Low molecular-weight heparin versus aspirin in patients with acute ischaemic stroke and atrial fibrillation: a double-blind randomised study

E Berge, M Abdelnoor, P H Nakstad, P M Sandset, on behalf of the HAEST Study Group*

Summary

Background Patients with acute ischaemic stroke and atrial fibrillation have an increased risk of early stroke recurrence, and anticoagulant treatment with heparins has been widely advocated, despite missing data on the balance of risk and benefit.

Methods Heparin in Acute Embolic Stroke Trial (HAEST) was a multicentre, randomised, double-blind, and double-dummy trial on the effect of low-molecular-weight heparin (LMWH, dalteparin 100 IU/kg subcutaneously twice a day) or aspirin (160 mg every day) for the treatment of 449 patients with acute ischaemic stroke and atrial fibrillation. The primary aim was to test whether treatment with LMWH, started within 30 h of stroke onset, is superior to aspirin for the prevention of recurrent stroke during the first 14 days.

Findings The frequency of recurrent ischaemic stroke during the first 14 days was 19/244 (8·5%) in dalteparin-allocated patients versus 17/225 (7·5%) in aspirin-allocated patients (odds ratio=1·13, 95% CI 0·57–2·24). The secondary events during the first 14 days also revealed no benefit of dalteparin compared with aspirin: symptomatic cerebral haemorrhage 6/224 versus 4/225; asymptomatic and symptomatic cerebral haemorrhage 26/224 versus 32/225; progression of symptoms within the first 48 hours 24/224 versus 17/225; and death 21/224 versus 16/225. There were no significant differences in functional outcome or death at 14 days or 3 months.

Interpretation The present data do not provide any evidence that LMWH is superior to aspirin for the treatment of acute ischaemic stroke in patients with atrial fibrillation. However, the study could not exclude the possibility of smaller, but still worthwhile, effects of either of the trial drugs.

Lancet 2000; 355: 1205–10

*Details of members of the study group are given at the end of the paper

Introduction

Patients with atrial fibrillation have an increased risk of ischaemic stroke,1 and strokes related to atrial fibrillation are often major, with a poor prognosis.2,3 Atrial fibrillation is the most common potential source of cerebral embolism, and probably accounts for about 20% of all ischaemic strokes.4

Primary prevention trials in patients with atrial fibrillation have shown that oral anticoagulant therapy reduces the risk of stroke by 60–70%.5 After a stroke, the prophylactic effect of oral anticoagulation is of equal magnitude,6 but the best time to start anticoagulant therapy is not known.7 In the European Atrial Fibrillation Trial patients were randomised late, and effective anticoagulation was not obtained within the first 2 weeks.8

Some early observational studies showed that the risk of recurrent ischaemic stroke was 10–20% during the first 2 weeks after stroke onset.9 These and other studies also demonstrated a high frequency of haemorrhagic transformation of embolic infarcts,9 and some reported symptomatic cerebral haemorrhages in association with early anticoagulation with heparin.10,11 In an open randomised study, unfractionated heparin given intravenously was compared with no antithrombotic treatment.12 The study was terminated prematurely after the inclusion of only 45 patients, because two recurrent strokes and two asymptomatic haemorrhagic transformations had occurred in the control group. However, in the International Stroke Trial, subgroup analysis of patients with atrial fibrillation given unfractionated heparin subcutaneously in fixed doses, showed that the reduction in recurrent ischaemic stroke was offset by an increase in cerebral haemorrhage.13 Low-molecular-weight heparin (LMWH) has been tested before in acute stroke, but data on efficacy and safety are limited,14–18 and LMWH has not been tested in patients with atrial fibrillation. Trials of LMWH for the treatment of venous thromboembolism19 and acute coronary heart syndromes20 strongly suggest that subcutaneous LMWH is superior to intravenous unfractionated heparin, with no excess risk of bleeding.21,22 The pharmacokinetic profile of LMWH is favourable with high bioavailability and predictable plasma concentrations after subcutaneous administration. This allows the drug to be given once or twice daily without monitoring.22 In our study, we have investigated whether subcutaneous LMWH is superior to aspirin for the prevention of early recurrent stroke in patients with atrial fibrillation.

