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The expected loss E (‖Y − f(X)‖ε) can be written as

E [E (‖Y − f(X)‖ε | X)] = E
[∑

j

pj(X)‖vj − f(X)‖ε | X
]
,

where pj(x) = Pr(Y = vj | X = x). The optimal expected loss is achieved by minimizing
h(z) =

∑
j pj(x)‖vj − z‖ε with respect to z = f(x) for each possible x. VDA makes the

simplifying assumption that f(x) = Ax+ b is linear in x. We now drop this assumption, fix
x, and show that the optimal z is closest to the vertex vj with largest weight pj(x). For the
sake of convenience, we will abbreviate pj(x) as pj.

Let us begin with the simple case of two vertices at -1 and 1 with attached probabilities
p1 and p2. Suppose ε is chosen so that the interiors of the two ε-insensitive intervals do not
overlap. In this circumstance the objective function h(z) = p1|z+ 1|ε+p2|z−1|ε is piecewise
differentiable with derivative

h′(z) =



−p1 − p2 z ∈ (−∞,−1− ε)
−p2 z ∈ (−1− ε,−1 + ε)

p1 − p2 z ∈ (−1 + ε, 1− ε)
p1 z ∈ (1− ε, 1 + ε)

p1 + p2 z ∈ (1 + ε,∞).

Examination of the sign pattern of h′(z) shows that the minimum of h(z) occurs at
−1 + ε if p1 > p2

(−1 + ε, 1− ε) if p1 = p2

1− ε if p1 < p2.

Since −1 + ε is closer to -1, and 1− ε is closer to 1, Fisher consistency holds.
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In the general case, let v1, . . . , vk be the vertices of a regular simplex in Rk−1. We will
take the vertices to be points on the unit ball. In our previous paper (Lange and Wu 2008),
we found that ‖vi − vj‖ =

√
2k/(k − 1) for j 6= i. The identity

2k

k − 1
= ‖vi − vj‖2

= ‖vi‖2 + ‖vj‖2 − 2vtivj

= 2− 2vtivj

now yields the inner product vtivj = −(k − 1)−1 for j 6= i. It is clear that the objective
function h(z) =

∑
j pj‖vj − z‖ε is continuous, convex, and coercive. Thus, it attains its

minimum value on a convex set C. The nature of C is not altogether obvious. A reasonable
conjecture is that C is contained in the convex hull S of the vertices, that is, the regular
simplex. Suppose z ∈ C, and u is the closest point in S to z. We will show that u is a better
point than z. The standard characterization of the projection u requires the inner product
inequality (z − u)t(v − u) ≤ 0 for every point v ∈ S. In other words, the three points z, u,
and v form a triangle with an obtuse angle at u. The side opposite the obtuse angle is longer
than either other side of the triangle. In particular, ‖v − z‖ > ‖v − u‖. Taking v = vj for
some vj with pj > 0 therefore implies h(u) < h(z).

Given that we can confine our attention to S, let us reparameterize z as a convex com-
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bination
∑

j αjvj of the vertices. The identity∥∥∥∑
j

αjvj − vi
∥∥∥2

=
∥∥∥∑

j

αj(vj − vi)
∥∥∥2

=
∑
j

∑
l

αjαl(vj − vi)t(vl − vi)

=
∑
j

∑
l

αjαl[v
t
jvl − vtjvi − vtivl + ‖vi‖2]

=
∑
j

∑
l 6=j

αjαlv
t
jvl +

∑
j

α2
j‖vj‖2 −

∑
j

αjv
t
jvi

−
∑
l

αlv
t
ivl +

(∑
j

∑
l

αjαl

)
‖vi‖2

= − 1

k − 1

∑
j

∑
l 6=j

αjαl +
∑
j

α2
j +

1

k − 1

∑
j 6=i

αj

−αi +
1

k − 1

∑
l 6=i

αl − αi + 1

= − 1

k − 1

∑
j

αj(1− αj) +
∑
j

α2
j +

1

k − 1
(1− αi)

