Skip to main content

SMD Logo


20162015201420132012 Archive

Wilmot Scientists Exploit Cell Metabolism to Attack Cancer

Wednesday, October 12, 2016

Cancer cells have their own unique ways of reproducing, involving a shrewd metabolic reprograming that has been observed in virtually all types of cancer but not in normal cells. Now, University of Rochester Medical Center scientists have pinpointed one key source of the problem, which could lead to new treatment opportunities.

In an article published by Cell Reports, the scientific team shows for the first time how cancer-causing mutations control and alter the way cancer cells biosynthesize and replicate.

The discovery is the result of a close collaboration between the laboratories of Joshua Munger, Ph.D., associate professor of Biochemistry and Biophysics, and Hucky Land, Ph.D., the Robert and Dorothy Markin Professor and Chair of Biomedical Genetics and director of research at the URMC’s Wilmot Cancer Institute.

“Every tissue or cell type in the body has different metabolic needs but as cells become cancerous their metabolism shifts in ways that are very different from normal cells,” Munger said. “Being able to identify those differences is critical for developing treatment targets.”

Read More: Wilmot Scientists Exploit Cell Metabolism to Attack Cancer

How a Stone Spearhead Found in a Whale Could Help Solve the Mystery of Cancer

Monday, August 8, 2016

Bowhead whales can live over 200 years, but there is no evidence of a bowhead ever having cancer. "The biggest questions are what are the extra protections that whales have against cancer," says Vera Gorbunova, the Doris Johns Cherry Professor in the Department of Biology. "We would really like to understand the mechanism."

Read More: How a Stone Spearhead Found in a Whale Could Help Solve the Mystery of Cancer

6th Annual Stem Cell and Regenerative Medicine Symposium

Monday, June 27, 2016

Dr. Jack Kessler

Dr. Jack Kessler

In celebration of the NYSTEM-funded training program in stem cell biology at the University of Rochester, researchers convened for a day of presentations and discussions on advances in stem cell biology.  To emphasize the excellence of our junior scientists, five NYSTEM trainees (both pre- and post-doctoral, took turns with leaders in the field of stem cell medicine to present their work. The meeting kicked off with a presentation by Dr. Jack Kessler, Northwestern University Feinberg School of Medicine) describing the factors controlling adult neural stem cell maintenance – a key determinant of cognitive health.

Dr. Kunle Odusi

Dr. Kunle Odusi

Dr. Angela Christiano(center)

Dr. Angela Christiano (center)

Dr. Kunle Odunsi (Roswell Park Cancer Institute) spoke in his role as director of the immune-therapy program on the importance of gene-engineered, tumor recognizing CD4 T-cells in anti-tumor therapy. 

Dr. Angela Christiano (Columbia University) provided an impressive example of the power of iPSC technology with the development of 3D-skin tissue for treatment of such devastating skin diseases as epidermolysis bulbosa.

NYSTEM Trainees

NYSTEM Trainees

Presentations by NYSTEM trainees Fanju Meng (Biteau lab), Wenxuan Liu (Chakkalakal Lab), Michael Rudy (Mayer-Proschel Lab), Dr. Andrew Campbell (Proschel Labs), and Dr. Nicole Scott (Noble Lab) rounded out a day full of exciting new work that highlights the broad impact of stem cell biology on medicine today – and the success of the SCRMI training program. The meeting was buoyed by good vibes and food provided by the backdrop of the Rochester International Jazz Festival.

Congratulations To This Year’s Poster Prize Winners

Graduate Student Category

  • Zhonghe Ke, High Levels of Niche Ha of the NMR Mediates the Maintenance of LT-HSC by reducing ROS Levels, Gorbunova Lab
  • Jayme Olsen, Generation of Human Erythroblasts with Increased EX Vivo Self-Renewal, Palis Lab
  • Michael Trembley, Novel Mechanisms of the Epicardial-Derived Cell Mobilization, Small Lab

Postdoctoral Category

  • Pearl Quijada, Novel Mechanisms of Epicardium Dependant Cardiac Repair, Small Lab

Thank you to all participants for a great event. See you again in 2017!

Catherine Ovitt receives 2016 IADR Innovation in Oral Care Award

Wednesday, June 22, 2016

Ovitt Award

Catherine Ovitt is one of this year’s three recipients of the 2016 IADR Innovation in Oral Care Awards. She accepted the award from IADR President Dr. Marc Heft at the IADR/APR General Session & Exhibition in Seoul, Republic of Korea. The three prestigious awards recognize research in innovative oral care technologies that may maintain and improve oral health, and are supported by GlaxoSmithKline.