Methods

Design

HAEST was a multicentre, randomised, double-blind, and double-dummy trial of LMWH versus aspirin for the early treatment of
patients with atrial fibrillation and acute ischaemic stroke. The protocol was approved by the Regional Committee for Medical Research Ethics, the Norwegian Medicines Control Authority, and the Norwegian Social Science Data Services. Written informed consent was obtained from participating patients, and the ethical principles of the Declaration of Helsinki were adopted.

Eligibility criteria

Patients aged 18 years or older with acute ischaemic stroke and atrial fibrillation were eligible for inclusion in the trial. Randomisation had to take place within 30 h of stroke onset, and a cerebral scan by computed tomography was mandatory to exclude cerebral haemorrhage. Atrial fibrillation had to be documented with an electrocardiogram on admission or within the 24 months before the stroke. In the initial phase of the trial, patients with recent myocardial infarction (<4 weeks), and patients with specific echocardiographic findings suggestive of cardiogenic embolism were also eligible. However, these two entry criteria were dismissed echocardiographic findings suggestive of cardiogenic embolism were also eligible. However, these two entry criteria were dismissed.

Treatment

The patients were allocated to double-dummy treatment with dalteparin 100 IU/kg subcutaneously twice a day (Fragmin, Pharma, Oslo, Norway) and placebo tablets every day, or aspirin tablets 160 mg every day (Albyl-E, Nycomed Pharma, Oslo, Norway) and placebo ampoules subcutaneously twice a day. If the patients could not swallow, 160 mg suppositories (aspirin or placebo), made on request by Ullevål Hospital Pharmacy, were administered. In patients using aspirin before the stroke, aspirin was discontinued at randomisation. The aim was to have treatment start as soon as possible and to continue for 14 days (at least 11, at most 17 days), or until earlier discharge. At the end of the trial period the clinicians were encouraged to start oral anticoagulant treatment, but this and any other aspect of treatment were left to the discretion of the clinician in charge.

Randomisation procedure

After informed consent had been obtained, the patients were block-randomised by assignment to sequential numbered packages containing either active drug and corresponding placebo (double-dummy masking)\(^\text{25}\). Within each centre, random allocation to dalteparin or aspirin was balanced for every four consecutive patients. The randomisation schedule was computer-generated (SAS, version 6.10), and was known only to the Clinical Trials Support Unit at Ullevål Hospital Pharmacy until closure of the database. Once a medication package had been opened, the corresponding patient was irrevocably included in the study. Clinicians could depart from the allocated trial medication if a clear reason to do so emerged, but they could not withdraw a patient from follow-up.

Monitoring of quality

Monitoring of data registration was done centrally on the subsequent return of case-record forms. These were checked and sent back if erroneous or incomplete. To ensure standardisation of assessment of patient outcome, participating centres were visited and given formal instructions on procedures. Written instructions were distributed to every centre, and collaborators' meetings were held twice a year throughout the trial period to instruct and encourage participants.

Trial profile

Total numbers of patients screened and patients excluded are estimated from recruitment logs recorded at four centres responsible for the inclusion of 28% of the patients in the study. ITT=intention to treat. AF=atrial fibrillation.

Follow-up, events, and outcomes

During the treatment period, trained personnel assessed neurological status by the SSS,\(^\text{27,28}\) on a daily basis during the first week and every second day during the second week. In addition, SSS was always done on clinical deterioration. Cerebral computed tomography was done before randomisation, repeated after 7 days, and on clinical deterioration. Echocardiography was done during the treatment period in 307/449 of cases, and blood samples for routine and specialised analyses were collected at defined intervals.

