Skip to main content
menu
URMC / Labs / Mayer-Pröschel Lab / In the News

 

In the News

20232018201720142011

Cell Decisions

Friday, September 1, 2006

As far as Mark Noble is concerned, the next medical revolution arrived more than 30 years ago. That’s when the Rochester professor of biomedical genetics and scientists like him at academic medical centers across the country first began to grasp the potential of stem cells.

In Noble’s lab and in the labs of scientists across the Medical Center, Rochester scientists have been exploring that potential for several years, helping lead research projects focused on new cancer treatments, the role nutrition plays in early development, and in understanding how to repair damage to the brain and nervous system.

Chris Proschel, Mark Noble, and Margot Mayer-Proschel have worked together as a team since 1990. They played key roles in identifying—and are considered to be among the best in the world at handling—the four known progenitor cells for the various cells found in the central nervous system.

Read More: Cell Decisions

Novel Stem Cell Technology Leads to Better Spinal Cord Repair

Thursday, April 27, 2006

Researchers believe they have identified a new way, using an advance in stem-cell technology, to promote recovery after spinal cord injury of rats, according to a study published in today’s Journal of Biology. Scientists from the New York State Center of Research Excellence in Spinal Cord Injury showed that rats receiving a transplant of a certain type of immature support cell from the central nervous system (generated from stem cells) had more than 60 percent of their sensory nerve fibers regenerate. Just as importantly, the study showed that more than two-thirds of the nerve fibers grew all the way through the injury sites eight days later, a result that is much more promising than previous research. The rats that received the cell transplants also walked normally in two weeks.

These studies provide a way to make cells do what we want them to do, instead of simply putting stem cells into the damaged area and hoping the injury will cause the stem cells to turn into the most useful cell types, explains Mark Noble, Ph.D., co-author of the paper, professor of Genetics at the University of Rochester, and a pioneer in the field of stem cell research. It really changes the way we think about this problem.

The breakthrough is based on many years of stem cell biology research led by Margot Mayer-Proschel, Ph.D., associate professor of Genetics at the University of Rochester. In the laboratory, Mayer-Proschel and colleagues took embryonic glial stem cells and induced them to change into a specific type of support cell called an astrocyte, which is known to be highly supportive of nerve fiber growth. These astrocytes, called glial precursor-derived astrocytes or GDAs, were then transplanted into the injured spinal cords of adult rats. Healing and recovery of the GDA rats was compared to other injured rats that received either no treatment at all or treatment with undifferentiated stem cells.

Read More: Novel Stem Cell Technology Leads to Better Spinal Cord Repair