−αi +
1

k − 1
(1− αi)− αi + 1

=
(

1 +
1

k − 1

)(∑
j

α2
j + 1− 2αi

)
=

k

k − 1

[∑
j 6=i

α2
j + (1− αi)2

]
allows us to prove that

∑
i αjvj is closest to the vertex vi with largest coefficient αi. Indeed,

this follows from the equivalence of the inequality∑
j 6=i

α2
j + (1− αi)2 =

∑
j 6=i,l

α2
j + α2

l + (1− αi)2

≤
∑
j 6=i,l

α2
j + α2

i + (1− αl)2

=
∑
j 6=l

α2
j + (1− αl)2

to the inequality αl ≤ αi and the equivalence of their strict analogs.
We now re-express the objective function as

h(z) =

√
k

k − 1

∑
j

pj ·max


√∑

l 6=j

α2
l + (1− αj)2 − η, 0


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for the convex combination z =
∑

j αjvj and
√

k
k−1

η = ε. It is convenient to minimize the

equivalent objective function

r(α) =
∑
j

pj ·max


√∑

l 6=j

α2
l + (1− αj)2 − η, 0

 .

Since
∑

j αjvj ∈ S and we can choose ε small enough to avoid overlaps between the interiors
of the balls, a minimizer

∑
j βjvj lies inside at most one of the k balls. There are two possible

situations: a)
∑

j βjvj lies outside of all of the balls, or b)
∑

j βjvj lies on the boundary or
within the ball surrounding some vertex vi. Let us consider the two cases separately.

Case a: The Euclidean distance between
∑

j βjvj and any vertex is greater than ε since∑
j βjvj falls outside the ball centered at the vertex. In this exterior region, the objective

function amounts to

r(α) =
∑
j

pj


√∑

l 6=j

α2
l + (1− αj)2 − η

 .

If vi is a closest vertex to
∑

j βjvj, then βi ≥ βl for every l. The first claim of Proposition 1
is true unless there exists a vertex vl 6= vi with pl > pi. Assume this condition is true, and
define a new vector α whose entries equal those of β except for a switch of their entries in
positions i and l. Thus, αi = βl and αl = βi. A brief calculation shows that

r(α)− r(β) = pl

√
c+ α2

i + (1− αl)2 + pi

√
c+ α2

l + (1− αi)2

−pl
√
c+ α2

l + (1− αi)2 − pi
√
c+ α2

i + (1− αl)2

= (pi − pl)
[√

c+ α2
l + (1− αi)2 −

√
c+ α2

i + (1− αl)2
]
, (1)

where c =
∑

j 6=i,l β
2
j . The difference r(α)− r(β) is negative if and only if√

c+ α2
l + (1− αi)2 >

√
c+ α2

i + (1− αj)2,

which is true if and only if αi < αl, or equivalently βi > βl. Thus, the value r(α) represents an
improvement over the value r(β) when strict inequality holds in βi ≥ βl. This contradiction
almost proves the first contention of Proposition 1.

Unfortunately, our argument does not eliminate the possibility βi = βl. When this is
the case, we define a vector-valued function α(t) with entries the same as those of β except
for αi(t) = βi − t and αl(t) = βl + t. For t > 0 the sum

∑
j αj(t)vj remains in the exterior

region. Now calculate the derivative

d

dt
r[α(0)] = pi

(1− βi) + βl√
c+ (βl)2 + (1− βi)2

+ pl
−(1− βl)− βi√

c+ (βi)2 + (1− βl)2

=
(pi − pl)√

c+ (βi)2 + (1− βl)2
.
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Because this derivative is negative, α(t) improves on β for t > 0 small.
Case b: We first show that if a minimizer

∑
j βjvj lies on the boundary or within a ball,

then the vertex at the center of the ball has the highest probability. Suppose the vertex vi
lies closest to the minimizer, but pl > pi for some l 6= i. The vector β defining the minimizer
satisfies ‖

∑
j βjvj − vi‖ ≤ ε. If we define α to equal β except for the switch of entries βi and

βl, then ‖
∑

j αjvj − vl‖ ≤ ε. After some simple algebra, we obtain

r(α)− r(β) = (pi − pl)
√
c+ α2

l + (1− αi)2,

where c =
∑

j 6=i,l α
2
j . Now the difference r(α) − r(β) is negative unless the equality αi = 1

holds, which is inconsistent with the inequalities βi ≥ βj for all j. Hence, α represents an
improvement of β. This contradiction again demonstrates that pi = maxj pj.