In case of a clinical deterioration, a general clinical examination, SSS, and cerebral computed tomography were done. If a patient died during the treatment period, the responsible clinician classified the cause of death. Necropsy or post-mortem cerebral computed tomography was desirable, but not mandatory, particularly in case the cause of death was uncertain.

At 14 days, or earlier discharge, outcome was assessed by the Barthel Index,\(^\text{29}\) modified Rankin Scale,\(^\text{30}\) and according to the outcome scale used in the International Stroke Trial.\(^\text{27,28}\)

At 3 months, the patients were assessed by the International Stroke Trial scale. The patients were contacted by the trial coordinating centre by mail, 15 who did not respond were telephoned.

The primary event was recurrent ischaemic stroke during the first 14 days. Recurrent ischaemic stroke was defined as a clinical sudden and persistent (>48 h) deterioration occurring after the first 48 h following stroke onset, which equals a loss of three or more points in the SSS, excluding cerebral haemorrhage, intercurrent illness, and effect of medication (eg, insomnia medication). Clinical deterioration within the first 48 h was classified as recurrent ischaemic stroke only if it originated in a vascular area other than that of the index stroke (eg, the opposite hemisphere).

Secondary events and outcomes were as follows—cerebral haemorrhage within 14 days (classified according to the ECASS protocol\(^\text{21}\)), both asymptomatic (including haemorrhagic infarcts
grade 1 or 2, or parenchymal haemorrhages grade 1 or 2) and
symptomatic (associated with haemorrhagic infarct grade 2 or
parenchymal haemorrhage grade 1 or 2); progression of symptoms
(defined as a clinical deterioration, as defined for the primary
event, occurring within the first 48 h after stroke onset); death from
any cause within 14 days; combined frequency of recurrent
ischaemic stroke, progression of symptoms, and death within 14
days; neurological outcome at 14 days, as measured by SSS;
outcome at 14 days, as measured by the Barthel Index, modified
Rankin Scale, and International Stroke Trial scale; and outcome at
3 months, as measured by the International Stroke Trial scale.

All clinical events were evaluated and classified by an
independent endpoint adjudication committee unaware of
treatment allocation. Cerebral scans by computed tomography
were assessed by a central, independent reading panel without
access to information about clinical history or treatment allocation.

Statistical methods

Our assumption was that the frequency of recurrent ischaemic stroke
during the first 14 days would be 4% or less on LMWH and
12% or more on aspirin. With a significance level (α) of 5% and a
power (1−β) of 80%, the minimal sample size was estimated to be
408 patients. To allow for loss to follow-up, 449 patients were
included. No interim analyses were done.

All analyses were according to the intention-to-treat principle.
The comparisons of frequencies of events involved simple analyses
of total numbers of patients, using 2×2 tables. The effect of
treatment was given as odds-ratios (OR) with 95% CI. Comparisons
of outcome also involved non-parametric testing (Mann-Whitney
and Kruskal-Wallis) of median outcome or total numbers of patients
in the two treatment groups, with two-sided p values to show
differences in risk factors were made. Descriptive statistics are
reported as median values with 25−75 percentiles unless otherwise

Results

Recruitment and follow-up
From February, 1996, to November, 1998, 449 patients were
recruited at 45 Norwegian centres. During the trial,
recruitment logs of consecutive patients admitted with a
stroke were recorded at four centres, responsible for the

Protocol violations
All randomised patients were included in the intention-to-
treatment analysis, including one patient who was included four
days after onset of symptoms, two patients without
documented atrial fibrillation, three patients who did not
have a stroke, and six patients with cerebral infarction
combined with haemorrhagic transformation (n=2) or
parenchymatous haemorrhage (n=4) on computed
tomography before inclusion. Nine patients were
randomised, but not treated in accordance with the protocol
(three in the dalteparin group and six in the aspirin group).

