Aging Neuroscience: Udall Center for Excellence in Parkinson Disease

Erika Augustine, MD, MS

on behalf of Ray Dorsey, MD, MBA

Associate Director, Center for Human Experimental Therapeutics

Delmonte Institute for Neuroscience Retreat
December 1, 2016
Vision: To enable anyone, anywhere, to participate in research, benefit from therapeutic advances, and receive care.
Drug development productivity is declining; new methodological models are needed

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>20th Century</th>
<th>21st Century</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>Randomized, double-blind, parallel-group, placebo-controlled trial</td>
<td>Randomized, double-blind, parallel-group, placebo-controlled trial using adaptive designs</td>
</tr>
<tr>
<td>Study population</td>
<td>All comers with a given disease</td>
<td>Individuals selected based on phenotypic and genetic results</td>
</tr>
<tr>
<td>Study recruitment</td>
<td>Clinical practices</td>
<td>Global clinical trial registries and social networks organized by individuals affected by the disease</td>
</tr>
<tr>
<td>Trial visits</td>
<td>In person and audio calls</td>
<td>In person and audio and video calls</td>
</tr>
<tr>
<td>Data management</td>
<td>Paper and electronic forms</td>
<td>Electronic forms</td>
</tr>
<tr>
<td>Participant feedback</td>
<td>Limited, delayed</td>
<td>Almost universal, approximately real time</td>
</tr>
<tr>
<td>Outcome measures</td>
<td>Insensitive</td>
<td>Sensitive</td>
</tr>
<tr>
<td></td>
<td>Episodic</td>
<td>Frequent or continuous</td>
</tr>
<tr>
<td></td>
<td>Subjective</td>
<td>Objective</td>
</tr>
<tr>
<td></td>
<td>Provider centered</td>
<td>Patient centered</td>
</tr>
<tr>
<td></td>
<td>In clinic</td>
<td>Remote</td>
</tr>
<tr>
<td></td>
<td>Unidimensional</td>
<td>Multidimensional</td>
</tr>
</tbody>
</table>

Udall Centers define the causes of and discover improved treatments for Parkinson disease

Udall Centers – at a glance

Background: Funded by Morris K. Udall Parkinson’s Disease Research Act of 1997 in honor of long-serving Representative Morris Udall, who had PD

Goal: “To rapidly advance synergistic, interdisciplinary research programs while serving as national leaders in PD research.” Stated theme will “inform the etiology, pathogenesis, or treatment of PD”

Centers: 9 nationwide

Required components:
- Administrative Core
- At least one integrated Research Core to support at least two research projects
- At least three Research Projects
- Mission statement
- Plan for periodic outreach activities
- Clinical research core if at least one Clinical Research Project is proposed

Source: RFA-NS-16-002
In the P20 planning grant, we outlined three research projects

Proposed transition from P20 to Udall Center Research Projects

<table>
<thead>
<tr>
<th>Exploratory (P20) Research Projects</th>
<th>Udall Center (P50) Research Projects</th>
<th>Tools for PD Clinical Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aim 1: Develop a predictive model of PD progression</td>
<td>Project 1: Application of modeling and simulation methods to existing PD clinical data</td>
<td>In silico models that predict PD progression and inform clinical trial design</td>
</tr>
<tr>
<td>Aim 2: Pilot software for remote assessment of PD</td>
<td>Project 2: Evaluate technologies for remote assessment of PD patients and research participants</td>
<td>Validated approach and technology for conducting remote assessments</td>
</tr>
<tr>
<td>Aim 3: Pilot smart phone application for remote assessment of PD</td>
<td>Project 3: Evaluate novel technologies to objectively measure PD features</td>
<td>Novel, objective continuous measures of PD</td>
</tr>
</tbody>
</table>
Developing Predictive Models of PD Progression

• Reverse Engineering and Forward Simulation (REFS™) to generate prediction models for progression
 – Uses Bayesian inference, modeling directly from data without pre-specified hypotheses
 – Produces ensemble of models sampled from the Bayesian posterior

• Three outcomes (rate of progression) modeled separately
 – Motor (MDS-UPDRS Parts II and III)
 – Cognition (MoCA)
 – Functional and Behavioral (MDS-UPDRS Part I)
Predictors to be evaluated for the longitudinal endpoints of interest

