Skip to main content
menu

News

20242023202220212020

Subscribe to Neuroscience LISTSERV

Nedergaard Recognized with Nakasone Award for Pioneering Research

Tuesday, March 26, 2024

Maiken Nedergaard, MD, DMSc, has been recognized by the International Human Frontier Science Program Organization (HFSPO) with its 2024 Nakasone Award for her “groundbreaking discovery and exploration” of the glymphatic system, the brain’s unique waste removal system, and the role that sleep plays in its function.  

“Dr. Nedergaard forever changed the way we understand sleep as an essential biological function that promotes brain health and plays a crucial role in preventing diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases,” said HFSPO secretary-general Pavel Kabat. “It is a fundamental discovery worthy of being honored with the 2024 HFSPO Nakasone Award.”

Nedergaard is co-director for the Center for Translational Neuromedicine, which maintains research facilities at the University of Rochester Medical Center and the University of Copenhagen.  In 2012, her lab first described the glymphatic system, a previously unknown network of channels that piggybacks on blood vessels.  The system is used to transport cerebrospinal fluid deep into brain tissue and flush away toxic waste, including beta amyloid and tau, two proteins associated with Alzheimer’s disease. 

Read More: Nedergaard Recognized with Nakasone Award for Pioneering Research

Turns out—male roundworms are picky when choosing a mate, new research finds

Monday, March 11, 2024

Doug PortmanA piece of rotting fruit is likely covered in hundreds if not thousands of microscopic roundworms, including C. elegans—a popular experimental model system for studying neurogenetics. With a lifespan of only a few weeks, C. elegans must reproduce quickly and often. The species is made up of hermaphrodites and males. The hermaphrodites have female bodies, can self-fertilize, and can mate with males. Recent research from of the Portman Lab at the Del Monte Institute for Neuroscience at the University of Rochester, found the males do not mate indiscriminately—they are selective about things like age, mating history, and nutrition.

“We have been aware of many of the mating cues this species uses, but this is the first time we have been able to look at them together to learn more about what they tell a male about a potential mate,” Doug Portman, PhD, professor of Biomedical Genetics said. “Assessing a mate’s characteristics seems to be something that only the male does. Understanding sex differences in C. elegans gives us important insight into how genes influence the function of neurons and circuits to guide innate behaviors—like choosing a mate.”

C. elegans is an invaluable tool to neuroscience research. Scientists have identified all of the roundworm’s neurons—there are only a few hundred of them—and the connections between its neurons have also been mapped, providing a model for understanding how neuronal circuits work in humans. It is well understood that mating is a priority for male C. elegans. Previous research out of the Portman lab found male C. elegans will suppress the ability to locate food in order to find a mate.

In a study out today in Current Biology, the Portman lab conducted experiments to observe how roundworms in petri dishes choose between potential mates. They discovered that the male worms used diverse chemical (pheromones) and physical (touch) signals to determine the sex, age, nutritional health, and mating history of the hermaphrodites. Researchers found male worms can determine a hermaphrodite’s nutritional status—whether it is healthy or food-deprived—and whether it has previously mated. When given a choice, the males showed preference toward hermaphrodites that have not previously mated with another male and are nutritionally healthy. However, once a hermaphrodite is a few days old—approaching middle age for a worm—it puts out a powerful sex pheromone that attracts males over long distances. That is because it starts to run out of its own sperm, so finding a mate becomes a more important.

Read More: Turns out—male roundworms are picky when choosing a mate, new research finds

2024 University of Rochester Edward Peck Curtis Award for Excellence in Teaching

Tuesday, March 5, 2024

Our very own Evan Newbold who is a recipient of the 2024 University of Rochester Edward Peck Curtis Award for Excellence in Teaching by a Graduate Student. Please drop Evan an email or high-five him in the hallways to let him know how proud we are.

Well-deserved Evan!

Researchers find possible neuromarker for ‘juvenile-onset’ Batten disease

Monday, January 8, 2024

Early symptoms can be subtle. A child’s personality and behavior may change, and clumsiness or stumbling develops between the ages of five and ten. Over time, cognitive impairment sets in, seizures emerge or worsen, vision loss begins, and motor skills decline. This is the course of Batten disease, a progressive inherited disorder of the nervous system that results from mutations to the CLN3 gene.