Patient characteristics
At randomisation, the main prognostic factors were well
balanced between the two treatment groups, except for

The comparisons of frequencies of events involved simple analyses
of total numbers of patients, using 2×2 tables. The effect of
treatment was given as odds-ratios (OR) with 95% CI. Comparisons
of outcome also involved non-parametric testing (Mann-Whitney
and Kruskal-Wallis) of median outcome or total numbers of patients
in the two treatment groups, with two-sided p values to show
differences in risk factors were made. Descriptive statistics are
reported as median values with 25−75 percentiles unless otherwise

Results

Recruitment and follow-up
From February, 1996, to November, 1998, 449 patients were
recruited at 45 Norwegian centres. During the trial,
recruitment logs of consecutive patients admitted with a
stroke were recorded at four centres, responsible for the

Protocol violations
All randomised patients were included in the intention-to-
treatment analysis, including one patient who was included four
days after onset of symptoms, two patients without
documented atrial fibrillation, three patients who did not
have a stroke, and six patients with cerebral infarction
combined with haemorrhagic transformation (n=2) or
parenchymatous haemorrhage (n=4) on computed
tomography before inclusion. Nine patients were
randomised, but not treated in accordance with the protocol
(three in the dalteparin group and six in the aspirin group).

Patient characteristics
At randomisation, the main prognostic factors were well
balanced between the two treatment groups, except for
Table 3: Frequency of symptomatic and asymptomatic cerebral haemorrhage after 14 days
dehth (n=36), cerebral haemorrhage (7), recurrent stroke or progression of symptoms (5), extracerebral bleeding complications (5), venous thromboembolism (5), hip fracture (1), early discharge from hospital (22), and unspecified (9). Overall compliance with the study treatment was 98·8% of all prescribed doses in the dalteparin group and 98·3% in the aspirin group.

The use of concomitant treatment was well balanced between the treatment groups. Non-trial heparin was used by four patients, all in the aspirin group, as low-dose prophylaxis against deep-vein thrombosis. Non-trial aspirin was used by four patients in the dalteparin group and five patients in the aspirin group. At the end of the treatment period, oral anticoagulant treatment had been started in 107 patients in the dalteparin group and 110 patients in the aspirin group.

Primary event
The frequency of recurrent ischaemic stroke during the first 14 days was 19/224 (8·5%) in dalteparin-allocated patients versus 17/225 (7·5%) in aspirin-allocated patients (table 2). The OR was 1·13 (95% CI 0·57–2·24), which indicates no significant benefit of dalteparin. The OR remained unchanged after adjusting for sex in logistic-regression analysis (1·19 [0·60–2·36]).

Secondary events and outcomes
The frequency of symptomatic cerebral haemorrhage during the first 14 days was 6/224 (2·7%) on dalteparin versus 4/225 (1·8%) on aspirin (1·52 [0·42–5·46], table 2). The frequency of symptomatic and asymptomatic cerebral haemorrhages detected on control computed tomography was 26/224 (11·6%) on dalteparin versus 32/225 (14·2%) in the aspirin group (1·35 [0·69–2·66], p=0·048).

Dalteparin was associated non-significantly with a higher frequency of progression of symptoms within the first 48 h (table 3).

<table>
<thead>
<tr>
<th>Cerebral haemorrhage</th>
<th>Dalteparin (n=224)</th>
<th>Aspirin (n=225)</th>
<th>Odds dalteparin/ OR aspirin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemorrhagic infarction grade 1</td>
<td>14</td>
<td>20</td>
<td>0·7</td>
</tr>
<tr>
<td>Haemorrhagic infarction grade 2</td>
<td>4</td>
<td>6</td>
<td>0·7</td>
</tr>
<tr>
<td>Parenchymal haemorrhage grade 1</td>
<td>4</td>
<td>4</td>
<td>1·0</td>
</tr>
<tr>
<td>Parenchymal haemorrhage grade 2</td>
<td>4</td>
<td>2</td>
<td>2·0</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>32</td>
<td>...</td>
</tr>
</tbody>
</table>

