Skip to main content
menu

News

20242023202220202019

New Grant Will Examine Link Between ‘Dirty’ Brains and Alzheimer’s

Thursday, September 21, 2017

A new $3.2 million grant will bring together biomedical scientists and mechanical engineers in an effort to develop a detailed understanding of the brain's waste removal system. The research could have significant implications for diseases like Alzheimer's that arise when this system breaks down and toxic proteins accumulate in the brain.

The new research is being funded by the National Institute on Aging and will study the glymphatic system. This system is unique to the brain and was first described by Maiken Nedergaard, M.D., D.M.Sc., the co-director of the University of Rochester Center for Translational Neuromedicine, and her colleagues in 2012, who showed how cerebral spinal fluid (CSF) is pumped into brain tissue and flushes away waste. Subsequent research has shown that the glymphatic system is more active while we sleep and can be damaged by stroke and trauma.

Read More: New Grant Will Examine Link Between ‘Dirty’ Brains and Alzheimer’s

Faulty Support Cells Disrupt Communication in Brains of People with Schizophrenia

Thursday, July 20, 2017

Astrocytes

Astrocytes help coordinate communication
between neurons. The one on the left is
derived from a healthy brain and the one on
the right is from an individual diagnosed
with schizophrenia.

New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia into mice, the animal’s nerve cell networks did not mature properly and the mice exhibited the same anti-social and anxious behaviors seen in people with the disease.

“The findings of this study argue that glial cell dysfunction may be the basis of childhood-onset schizophrenia,” said University of Rochester Medical Center (URMC) neurologist Steve Goldman, M.D., Ph.D., co-director of the Center for Translational Neuromedicine and lead author of the study which appears today in the journal Cell. “The inability of these cells to do their job, which is to help nerve cells build and maintain healthy and effective communication networks, appears to be a primary contributor to the disease.”

Read More: Faulty Support Cells Disrupt Communication in Brains of People with Schizophrenia

Featured in The Science Times: How Alzheimer's Catches People Skimping Sleep: New Study Explains Cause Of Dementia

Wednesday, May 24, 2017

Photo of Dr. Maiken Nedergaard

A recent scientific study shows that insufficient amount of sleep leads to the development of Alzheimer's disease. Researchers gain more evidence and are beginning to believe that lack and poor quality of sleep results to the fusion of Amyloids, proteins that bond together to form Alzheimer's plaques.

Dr. Maiken Nedergaard, the lead researcher from the University of Rochester Medical Center, explains the glymphatic system that is present in humans. She says that this system is 10 times more active when in slumber than when awake. The process allows cerebrospinal fluid to flow through spaces around the neurons of people's brains. This a method of purging unwanted proteins (Amyloids) and other wastes into the circulatory system garbage collectors and eventually flushes it out of the body.

In simple terms, Nedergaard explains that the brain has its own sanitation and public works department. It is like a network of sewer facilities mostly done during the brain's nightlife. An example of a housekeeping staff descending to building offices for a cleanup duty to avoid the lumping compound that causes Alzheimer's.

Read More: Featured in The Science Times: How Alzheimer's Catches People Skimping Sleep: New Study Explains Cause Of Dementia

Protein Key to Nerve Health Hitches a Ride on Brain’s Garbage Truck

Wednesday, March 8, 2017

A new study shows that the brain's waste removal system serves as both trash collector and delivery service, providing neurons with a protein important to maintaining cognitive function while simultaneously cleaning brain tissue. The research may help explain why different genetic varieties of the protein, called apolipoprotein E (apoE), can indicate risk for Alzheimer's disease or promote longevity.

The study was led by Rashid Deane, B.Sc., Ph.D., a research professor in the University of Rochester Medical Center Department of Neurosurgery and member of the Center for Translational Neuromedicine, and appears in the journal Molecular Neurodegeneration.

Read More: Protein Key to Nerve Health Hitches a Ride on Brain’s Garbage Truck