detailed explanation of the proposed MOC efferent system 

model. It discusses the functionality and importance of the two feedback loops, one from 

IC cells in the midbrain and the other from WDR cells in CN, that are integrated into the 

MOC model. Additionally, the chapter explains how the model's structure was modified to 

enable the inclusion of these feedback loops. The modification involved transitioning from 

processing the entire stimulus at once to implementing it sample-by-sample. The chapter 

also describes how the MOC activity was considered when reevaluating an existing 

physiological study. In this study, neural recordings from IC cells in the midbrain were 

analyzed in response to AM noise, focusing on changes in the response over time instead 

of average rate. This reevaluation reveals an interesting trend of increasing neural response 

over time. We hypothesized that this trend may be attributed to MOC activity. To adjust 

the model's parameters, we utilized this dataset and compared the performance of the 

proposed model with the previous model in simulating the observed trend from the 

physiological study. Our simulation results support the hypothesis that the observed trend 

of increasing rate over time in the physiological dataset may be a result of MOC efferent 

activity. Additionally, the results demonstrate that the model incorporating the MOC 

efferent system more accurately simulates the physiological responses tested in this study. 

Furthermore, tests were conducted on the proposed model to ensure that it can accurately 

simulate the neural properties of the auditory system predicted by the previous model.  

The proposed model was evaluated to predict human listeners' performance in various 

psychoacoustic tasks. The inclusion of the MOC efferent system in the model resulted in 

improved accuracy compared to the previous model when estimating listeners' thresholds. 
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Some of these findings have been published in collaborative works, as noted in the 

appendix. Chapter 3 of the thesis is dedicated to an independent study that focuses on 

examining the model's performance, specifically with the MOC efferent system, in 

predicting human listeners' thresholds in a simultaneous tone in noise detection task. In this 

task, a brief target tone is introduced either immediately after the noise onset or with a 

delay. The model that incorporates efferent feedback successfully predicts the observed 

enhancement in human listeners' performance when the target tone is delayed, while the 

model lacking efferent feedback fails to exhibit this trend. 

Chapter 4 investigated the impact of the efferent system on speech coding. Initially, 

the chapter explored the neural coding of speech using the auditory model, focusing on the 

quality of neural fluctuation cue as a measure for speech perception. Subsequently, the 

effect of MOC activity on the neural fluctuation coding was investigated. In line with our 

hypothesis, it was found that the efferent system enhanced speech perception by sharpening 

the neural fluctuation coding in response to speech-shaped stimuli. This project specifically 

examined single formant stimulus and synthesized vowel. We analyzed the impact of the 

efferent system on the robustness of neural fluctuation profile in the presence of 

background noise and at various sound levels. The model incorporating efferent system 

exhibited greater robustness compared to the model without efferent under challenging 

conditions, including different noise backgrounds, sound levels, and signal-to-noise ratios 

(SNRs). As a result, the model with efferent more accurately predicted the performance of 

the normal hearing system in such conditions compared to the model without efferent.   
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In summary, compared to previous models for the auditory system, the proposed 

model demonstrates better performance in simulating the trends observed in both 

physiological and psychoacoustic datasets. This model is a physiologically plausible tool 

for investigating the role of the MOC efferent system and has significant potential for 

predicting various physiological and behavioral hypotheses facilitating a deeper 

understanding of the auditory system and its functionality. Finally, this model has the 

potential to contribute to advancements in auditory devices and hearing aids.   

5.2.  Future work 

The research in the area of auditory efferent system is highly intriguing, as it has been 

largely unexplored compared to the ascending auditory pathway. There are still so many 

questions unanswered regarding the anatomy, functionality and role of the efferent system 

on perception of sounds. Studying such a complicated system with complex circuitry, 

including projections from various stages of the auditory pathway, is very challenging 

especially since some of these projections are not accessible for physiologically recording 

in awake animals (Guinan, 2018, Schofield, 2011).  However, despite the challenges, there 

is ongoing excitement about the potential avenues of research in this field (Jennings, 2021). 