Table 4: Causes of death (14 days)

Discussion
It has long been a controversy whether patients with acute ischaemic stroke and atrial fibrillation should receive anticoagulant treatment with heparins. Our results provide no evidence that high-dose LMWH is superior to aspirin, either for the prevention of recurrent ischaemic stroke of any other event during the first 14 days, or for the improvement of outcome at 14 days or 3 months. Our results are consistent with the effect of unfractionated heparin, LMWHs, or heparinoid in patients with any type of acute ischaemic stroke. They are also consistent with the International Stroke Trial subgroup analysis of patients with atrial fibrillation, which showed no net benefit of fixed medium-dose unfractionated heparin given subcutaneously, compared with no heparin.

Taken together, the evidence provides no indication of net benefit of early anticoagulation
with any type of anticoagulant agent or in any subgroup of patients with acute ischaemic stroke.25

Our estimates of the effect of LMWH in patients with atrial fibrillation were based on the results from the primary and secondary stroke-prevention studies.19 In these studies, oral anticoagulant treatment reduced the risk of recurrent stroke by two-thirds relative to no antithrombotic treatment, compared with only one-fifth on aspirin. In the acute phase of stroke the risk of recurrence has been assumed to be about 10–20%,7 and our assumption was that the risk of recurrent stroke would be reduced to 4% or less on LMWH, compared with 12% or more on aspirin.

The observed incidence of early recurrent stroke in our trial was 8%, in accordance with what we anticipated. This was lower than in observational studies, but somewhat higher than in recent acute-stroke trials.10,26 The reasons for the different estimates may be different definitions of recurrence, and different monitoring of patients. In the present study, patients were carefully monitored with the SSS, which allowed reliable detection of any clinically significant recurrence. Despite a plausible hypothesis and a relatively high incidence of early recurrence, our study could not show a superior effect of LMWH in the prevention of early stroke recurrence. One reason may be that the risk of recurrent stroke observed on aspirin was lower than stipulated. As a consequence, the study did not have sufficient power to detect reliably an effect of the expected, or smaller, magnitude. Although the results are highly internally consistent, we cannot exclude the possibility of an effect either way in one of the outcome measures or in the overall result.

Another explanation for the absence of treatment effect of LMWH relative to aspirin could be misclassification of the primary event. Early recurrence may be caused by a diversity of pathophysiological processes, not only by thromboembolism. Non-thrombotic processes may even explain most of the early recurrences, such as neurotoxic substances or vascular oedema.18 We may thus have overestimated the incidence of thromboembolic events and thereby diluted the effect of LMWH. Alternatively, recurrences are true thromboembolic manifestations, caused by emboli originating from an organised heparin-unresponsive thrombus within the heart, or the dose of LMWH used was inadequate.

The rationale for the selection of type and dose of LMWH was based on circumstantial evidence of the efficacy of dalteparin for the prophylaxis and treatment of venous thromboembolism10 and for the treatment of unstable coronary syndromes.20,21 Moreover, a safety study of dalteparin, given in doses used in the present study, indicated a low risk of cerebral bleeding complications.19 The dose selected is identical to the dose used for the treatment of venous thromboembolism, but is slightly lower than the dose used for the treatment of acute coronary syndromes (100 U/kg vs 120 U/kg twice daily). Although unlikely, we cannot completely rule out the possibility that a higher dose would have given a different result. To increase the dose in these patients, however, could have increased substantially the rate of severe bleeding complications.

Our study did not show any significant increase in symptomatic cerebral haemorrhage on dalteparin compared with aspirin. However, the trial was not sized to provide reliable estimates on the comparative effects of LMWH and aspirin on symptomatic cerebral haemorrhage, and our data cannot exclude the possibility of an excess risk either way. The incidence of any type of cerebral haemorrhage was almost the same in the two groups, but there was a trend towards more severe bleedings on dalteparin. Still, we find the low rate of haemorrhages on dalteparin surprising, given that our patients were old, with major disabling strokes, and mostly with large middle-cerebral-artery infarcts.

