ULTRASTRUCTURAL ANALYSIS OF CORTICOTROPIN-RELEASING FACTOR REGULATION OF DOPAMINERGIC SIGNaling IN THE MIdRIBNAIN OF THE MACAQUE

E.A. Kelly1,2 and J.L. Fudge1,2

Departments of Neuroscience1 and Psychiatry2, University of Rochester School of Medicine and Dentistry, Rochester NY

BACKGROUND

- Dopamine (DA) is important in many fundamental behaviors including positive and negative reinforcement, decision making, working memory, incentive and stimulus salience and purposeful movement.
- This behavioral heterogeneity is due, in part, to the diverse phenotypic characteristics of DA neurons and of the brain structures with which they are connected.
- DA neurons receive excitatory, inhibitory and modulatory input from diverse sources.
- Corticotropin-releasing factor (CRF) is a neuropeptide shown to regulate dopaminergic signaling by modulating its signaling capabilities.
- DA is a key target of CRF in the ventral midbrain (fig. 4).
- Mesodiencephalic analysis in rodents has primarily focused on the ventral tegmental area (VTA) due to predominant efferent and afferent projections through this subregion (fig. 5).
- Evolutionary expansion of the ventral midbrain in primates results in differential efferent/afferent patterns (fig. 6).

- Progressive anatomic positional shifts in the main striatal paths in the primate. Neuropsychopharmacology 42, 1563-1576.

RESULTS

Stereological analysis of TH/GAD-67 cells in PBP/A10 and RRF/A8

- Pre-embedding dual-immunoperoxidase reactivity labels CRF+ axons and TH+ dendrites in the macaque midbrain.

Extended Amygdala innervates PBP and RRF

Extended amygdala is a CRF source

What is the synaptic profile of CRF contacts onto DA+non-DA cells in PBP/A10 and RRF/A8 in midbrain of non-human primates?

Hypothesis

- CRF+ fibers predominantly make symmetric contacts on NON-DA+ cells in PBP/A10 and RRF/A8 subpopulations in the macaque midbrain.

CONCLUSIONS

- Dopaminergic (TH+) vs GABAergic (GAD-67+) cell comparisons show significantly more DA+ cells in the parabrachial nucleus of the macaque midbrain. GAD-67+ were equally distributed across regions.
- CRF+ axons predominantly make symmetric (inhibitory) contacts on NON-DA+ cells in both PBP and RRF.

REFERENCES

This work is supported by the National Institute of Health (NIMH), R01MH1115016.