Exploring the efferent system further can provide a better understanding of the human 

auditory system as a whole, including both the ascending and also the descending 

pathways.  
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5.2.1. Employing the proposed auditory model for studying the MOC efferent 

system                    

An auditory model with inclusion of the MOC efferent system can be a powerful tool 

for studying the efferent system (Meddis et al., 2010). The predicted responses from the 

auditory model can be insightful for designing physiological and psychoacoustical 

experiments that can lead into more information about the efferent system. Recognizing 

the role of the efferent system in auditory processing can lead to a new way of analyzing 

and thinking about the existing physiological and psychoacoustic studies specifically in 

unanesthetized measurements (Aedo et al., 2015; A. R. Chambers et al., 2012; Guitton et 

al., 2004). As an example, we started adjusting the parameter of the proposed efferent 

model by re-analyzing the physiological dataset of IC response to AM noise that was 

previously used and analyzed for different purposes (Carney et al., 2014). Keeping the 

efferent system activity in our mind, we managed to look at this dataset in a different way, 

which was to look at the responses over the stimulus time that are longer than the suggested 

sluggishness suggested for efferent system (Backus & Guinan, 2006; Salloom et al, 2023; 

Roverud & Strickland, 2010; Warren & Liberman, 1989). This method of physiological 

analysis, and keeping the efferent activity in perspective, can be applied to other existing 

physiological studies specially for studies in awake animal and can bring in more insight 

about the auditory system and also efferent system functionality, specifically. It could be a 

very interesting future direction to reevaluate some existing dataset, but by considering the 

effect of the efferent system and observing the changes over time in the neural responses.   
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Auditory models incorporating the efferent system can offer valuable insights into the 

impact of the efferent system on various psychoacoustic tasks. Through the modeling work 

presented in this study, along with our anatomical and physiological knowledge, we now 

understand that temporal fluctuations in the stimulus strongly influence efferent system 

activity (Brennen et al., 2023). The modulation present in the stimulus can translate into 

modulation in neural responses of auditory nerve fibers, ultimately exciting the IC BE cells 

and increasing efferent activity (Carney, 2018, Farhadi et al 2023, Kim et al., 2015, 2020). 

With this understanding, we can design psychoacoustic studies to gain a better 

understanding of the efferent system and the auditory system as a whole. By using the 

effect of stimulus fluctuation on MOC efferent activity, we can stimulate MOC activity in 

a more natural way compared to electrical stimulation. In such experiments, altering the 

modulation depth and sound level may potentially control the extent of MOC stimulation. 

Computational models can help in testing whether human behavior aligns with model 

predictions, allowing us to evaluate our hypotheses and assumptions about the efferent 

system. 

Furthermore, the modeling work can assist in the accurate design of noninvasive 

methods for studying the efferent system, such as investigating otoacoustic emissions 

(Guinan et al, 2003; Lee and Lewis, 2023), while ensuring that the measurements do not 

significantly impact the observations. In other words, by employing these models, we can 

comprehend how the stimulus itself can influence efferent activity when studying this 

system. For instance, when examining the efferent system using a pulse of clicks as a 

stimulus, it is crucial to consider that the modulation present in the stimulus, caused by the 
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timing between the clicks, may greatly impact the efferent activity rather than solely the 

nature of the clicks themselves. So, in summary one area of future work and contribution 

of this model could be to reevaluate the datasets and the experimental design, considering 

the efferent activity, and using the model for designing new experiments at different levels 

of the auditory pathway by first testing the hypotheses using the model. 

 5.2.2.  Using proposed auditory model for understanding the mechanism of 

hearing in noise                  

Utilizing the proposed auditory model for investigating speech and speech-in-noise 

neural processing presents exciting possibilities for future research. By using the model 

with MOC efferents, along with the speech intelligibility tests (Zaar and Carney, 2022; 

Hamza et al., 2023), we can test various hypotheses related to speech intelligibility in noise 

and the relationship between speech intelligibility and efferent activity across different 

hearing conditions. This approach will aid in designing experiments that provide deeper 

insights into these effects and facilitate further exploration of this topic. Furthermore, age-

related hearing loss can be explored using this platform considering the findings from our 

study (Brennen et al., 2023) ,which examined the impact of Gaussian noise (GN) and low-

fluctuation noise (LFN) maskers on forward masking, considering the effects of age and 

sensorineural hearing loss (SNHL). The research involved three groups: younger listeners 

with normal hearing (YNH), older participants with normal or near-normal hearing (ONH), 

and older participants with SNHL (OSNHL). The findings suggested that older individuals 

with normal or near-normal hearing might be more vulnerable to the disturbing effects of 