“It is a devastating neurodegenerative disorder of childhood,” said John Foxe, PhD, director of the Del Monte Institute for Neuroscience and co-director of the University of Rochester Intellectual and Developmental Disabilities Research Center (UR-IDDRC), “and while it is very rare, it is important to study and understand because it could inform what we know and how we treat it and other related rare diseases.”

In a new study, out today in the Journal of Neurodevelopmental Disorders, Foxe and a team of researchers from the University of Rochester Medical Center may be closer to that goal of understanding. The paper describes how they measured changes in brain function of participants with CLN3 disease, also known as 'juvenile-onset' Batten disease. Researchers found that the functioning of the auditory sensory memory system—the brain system required for short-term memory recall—appears to decrease as the disease progresses. They revealed this by utilizing electroencephalographic recordings (EEG) to measure the brain activity of participants with and without Batten disease as they passively listened to simple auditory beeps. The participants simultaneously watched a video of their favorite movie while the brain responses to these beeps were being measured. In the participants with Batten disease, the EEG revealed a decline in the response from the auditory sensory memory system as the disease progressed. There were no significant changes among the other participants. This finding suggests that this easy-to-measure brain process may be a target or biomarker in measuring treatment outcomes in clinical trials.

“We needed to find a task that did not require explicit engagement or attention, and this is one of those kinds of tasks,” Foxe said. “The brain produces the signal that we're looking at, regardless of whether the participant is paying attention to the beeps or not. It is an objective method that provides new insight into the brain function of a population with varying communication abilities.”

Read More: Researchers find possible neuromarker for ‘juvenile-onset’ Batten disease

Researchers identify path to prevent cognitive decline after radiation

Wednesday, January 3, 2024

Researchers at the Del Monte Institute for Neuroscience at the University of Rochester find that microglia—the brain’s immune cells—can trigger cognitive deficits after radiation exposure and may be a key target for preventing these symptoms. These findings, out today in the International Journal of Radiation Oncology Biology Biophysics, build on previous research showing that after radiation exposure microglia damage synapses, the connections between neurons that are important to cognitive behavior and memory.

“Cognitive deficits after radiation treatment are a major problem for cancer survivors," M. Kerry O’Banion, MD, PhD, professor of Neuroscience, member of the Wilmot Cancer Institute, and senior author of the study said. “This research gives us a possible target to develop therapies to prevent or mitigate against such deficits in people who need brain radiotherapy.”

Using several behavioral tests, researchers investigated the cognitive function of mice before and after radiation exposure. Female mice performed the same throughout, indicating a resistance to radiation injury. However, researchers found male mice could not remember or perform certain tasks after radiation exposure. This cognitive decline correlates with the loss of synapses and evidence of potentially damaging microglial over-reactivity following the treatment.

Researchers then targeted the pathway in microglia important to synapse removal. Mice with these mutant microglia had no cognitive decline following radiation. And others that were given the drug, Leukadherin-1, which is known to block this same pathway, during radiation treatment, also had no cognitive decline.

“This could be the first step in substantially improving a patient's quality of life and need for greater care,” said O’Banion. “Moving forward, we are particularly interested in understanding the signals that target synapses for removal and the fundamental signaling mechanisms that drive microglia to remove these synapses. We believe that both avenues of research offer additional targets for developing therapies to help individuals receiving brain radiotherapy.”

O’Banion believes this work may have broader implications because some of these mechanisms are connected to Alzheimer's and other neurodegenerative diseases.

Additional authors include first author Joshua Hinkle, PhD, postdoctoral fellow at the National Institute on Drug Abuse and former graduate student in the O’Banion-Olschowka LabsJohn Olschowka, PhD, and Jacqueline Williams, PhDof the University of Rochester Medical Center. This research was supported by the National Institutes of Health, and NASA.

Read More: Researchers identify path to prevent cognitive decline after radiation