

Name: Lab: E-mail: Phone:

The ImageStream is a high-speed automated microscope that captures images in flow and numerically quantifies cellular morphology and the intensity, location and co-location of fluorescent probes within tens of thousands of cells per sample. This technology thus provides objective and statistically robust presentation of image-based data. Please read the sample preparation guide and answer the following questions related to the experiment you plan to try on the instrument during the demonstration.

## The type of application I wish to try (x all that apply):

| Translocation of signaling molecules |
|--------------------------------------|
| Molecular co-localization            |
| Internalization / phagocytosis       |
| Sub-cellular localization            |
| Conjugate analysis/Cell fusion       |
| Apoptosis/necrosis/autophagy         |
| Morphology-based cell classification |
| Shape Change                         |
| Spot counting                        |
| Cell cycle/mitosis                   |
| Flow confirmation/artifact rejection |
| Other (please describe):             |

## These ImageStream features are important for my application (x all that apply):

| Numerical quantitation of imagery            |
|----------------------------------------------|
| Automated image collection                   |
| Large sample sizes and population statistics |
| Rare event analysis by microscopy            |
| Other (please describe):                     |



Briefly describe the purpose of the experiment and expected results:

## Why is this application difficult to do with existing technologies I have access to?

**Experimental details:** 

Cell Type:

Markers, dyes, probes to be used:

Have you used those probes before?

Number of samples (1-10):

Expected number of cells per sample (minimum 1 million cells per test):

Expected frequency of rarest cell of interest:

Biologic positive control:

**Biologic negative control**:

Luminex. complexity simplified.