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Clinical Variables</th>
<th>Genotyping</th>
<th>Endpoints</th>
</tr>
</thead>
</table>
| PD (Including SWEDD patients) N=241 | **Demographics**
 Age, Gender, Race, Ethnicity, Education

Medical History
Family history of PD, PD medication use, Tremor-dominance, Primary affected side, REM sleep disorder

Baseline Clinical Tests
DATScan imaging, Evidence of dopaminergic deficit (SWEDD flag), UPSIT

Baseline Levels of Disease Severity
Montreal Cognitive Assessment (MoCA), MDS-UPDRS

Baseline CSF Protein Tests
β-amyloid1-42, α-synuclein, Total tau, Phosphorylated tau 181 | **ImmuNoChip**
Illumina Infinium iSelect HD Custom Genotyping array | Rate of decline across 3+ years of follow-up
Cognitive: Montreal Cognitive Assessment (MoCA) (N=345)
Motor: MDS-UPDRS, Part II & III (N=333)
Functional & Behavioral: MDS-UPDRS, Part I (N=333) |
Testing the feasibility of Virtual Visits

Pilot randomized, controlled study of telemedicine for Parkinson disease

4 nursing home residents with PD

3 telemedicine visits over 6 months

“Usual care” for 6 months

10 individuals from the local community with PD

3 telemedicine visits over 6 months

Outcomes

Primary outcome
• Feasibility as measured by proportion of telemedicine visits completed as scheduled

Secondary outcomes
• Reliability and validity of the UPDRS motor examination
• Quality of life
• Patient satisfaction
• Motor performance
• Mood
• Cognition

Telemedicine visits were feasible
Remote assessment of the UPDRS was reliable
(remote v in-person ICC 0.78; test-retest remotely ICC 0.82)

A modified UPDRS conducted remotely is cross-sectionally and longitudinally valid.

![Graph](image)

Fig. 1. Scatter plots for (A) modified motor UPDRS (mUPDRS) versus standard motor UPDRS at baseline, (B) mUPDRS versus UPDRS at 2-year follow-up, and (C) change from baseline to 2-year follow-up for mUPDRS versus UPDRS. Solid lines represent best-fit linear regression line (plots A and B) and line of identity (plot C). For plots A and B, dashed line represents 95% confidence interval and dotted line represents 95% prediction interval about the best-fit line.
REACT-PD Study Design

• Observational study assessing feasibility of conducting virtual research visits in a subset of individuals with early PD participating in an ongoing clinical trial (STEADY-PD III)
• 40 participants in STEADY-PD III who consented to be contacted for future research will be enrolled and followed for up to 12 months
• Virtual Research visits to occur within 4 weeks after in-person clinical trial visit
• Virtual research visits will collect the same data as is collected at the corresponding in-person visit and include:

<table>
<thead>
<tr>
<th>Every Visit</th>
<th>Annual Visit Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDRS I-IV*</td>
<td>MDS UPDRS</td>
</tr>
<tr>
<td>Hoen and Yahr</td>
<td>MoCA</td>
</tr>
<tr>
<td>Schwab and England ADL</td>
<td>PDQ-39</td>
</tr>
<tr>
<td>C-SSRS</td>
<td></td>
</tr>
<tr>
<td>Concomitant medications</td>
<td></td>
</tr>
<tr>
<td>Evaluate need for therapy</td>
<td></td>
</tr>
<tr>
<td>Participant/investigator surveys</td>
<td></td>
</tr>
</tbody>
</table>

*Primary outcome measure of STEADY-PDIII
Software applications for remote measurement

Pilot smartphone study in Parkinson disease

DFA = detrended fluctuation analysis; TKEO = Teager-Kaiser energy operator

Source: Parkinsonism & Related Disorders 2015 Jun;21(6):650-3
These apps can detect responses from dopaminergic medications

Tapping frequency in individual with PD before and after medication

Source: Sage Bionetworks
Progress and Future Directions

Developing predictive models of PD progression
- Platform for integrated trial datasets
- Identifying influential factors in disease progression
- Validation with external datasets

Testing the feasibility of virtual visits
- Incorporation into trials (STEADY-PD)
- Independent sample – evaluate influence on recruitment, retention

Developing and testing applications for remote measurement
- Incorporate applications into trials (SURE-PD3)
- Pilot wearable sensors for outcome quantification

Future: Incorporate these approaches as a standard in therapeutic development and expand to new disease models