Read More: Catherine Ovitt receives 2016 IADR Innovation in Oral Care Award

Post-doctoral Fellow wins the 2016 Weiss Toxicology Scholar Award

Wednesday, June 1, 2016

Luisa Caetano-Davies

Dr. Luisa Caetano-Davies (Biomedical Genetics) was the postdoctoral winner of the third annual Weiss Toxicology Award. The award was created to strengthen training and research in the Toxicology Training Program by enhancing support of talented future leaders in the field of toxicology, particularly those with an interest in neurotoxicology. The award is presented annually to a meritorious trainee with an interest in Neurotoxicology. Dr. Caetano-Davies is member of the Proschel lab and is studying the effects of environmental toxicants on early stages of Parkinson Disease pathology, in particular with a focus on astrocyte dysfunction. Carolyn Klocke (Cory-Schlechta Lab) was the winner of the graduate student category. Congratulations!

GDSC Graduate Nirmalya Chatterjee reports a novel role of Bet proteins in the control of the oxidative stress response pathway.

Friday, May 27, 2016

Bet proteins are a subclass of bromodomain containing epigenetic “readers”. These proteins have complex and incompletely understood functions in the control of gene expression and chromatin organization. The human Bet proteins Brd3 and Brd4 have been implicated in cancer and thanks to the availability of specific inhibitors, have emerged as promising drug targets. The paper by Nirmalya Chatterjee, Min Tian and others describes experiments in Drosophila that discovered a novel function for Bet proteins: the regulation of the transcription factor Nrf2. The reported data show that a Drosophila Bet protein is part of a previously unknown pathway that can control Nrf2 activity. This is of interest as Nrf2 plays a prominent role in the defense against oxidative stress, protection against various diseases, and aging. Nirmalya Chatterjee, a recent member of the Bohmann Lab, received the PhD last September and is currently working as a postdoc in the group of Norbert Perrimon at Harvard Medical School.

Nirmalya Chatterjee2, Min Tian3, M., Kerstin Spirohn, Michael Boutros & Dirk Bohmann (2016) Keap1-Independent Regulation of Nrf2 Activity by Protein Acetylation and a BET Bromodomain Protein, PLoS Genetics, will go to press 5/27/2016. PMID: 27233051

Luisa Caetano-Davies wins “Best Oral Presentation” Award.

Thursday, May 26, 2016

Luisa Caetano-Davies

Luisa Caetano-Davies

Luisa, a post-doctoral fellow in the Proschel Lab, received the award for her presentation on “Astrocyte dysfunction in Parkinson Disease” at the 2016 Environmental Medicine and Toxicology Training Program retreat. Her presentation described the use of both iPSC-based disease-in-a-dish and in vivo animal models to identify early astrocyte defects in PD disease etiology. Congratulations, Luisa!

GDSC Student Xuan Li publishes on the role of Cdk12 in response to stress.

Monday, May 23, 2016

Xuan Li

Xuan Li

The phosphorylation of RNA polymerase II in the C-terminal domain, or CTD, is an essential step for the transcription of all eukaryotic protein coding genes. The paper be Xuan Li and colleagues describes the unexpected discovery that a certain CTD kinase, called CDK12, is not universally required, but is only needed for the transcription of genes that are inducible by stress, such as heat, DNA damage or reactive oxygen species. This finding suggests that CTD phosphorylation plays a role in the regulation of specific gene expression programs, rather than being a generic step of transcription. This work involved a large-scale robotic RNAi screen in collaboration with the Boutros lab in Heidelberg, as well as genetic and biochemical experiments in the Drosophila model system. Xuan Li, a graduate student in the Bohmann Lab is currently doing an internship at Takeda Pharmaceuticals in Boston and will defend her PhD in November.

Xuan Li1, Nirmalya Chatterjee2,, Kerstin Spirohn, Michael Boutros & Dirk Bohmann (2016) Cdk12 Is A Gene-Selective RNA Polymerase II Kinase That Regulates a Subset of the Transcriptome, Including Nrf2 Target Genes. Scientific Reports, 6:21455. PMID: 26911346

Cindy (Xiaowen) Wang in the Noble Lab wins 2016 GSS Poster Prize

Tuesday, May 17, 2016

Cindy WangCindy (Xiaowen) Wang in the Noble Lab wins 2016 GSS Poster Prize with her work on: Identifying c-Cbl as a critical point of intervention in acquired tamoxifen resistant breast cancer. (Co-authors Jennifer L Stripay, Hsing-Yu Chen and Mark D Noble).