masker-temporal fluctuations compared to younger individuals with normal hearing. Our 
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proposed computational model with inclusion of the efferent system showed that efferent 

feedback might have a significant influence on the fluctuation-related disruption. These 

findings have the potential to offer valuable insights into the underlying mechanisms of 

hidden hearing loss (Liberman, 2015). It is fascinating to utilize psychoacoustic studies to 

investigate the impact of age on efferent system functionality (Kim et al 2002). By 

observing whether the decline in efferent system functionality contributes to age-related 

hearing impairments, even when the audiogram and audibility appear to be within a healthy 

range, we can gain significant understanding. Interestingly, based on our simulation results, 

we observed that the efferent system could potentially degrade listeners' performance in 

simple auditory tasks like tone detection. However, when it comes to more complex tasks 

like speech in noise, the efferent system in a healthy auditory system can actually enhance 

listeners' performance. By considering all these aspects together, we can explore whether 

efferent system dysfunction is a potential factor, or at least one of the factors, underlying 

hidden hearing loss, where audibility is comparable to a healthy auditory system but speech 

intelligibility in noise is compromised. Studying the impact of efferent system dysfunction 

in hearing loss conditions can provide insights into individual differences. Since the 

efferent system functions differently in each person due to varying degrees of hearing 

impairment, it can potentially affect hearing abilities in more challenging situations 

compared to basic tone detection measured in an audiogram. While the audiogram may 

appear similar among individuals, the variation in efferent system operation can play a 

significant role in more difficult listening condition. 
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5.2.3. Application of the proposed auditory model for improving hearing devices     

As emphasized in this study, incorporating detailed physiological information into 

models not only enhances our understanding of mechanism in hearing and allows for 

testing more complex hypotheses, but it also has the potential to improve the performance 

of applications that rely on such models. With increasing knowledge about efferent system 

functionality and anatomical details, we can refine physiologically based auditory models. 

These more accurate and advanced models can be used in various auditory domains, 

including hearing aids, cochlear implants, automatic speech recognition devices, and 

augmented reality/virtual reality applications. One potential future direction for this study 

could involve using the more physiologically accurate model to design auditory devices 

that simulate the functionality of a normal, healthy auditory system. This goal can be 

accomplished by optimizing the characteristics of these devices in such a way that the 

output sound, when processed through the model of the auditory system, generates neural 

responses that closely resemble those of a desired healthy auditory system. For instance, 

the gain of different frequency channels in a hearing aid could be adjusted when combined 

with a model representing the hearing-impaired system to achieve similar neural responses 

to responses of a normal hearing model at various stages of the auditory pathway 

(Drakopoulos and Verhulst, 2023) Similar approaches could also be applied to the design 

of other auditory devices, including cochlear implants, although this approach may pose 

additional challenges due to resource limitations in cochlear implant users. One problem 

with the configuration of the proposed model with the efferent pathways is computational 

efficiency. The speed of the model is not a major issue for research purposes; however, the 
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speed could be a challenging issue for developing a new signal-processing algorithm for 

hearing-aid systems. A real-time system with high processing speed is a requirement for 

this application. One possible direction for addressing this issue is to train a deep neural 

network using model responses to different challenging speech datasets (Drakopoulos et 

al., 2021). The response of the model to new stimuli could then be achieved by running a 

convolutional neural network, which is a fast approach that could potentially be included 

in specific hardware for a hearing-aid device 

5.2.4  Improving, refining, and extending the proposed efferent model             

We have proposed a subcortical auditory model that incorporates the MOC efferent 

system. While this model includes novel projections from the IC to the MOC (Guinan, 

2018), it still lacks certain details of the efferent system. This initial generation of the model 

undoubtedly requires improvement. Several aspects of the proposed auditory model can be 

enhanced. Firstly, the model parameters can be more accurately optimized. Parameters 

such as the bandwidth of projections to MOC neurons, the weights or effects of different 

projections on MOC neurons based on their source (IC or CN), the time constant for these 

input projections, and the tuning of projections from MOC neurons to OHCs, along with 

the timing and strength of these projections, can all be adjusted by modifying the model's 

parameters. Although we have adjusted some of these parameters using physiological data, 

there may still be additional degrees of freedom in terms of the model's parameters. 

