Title: PBMC and Monocyte Isolation from Whole Blood

Number: A1 Revision: A Effective Date: 11January2018

Page: 1 of 6

Ritchlin Laboratory

PBMC and Monocyte Isolation from Whole Blood

Date: 11JANUARY2018

Title: PBMC and Monocyte Isolation from Whole Blood

Number: A1 Revision: A Effective Date: 11January2018

Page: 2 of 6

1.0 Subject

Isolate PBMCs and Monocytes from Whole blood of Healthy donors and/or Patients.

2.0 Purpose

Cells isolated will be used for various experiments (i.e. Flow Cytometry, Culture) and stored in frozen storage (-80).

3.0 Scope

The scope of this procedure applies to the R01 Grant provided by the NIH for BSL-2 operations in the Ritchlin laboratory.

4.0 Safety Concerns

Working with patient blood and sera are considered BSL-2.

5.0 Definitions

6.0 Materials

- 6.1 Vacutainer Tubes
 - 1. Green Top- Heparin, PBMC/Monocyte
 - 2. Red Top- Serum
 - 3. Blue Top- Tempus, RNA
 - 4. Lavender- DNA

6.2 Blood Processing

- 1. 1X PBS (Corning #21-040-CV)
- 2. 0.5M EDTA (Invitrogen #AM9260G)
- 3. Ficoll-Plaque Plus (GE #17-1440-03)
- 4. ACK Lysis buffer (Gibco #A10492-01)
- 5. Human Monocyte Enrichment Cocktail (Stemcell-Rosettsep #15068)
- 6. SepMate, 50mL Tube (Stemcell #85450)
- 7. 50ml and 15ml Conical tubes
- 8. 1.5ml mini-centrifuge
- 9. Polypropylene 5ml flow tube
- 10. Polypropylene 5ml flow tube with cell strainer (#352235)

Number: A1 Revision: A Effective Date: 11January2018

Title: PBMC and Monocyte Isolation from Whole Blood

Page: 3 of 6

7.0 Specimens

7.1 Human Cells stored within freezer vials with DMSO and freeze media.

8.0 Procedure

- **8.1** Blood from green top vacutainer tubes are divided into 50ml Conical tubes, max 18mls/tubes.
- 8.2 FOR MONOCYTES: Human Enrichment cocktail is added to the tubes labeled monocytes, 50uL/mL and EDTA 0.5M at a final concentration of 1mM. Let sit RT for 20min.
 8.2 1 10mla blacks 400ul Enrichment Cocktail 50ul EDTA
 - **8.2.1** 18mls blood= 400uL Enrichment Cocktail, 50uL EDTA.

8.3 Serum/Plasma Collection:

- **8.3.1** Label four 1.5ml centrifuge tubes. 1200uL of blood from **PBMC** tubes is added to each and spun. 4500rpm for 10min, RT (for Plasma).
- **8.3.2** Spin Red top (For serum) vacutainer, 2300rpm for 10min for 10min.
- **8.3.3** Aliquot 600uL plasma into pre-labeled plasma tubes. Aliquot 600ul of serum from red top tube into pre-labeled serum tubes.
- 8.3.4 Store in -80°C Freezer.

8.4 Ficoll Gradient:

8.4.1 Traditional method:

- **8.4.1.1** Add 20mls of Ficoll to new 50mL conical replicating number of blood tubes. E.x. 2 blood tubes, 2 Ficoll tubes.
- **8.4.1.2** Add up to 30mls 1X PBS to whole blood tubes.
- **8.4.1.3** Tilt Ficoll tube and pipette diluted blood SLOWLY OVER Ficoll, not to mix the two.
- **8.4.1.4** Spin 2350rpm for 30min, no brake.
- **8.4.1.5** CAREFULLY remove intermediate phase (buffy coat) and transfer to new 50mL conical tube.
- **8.4.1.6** Add 1XPBS up to 40mls. Spin 1400rpm, 10 min.

8.4.2 Sepmate Method:

- **8.4.2.1** Add 15mls of Ficoll through bottom opening of SepMate lower chamber, no not blow bubbles into opening. Some Ficoll will remain outside of lower chamber.
- 8.4.2.2 Add up to 30mls 1X PBS to whole blood tubes.
- **8.4.2.3** Slowly pour/pipette diluted blood over Ficoll filled chamber.
- 8.4.2.4 Spin 1200xg for 10 min.

Number: A1 Revision: A Effective Date: 11January2018

Title: PBMC and Monocyte Isolation from Whole Blood

Page: 4 of 6

8.4.2.5 Pour contents of Sepmate into new 50mL conical tube by quick inverting, no longer than 2 seconds.

8.4.2.6 Add 1XPBS up to 50mls. Spin 1400rpm, 10 min.

8.5 Cell preparation:

- **8.5.1** Cells are re-suspended 1mL of ACK lysis buffer, 6min room temperature.
- **8.5.2** Washed with 1X PBS, spun 1400rpm 10min.
- **8.5.3** Cells re-suspended in 4mls of 1XPBS and transferred to a labeled 5ml flow tube with cell strainer.
- **8.5.4** Count cells: 1:10, 45ul Trypan Blue + 5ul Cells.

Date	ID#	Cell	Count(M/mL)	0.5M(ul)	1.5M(uL)	1.0M(uL)	0.1M(uL)	0.2M(uL)	0.1Mx2(uL)	0.2Mx2(uL)	2M(uL)
Date	Patient ID	PBMC	5	100	300	200	20	40	40	80	400
	Blood	Mono	2	250	750	500	50	100	100	200	

- **8.5.5** 1.5x10⁶ cells are used for staining.
- **8.5.6** 0.1x10⁶ and 0.2x10⁶ cells are used for OCP culture in <u>duplicate</u>.
- **8.5.7** 5ml polystyrene flow tubes are labeled as followed:
 - 8.5.7.1 PBMCs
 - 8.5.7.2 Monocytes
 - 8.5.7.3 Unstained
 - **8.5.7.4** P1 (0.1x10⁶ PBMC)
 - **8.5.7.5** P2 (0.2x10⁶ PBMC)
 - **8.5.7.6** M1 (0.1x10⁶ Monocytes)
 - **8.5.7.7** M2 (0.2x10⁶ Monocytes)
- **8.5.8** Add 2mls of 1X PBS to all flow tubes and 2mls of CM media to OCP tubes. Spin 1400RPM, 5min RT.
 - **8.5.8.1** CM media:
 - **8.5.8.1.1** Alpha MEM, 10% FBS, 5% pen/strep
- **8.5.9** Continue on for cell staining and OCP culture.
- 8.6 Cell Storage
 - 8.6.1 Spin cell strainer tubes down
 - 8.6.1.1 1400 RPM, 5 min RT
 - **8.6.2** Label cryovials with BSI labels.
 - 8.6.3 Add 200ul each vial with both Freeze media A and B
 - **8.6.4** Distribute cells evenly to each vial.