Garry Coles wins 2016 Vincent du Vigneaud Award For Excellence in Graduate Research

Tuesday, May 17, 2016

Garry ColesGarry Coles, graduate of the Genetics, Development and Stem Cell program received this years du Vigneaud commencement award. The University of Rochester School of Medicine and Dentistry recognizes outstanding post-baccalaureate research efforts and promising PhD candidates through the Vincent du Vigneaud Award, in honor of Vincent du Vigneaud, himself a PhD graduate of the University of Rochester and recipient of the 1955 Nobel Prize in Chemistry.

Gary's PhD thesis, entitled "KIF7 and microtubule dynamics function to regulate cellular proliferation and cell cycle progression" focuses on deciphering the role of Kinesin family member 7 (Kif7) on cell cycle control during mammalian development. The work was conducted in Dr. Kate Ackerman's laboratory and has been published in the Proceedings of National Academy of Sciences (PNAS), PLoS Genetics and Developmental Biology.

Dr. Wellington Cardoso, Director for the Center for Human Development at Columbia University Medical Center, comments: "I have been closely following the work of Dr. Coles and his mentor Dr. Kate Ackerman, since we share a similar research interest. Dr. Coles has made important contributions to our understanding of the mechanisms regulating diaphragm and lung morphogenesis… I am confident that he will continue to make great contributions to the field in his future career."

This outlook is also shared by Dr. Hartmut Land, Chair of the Department for Biomedical Genetics and Director of Research at the Wilmot Cancer Center: "Garry is an incredibly driven and inquisitive scientist, and he has a fabulous enthusiasm for his work…(He) has grown tremendously during his time in graduate school. His maturity and independence are ahead of the curve for most post-doctoral fellows." Dr. Land concludes, "Given (Garry's) exceptional talent to make things work, his curiosity and great persistence, I am certain that he will contribute significantly to any scientific environment... (and)… become a leader in his field".

Class of 2014 Prelim season begins

Thursday, May 12, 2016

On Friday, May 6th, Andrew Albee opened the 2016 season of Prelim Exams. According to his committee, Andrew passed his qualifying exam with flying colors, and the committee looks forward to the outcome of his work. His studies on the function of Lmx Homeobox transcription factors in early somatic progenitors of the Drosophila ovary are also the basis of an F31 application submitted in February of this year. Congratulations, Andrew!

28th Annual Genetics Day Meeting

Wednesday, May 11, 2016

Michael Levine

Dr. Michael Levine

This year's Genetics Day provided another opportunity to celebrate the impact of Genetics on science and medicine. An excellent selection of speakers from the University of Rochester Medical Center highlighted the importance of diverse genetic mechanisms ranging from chromatin remodeling in erythropoesis (Laurie Steiner) and DNA damage repair (Xi Bin) to translational control by riboswitches (Joe Wedekind) and di-codon usage (Elizbeth Grayhack). Genetics Day concluded with the Fred Sherman lecture by Dr. Michael Levine (Princeton University). His presentation on visualizing the mechanisms of transcriptional enhancers was equally entertaining and insightful. Originally from the Hollywood area, and by his own admission a closet movie producer, Dr. Levine wowed audiences with in vivo movies of enhancer reporters, shedding new light on what we all thought was an established principle of molecular genetics.

Grad student

  • Manisha Taya – Hammes Lab
    The Role of Estrogen Signaling in a Mouse Model for Lymphangioleiomyomatosis (Lam)
  • Sam Carrell – Thornton Lab
    Silencing of Myotonic Dystrophy Protein Kinase (Dmpk) Does Not Affect Cardiac or Muscle Function In Mice 

Post Docs

  • Walter Knight – Yan Lab
    The Role and Mechanism of Cyclic Nucleotide Phosphodiesterase 1c in Regulating Pathological Cardiac Remodeling and Dysfunction
  • Vincent Martinson - Jaenike lab
    Gut Microbiota of Distantly Related Drosophila Species Share Similar Bacterial Diversity

Genetics Day has been a long standing tradition at the University of Rochester And more recently includes the Fred Sherman lecture in memory of Fred Sherman a renowned biochemist and geneticist, who led international efforts to establish the yeast Saccharomyces cerevisiae as the premier genetic eukaryotic model system.  The lecture is made possible by a generous fund endowed by Fred Sherman's wife, Elena Rustchenko-Bulgac, herself a research professor at the URMC.  