We next show that the minimizer lies on the boundary of the ball with center vi. Suppose∑
j βjvj lies inside the ball. Define the vector-valued function α(t) with entries αi(t) =

βi − t > 0 and αj(t) = βj + t/(k − 1) for j 6= i, where t > 0 is restricted by the requirement
that

∑
j αj(t)vl remain inside the given ball. For sufficiently small t, we will show that

r[α(t)] < r(β). In fact, the identities

r[α(t)]− r(β)

=
∑
j 6=i

pj


√∑

l 6=j

α2
l (t) + [1− αj(t)]2 −

√∑
l 6=j

β2
l + (1− βj)2


=

∑
j 6=i

pj


√∑

l 6=i,j

(
βl +

t

k − 1

)2

+ (βi − t)2 +
(

1− βj −
t

k − 1

)2

−
√∑

l 6=j

β2
l + (1− βj)2


=

∑
j 6=i

pj

{√∑
l 6=j

β2
l + (1− βj)2 − 2kβit

k − 1
+

kt2

k − 1

−
√∑

l 6=j

β2
l + (1− βj)2

 ,

make this obvious. Hence, we can improve the current point by moving along the trajectory
α(t). It follows that the minimizer lies on the boundary of the ball surrounding vi.

We now turn to proving the uniqueness of the minimizer assuming all of the pj are
distinct. In support of this conjecture, consider the function q(z) =

∑
j pj‖vj − z‖ with

Euclidean distance substituted for ε-insensitive distance. Except at the vertices vj, one can
calculate the gradient

∇q(z) =
∑
j

pj
‖z − vj‖

(z − vj)
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and second differential

d2q(z) =
∑
j

pj
‖z − vj‖3

[
‖z − vj‖2I − (z − vj)(z − vj)t

]
.

Based on the second differential, it is possible to demonstrate that q(z) is strictly convex
for k > 2. This result is not true when k = 2. For strict convexity, it suffices to prove that
d2q(z) determines a positive definite quadratic form. The validity of this claim for all points
z except the vertices allows one to assert global strict convexity of q(z). Here one can fall
back on the chord above the graph definition of convexity. If a line segment passes through
a vertex, then we split the segment into two subsegments at the vertex. The subchord lies
strictly above the graph on each subsegment, and the chord above the full segment lies
strictly above the two subchords.

Consider therefore the quadratic form defined by a nontrivial vector u. It is clear that

utd2q(z)u =
∑
j

pj
‖z − vj‖3

{
‖u‖2‖z − vj‖2 − [ut(z − vj)]2

}
for z distinct from all vj. The Cauchy-Schwarz inequality implies that each contribution to
this sum is nonnegative. A contribution is 0 if and only if z−vj is a multiple cju of u. Thus,
the quadratic form vanishes only if vj = z − cju for all j. This says all vertices lie on the
same line. Now any line intersects the ball where the vj reside in at most 2 points. When
there are 3 or more vertices, we get a contradiction. Hence, the quadratic form is positive.

With these facts in mind, we now demonstrate that the minimizer of h(z) =
∑

j pj‖vj−z‖ε
is unique when the probabilities are unique. The proof is by induction on the number of
dimensions k. The case k = 2 has already been proved, so take k > 2. Suppose an optimal
point occurs at an interior point of the regular simplex where the objective function reduces
to the function q(z) − kε. If there is a second optimal point, then the entire line segment
between the two points is optimal. This forces points near z to be optimal, contradicting the
local strict convexity of q(z). The other possibility is that all optimal points occur on one of
the faces of the unit simplex where some αj = 0 or on the boundary of one of the ε-insensitive
balls. We now argue that there can be at most one optimal point per face or ball. The case
of a face corresponds to reducing the problem from dimension k − 1 to dimension k − 2.
Uniqueness now follows by induction and the validity of the hypothesis when k = 2. For a
boundary point, suppose there is a second optimal point. The line segment from the original
optimal point to this second optimal point passes through the interior of the ball. Since the
entire segment is optimal, there must be optimal points interior to the ball. However, we
have excluded such a possibility.

Now consider two optimal points on different faces, different balls, or on a combination of
a ball and a face. The line segment connecting the points is optimal. It cannot pass through
a ball or along a face because this would contradict the fact just established. It therefore
passes through the interior of the simplex possibly tangent to a ball. Our earlier reasoning
showing the strict convexity of the function q(z) excludes this possibility. Thus, the optimal
point is unique. �
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