

Michael McKee, M.D.
Preventive Cardiology Fellow
National Center for Deaf Health
Research
University of Rochester
March 11, 2009

Acknowledgments

- Nancy Chin, PhD, MPH
- Jessica Cuculick, MSW
- Deirdre Schlehofer, MPhil
- Matt Starr, MPH
- Thomas Pearson, MD, MPH, PhD
- Cardiovascular Health Intervention Research and Translation Network (CHIRTN)

Purpose of Deaf Perceptions

Goals:

 Contribute knowledge on the perceptions of cardiovascular health among the deaf linguistic minority in Rochester, NY

Objectives:

- Conduct focus groups to identify cardiovascular health perceptions
- Build research capacity among deaf researchers and deaf health
- Identify where there are possible cardiovascular health perceptions discrepancies
- Learn about optimal health educational strategies to reduce discrepancies

Background: Deaf Linguistic Minority

Characteristics:

- American Sign Language (ASL) as preferred language
- Pre-lingual deafness
- Hearing loss is a cultural identity not a disability
- Average English reading level is low -4th grade (Allen, 1986 and Holt, 1993)
- Similarities to other minority communities in terms of language and culture (Padden & Humphries, 2005)
- Considered medically underserved
- Rochester deaf community may not be typical of deaf communities nationally

Methodology: Recruitment

- 4 focus groups (3 to 8 participants)
 - 22 participants
- No hearing researchers used in focus groups
- Recruitment strategies
 - Fliers
 - "Deaf Times" email notification
- Incentives for participants

Methodology: Data Collection

- Brief demographic survey
- Video recording of focus groups
- Translation and transcribing of data (deaf transcriber-bilingual)
- Verification of transcription by research team

Methodology: Data Analysis

- Previously established domains used:
 - Knowledge
 - Practices
 - Barriers
 - Facilitators
 - Dissemination
- Coding done by researcher and verified by team
- Cultural anthropology model used
- Looked for recurrent themes and patterns among interactions

Study Participants

- Education:
 - ≥ college degree: 13 participants (59%)
- Weight:
 - $-BMI \ge 25$: 16 (73%)
- Gender:
 - Females: 13 (59%)
- Age:
 - Mean: 55
- Family History:
 - No knowledge: 5 (23%)

Knowledge

Strengths:

- Heart disease
- Smoking
- Exercise
- Salt
- Stress

Misinformation:

- Stroke
- Illegal drugs
- Anatomy
- Medications
- Stress

Knowledge

- Misinformation:
 - Stroke
 - "I don't know the real cause of stroke.

 Does eating wrong cause stroke?" -#3-2
 - Medications
 - "I get injections every month to thin my blood. . . When I moved here, I got a new doctor and now I get the medication every month up to nine months."- #5-3

Practices

- Reducing salt intake
- Avoiding cigarette smoking and second hand smoke
- Exercise
- Avoiding stress

Barriers

- Financial
 - Insurance limitations
 - Underemployment/unemployment
 - Costs of healthy foods
- Communication
 - No interpreter present
- Language
 - Lack of ASL accessible educational and support programs
 - "I see them [Weight Watchers] meeting and sometimes I wish I could join but it might be hard for me to communicate with them if I'm the only deaf one there."- #3-1

Facilitators

- Group and community support
- Interpreters
- ASL fluent medical professionals
- Lower literacy tool/strategies

"I read a lot online from WebMD for more information. I also read Kid Scholar, which is a book that is simple enough for me to understand and sign out to myself."- #4-3

Dissemination

- Family and friends
 - Overreliance on friends and families for health information
 - Distorted perceptions of cardiovascular risks
- Dangers of distorted dissemination
 - -"One thing I've learned about onions is that it thins your blood stream... If you have heavy, thick blood, onions help keep the blood flowing."
 - -"To prevent blood clots." [#2 and 3-2]

Information Sources/Dissemination

- Signing medical websites and videos
 - www.deafmd.org
 - www.deafdoc.org
- ASL fluent medical professionals
 - Rochester, NY
- Health workshops at deaf events and clubs
- Captioned TV shows

Conclusions

- Cardiovascular knowledge seems to be sufficient for heart disease but lacking for stroke
- Language and communication barriers limit access to health information
- Knowledge was mostly superficial and at times distorted possibly reducing effective risk reduction behaviors

Recommendations

- Health educational programs should be provided in American Sign Language to maximize understanding
- Greater access to interpreters should reduce cardiovascular health perceptions discrepancies
- Training deaf health educators should be a priority

Questions?

Michael McKee, MD
Rochester Prevention Research Center: National
Center for Deaf Health Research (NCDHR)
Email: michael mckee@urmc.rochester.edu

 This presentation was supported by Cooperative Agreement Number 5-U48-DP-000031-03 from the Centers for Disease Control and Prevention (CDC). Its contents are solely the responsibility of the authors and do not necessarily represents the official views of the CDC.

Fellowship Funding:

 Supported by grant T32 HL007937 from the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH)

Deaf Linguistic Minority

- No reliable details on population size
- National Census of Deaf Population (NCDP) in 1972 estimated that 0.14% of U.S. population are deaf ASL signers
 - If rate is same- estimate is ~420,000 deaf signers today (in population of 300 million)

Demographic Results

Demographic		
Education	13 college graduates or higher	9 with no college degree
Weight (BMI)	16 with BMI >25	6 with BMI <25
Gender	13 females	9 males
Family History	17 with knowledge	5 without knowledge

Average age was 55 years old.