Furthermore, the physiological dataset used for parameter adjustment, while promising, is 

not as complex as real-world stimuli. Re-optimizing the model parameters using various 

and potentially more intricate studies, and exploring state-of-the-art optimization methods, 
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can further enhance the accuracy of the model. Neural responses to wideband tone in noise, 

as well as neural recordings of the MTF in awake animals, and noninvasive otoacoustic 

emissions (Guinan, 2006) in response to acoustic stimuli from human listeners, could all 

be employed for this purpose. 

Aside from optimizing the parameters of the existing implementation, a future 

direction worth exploring is the inclusion of additional projections in the efferent system 

within the model. In the current proposed model, we incorporated projections from IC cells 

and brainstem to the MOC neurons (Guinan, 2018). However, there are also direct 

projections from the auditory cortex to the MOC neurons, as well as indirect projections 

through IC cells (Malmierca and Ryugo, 2010; Delano and Elgoyhen, 2016). These 

additional projections may play a significant role in cognitive aspects of hearing, such as 

the effects of attention (Garinis et al., 2011). The proposed model presented here focuses 

on subcortical processing and does not include cortical processing. Deep neural network 

models have been used to simulate the auditory cortex (Saddler et al., 2021; Francl and 

McDermott, 2022). but auditory periphery process has been overlooked in such studies. By 

combining cortical and subcortical models, we can aim for more accurate predictions of 

human behavior in auditory tasks. It is crucial to consider each of these components, as 

they play significant roles in human auditory perception. Integrating the subcortical model 

with a cortical model opens up possibilities to study effects like informational masking and 

learning process, providing a more comprehensive understanding of auditory processing. 

Additionally, incorporating cortical projections to MOC neurons within the auditory model 

could enable the investigation of attentional effects in human listeners. Although this 
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project poses challenges in both modeling and experimental aspects of studying attention, 

it holds the potential to provide valuable insights into this aspect of the auditory system. 

Furthermore, it could inspire the development of hearing aids with algorithms designed to 

enhance selective listening, potentially addressing auditory challenges such as the "cocktail 

party problem. 

Another important component of the efferent system that is not currently included in 

this model is the lateral olivocochlear (LOC) system (Guinan, 2018). The LOC system 

consists of projections from LOC neurons to the inner hair cells. The role of this projection 

in the auditory system is still not well understood but reducing the acoustic-trauma and 

balancing the outputs from the left and right ears to enable binaural localization are the two 

roles suggested for this system suggested. Studying the LOC system poses additional 

challenges compared to the MOC system. As recording and stimulating LOC neurons is 

more difficult due to its specific characteristics such as thin and unmyelinated axons and 

as a result there are no recordings from LOC neurons in anesthetized, intact condition. 

(Guinan, 2011, Brown, 2011, Romero and Trussell, 2022). Despite these challenges, 

gaining more insights into the LOC system can lead to the inclusion of this system in the 

proposed subcortical auditory model, resulting in a more comprehensive model that 

incorporates both types of olivocochlear efferent systems. It is worth noting that apart from 

the discussed projections, there are other descending projections, both peripheral and 

central, that can be incorporated into the model as our understanding of the anatomy and 

physiology of the efferent system improves. 
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Another intriguing future project is the development of a binaural auditory model that 

incorporates both ipsilateral and contralateral MOC efferent projections. By including 

these projections, a more accurate model can be achieved, enabling the study of the specific 

effects of ipsilateral and contralateral efferent activity. While the contralateral projections 

have been more extensively studied due to their straightforward measurement, the 

ipsilateral projections are stronger but less explored (Guinan, 2018). Having a binaural 

auditory model can facilitate the testing of more complex hypotheses in hearing research 

and enable the design of experiments to investigate the contralateral and ipsilateral MOC 

activity separately. Furthermore, incorporating binaural cues into the model can enhance 

its accuracy in studying binaural phenomena such as sound localization and the effects of 

efferent activity in tasks like release from masking (Litovsky, 2012). Notably, the inclusion 

of binaural stages in the auditory model (Klug et al 2020; Cai et al 1998), including the 

projections from the lateral superior olive (LSO) and the medial superior olive (MSO) to 

the inferior colliculus (IC) cells (Park, 1998; Tollin, 2003, Nordeen et al., 1983), can 

provide valuable insights into studying the efferent system's functionality. 
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