Heather Natola Wins 2016 Edward Peck Curtis Award for Excellence in Undergraduate Teaching

Thursday, April 28, 2016

Heather NatolaWe are proud to announce that Heather Natola has been selected to receive the 2016 Edward Peck Curtis Awards for Excellence in Undergraduate Teaching. Ms. Natola received high praise from her students, faculty in the Department of Biomedical Genetics and Rochester Museum and Science Center.

Ms. Natola is a graduate student researcher in the Pröschel Lab, where she investigates new therapeutic approaches to spinal cord injury as part of the UR Stem Cell and Regenerative Medicine Institute.

Heather Presented with award "Ms. Natola was particularly instrumental in providing students with in-depth and detailed training, which had a significant positive impact on the student’s engagement and learning"
-Hartmut Land, Ph.D., Chair, Department of Biomedical Genetics

"Despite her ambitious and demanding research work, Heather has volunteered for all of these teaching activities. Clearly she has not only become an ambassador for science as a whole, but has helped fulfill the mission of our school. What more can we ask of a graduate student?"
Christoph Proschel, Ph.D., Program Director - Genetics Development & Stem Cells Ph.D. Program 

Heather is enthusiastic and committed to promoting interest in science and an attitude of life-long learning
-Kara Verno, Program Supervisor - Rochester Museum and Science Center

You can read more about Heather’s commitment and passion for teaching by reading her statement to the Curtis Award Committee.

Tracking Melanoma Metastasis Leads to Key Gene Discovery

Wednesday, February 17, 2016

A Wilmot Cancer Institute investigator discovered a gene that’s required for the initiation of melanoma and the growth of disseminated melanoma cancer cells in the using magnifier to look at mole

The findings suggest that the gene’s signaling pathway may be proof that melanoma stem cells exist, a question that’s being debated by scientists.

Lei Xu, Ph.D., associate professor of Biomedical Genetics at the University of Rochester Medical Center, is lead author of the study, which was recently published in PLOS ONE and funded by a Wilmot Cancer Institute pilot grant. The Xu lab investigates the multiple, complex steps that occur as cancer cells spread from the original tumor to other parts of the body.

Read More: Tracking Melanoma Metastasis Leads to Key Gene Discovery

Scientists Discover Stem Cells Capable of Repairing Skull, Face Bones

Monday, February 1, 2016

The photo shows a blue-stained stem cell and a red-stained stem cell that each generated new bones cells after transplantation.
The photo shows a blue-stained stem cell and a red-stained stem cell that each generated new bones cells after transplantation.

A team of Rochester scientists has, for the first time, identified and isolated a stem cell population capable of skull formation and craniofacial bone repair in mice—achieving an important step toward using stem cells for bone reconstruction of the face and head in the future, according to a new paper in Nature Communications.

Senior author Wei Hsu, Ph.D., dean’s professor of Biomedical Genetics and a scientist at the Eastman Institute for Oral Health at theUniversity of Rochester Medical Center, said the goal is to better understand and find stem-cell therapy for a condition known as craniosynostosis, a skull deformity in infants. Craniosynostosis often leads to developmental delays and life-threatening elevated pressure in the brain.

Hsu believes his findings contribute to an emerging field involving tissue engineering that uses stem cells and other materials to invent superior ways to replace damaged craniofacial bones in humans due to congenital disease, trauma, or cancer surgery.

For years Hsu’s lab, including the study’s lead author, Takamitsu Maruyama, Ph.D., focused on the function of the Axin2 gene and a mutation that causes craniosynostosis in mice. Because of a unique expression pattern of the Axin2 gene in the skull, the lab then began investigating the activity of Axin2-expressing cells and their role in bone formation, repair and regeneration. Their latest evidence shows that stem cells central to skull formation are contained within Axin2 cell populations, comprising about 1 percent—and that the lab tests used to uncover the skeletal stem cells might also be useful to find bone diseases caused by stem cell abnormalities.

The team also confirmed that this population of stem cells is unique to bones of the head, and that separate and distinct stem cells are responsible for formation of long bones in the legs and other parts of the body, for example.

The National Institutes of Health and NYSTEM funded the research.

Read More: Scientists Discover Stem Cells Capable of Repairing Skull, Face Bones