Despite lack of evidence, heparins are often recommended for the prevention and treatment of progressive stroke.27 In our study, progressions occurring from randomisation until 48 h after stroke onset were seen more frequently on LMWH, and our results therefore do not support routine use of LMWH in this setting.

It is now clear that heparins given in both prophylactic and therapeutic doses protect against venous thromboembolism in patients with acute stroke.28,29 Our study did not systematically screen for venous thromboembolism, but we also detected more cases with venous thromboembolism in the aspirin group.

Internal validity was ensured by strict randomisation (to ensure a good balance between the two treatment groups for the recorded, and, presumably, unrecorded prognostic factors), good compliance, double-blinded and complete follow-up, and blinded and independent evaluation of events and outcomes. We also believe our trial population to be close to the population usually admitted for acute stroke and atrial fibrillation. Our patients were old, with high comorbidity and severe strokes, compared with stroke registries and other acute stroke trials.10,28,30

We conclude that our data do not provide any evidence that high-dose LMWH is superior to aspirin for the treatment of patients with acute ischaemic stroke and atrial fibrillation. However, the study cannot exclude the possibility of smaller, but still worthwhile, effects of either of the trial drugs. We suggest that these patients should receive aspirin in the acute phase of stroke and that short-term prophylactic use of low-dose LMWH for the prevention of venous thromboembolism should be considered. Most of these patients should be given long-term oral anticoagulant treatment,31 but the best time to initiate oral anticoagulation cannot be answered from this study.

HAEST study organisation
Clinical coordinator—E Berge.
Clinical Trials Support Unit—M M Brennubø, B L Hatlelid, M Stromhaug.
Steering committee—P M Sandset (chairman, principal investigator), M Abdelnoor (statistics), U ABlidgaard, B Indredavik, P H Nakstad (radiology), D Russell, G Smith (echo-cardiography).
Safety monitoring committee—T R Pedersen (chairman), H Arnesen.
End-point adjudication committee—T Dahl (chairman), H Nordal.
CT reading panel—P H Nakstad (chairman), U Johnsen.
ECG and echocardiography review committee—G Smith (chairman), F T Goertzen, R Bjernestad.

HAEST study group
The following centres and main investigators participated in HAEST. Numbers randomised are in parentheses.

AKer sykehus—L Hola (17); Aust-Agder sentralsykehus: R Solhoff (9); Buskerud sentralsykehus: E B Jørgensen (15); I fylkessjukehuset i Kristiansund: V Kvernmo (15); Fylkessjukehuset i Tyrifjorden: M M Brennbakk, L B Hatlelid (10); Diksneshjemnetets sykehus i Hamar: T Dahl (10); Diksneshjemnetets sykehus i Hamar (10); Diksneshjemnetets sykehus in Haugesund: R Oftstad (8); Fylkessjukehuset i Kristiansund: V Kvernmo (15); Fylkessjukehuset i Lærdal: S Utne (6); Fylkessjukehuset i Molde: H Hegdal (13); Fylkessjukehuset i Volda: S Haraeide (1); Fylkessjukehuset på Nordfjord: Ø Dahl-Eriksen (14); Fylkessjukehuset på Stord: D Saggarzhi (15); Fylkessjukehuset på Voss: F Bergo (9); Göteborgs fylkessjukehus: F Moe (18); Hammerfest sykehus: L Liljebäck (11); Harstad sykehus: O Kildahl-Andersen (4); Haukeland sykehus: L Thomassen (7); Heimdal sentralsykehus: A Grasdal (4); Innherred sykehus: E Ellekjaer (5); Kirkenes sykehus: A Veje (1); Kongsvinger sykehus: K Berger (9); Lillehammer fylkessjukehus: T Asak (24).