Skip to main content
menu
URMC / Labs / Schwarz Lab / News

 

News

20172016201420132012

Edward Schwarz, Ph.D., to head The Center for Musculoskeletal Research

Thursday, December 15, 2011

Edward M. Schwarz, Ph.D., the Burton Professor of Orthopaedics and Rehabilitation, has been appointed to the additional role of director of URMC's Center for Musculoskeletal Research (CMSR).

Schwarz replaces Regis J. O'Keefe, M.D., Ph.D., chair of the Department of Orthopaedics, who remains chair but was recently named Associate Dean for Clinical Affairs at URMC.

In addition to leading the CMSR, Schwarz operates a laboratory that focuses on finding solutions to bone loss due to conditions such as rheumatoid arthritis, infections, tumors that spread to bone, and bone destruction near the implants used in reconstructive surgery. He also leads a project to develop a vaccine to prevent life-threatening methicillin-resistant staphylococcus (MRSA) infections following bone and joint surgery.

Read More: Edward Schwarz, Ph.D., to head The Center for Musculoskeletal Research

Chuka Ikpeze Wins Prestigious Research Awards

Monday, November 14, 2011

Tochukwu Chuka Ikpeze, a post-baccalaureate research trainee, in Dr. Edward Schwarz's lab won two prestigious research awards at the Annual Biomedical Research Conference for Minority Students (ABRCMS), November 9-12 in St. Louis, Missouri.

Chuka was 1 of 16 recipients of Best Research in Immunology as well as 1 of 41 students who received the Interdisciplinary Award. Along with a certificate, Chuka was awarded $300 from the ABRCMS. The ABRCMS is a national conference designed to encourage undergraduate, postbaccalaureate and graduate students to pursue advanced training in the biomedical and behavioral sciences, including mathematics.

URMC Research Could Extend Life of Arthritic Joints

Wednesday, September 21, 2011

A medication already approved to build bone mass in patients with osteoporosis also builds cartilage around joints and could potentially be repurposed to treat millions of people suffering from arthritis, according to orthopaedic researchers at the University of Rochester Medical Center.

The study authors hope their laboratory findings, published in the current issue of Science Translational Medicine, will set the stage for the first human clinical trials to test human parathyroid hormone (brand name: Forteo) in this growing patient population.

Among many collaborators, on this article, from the University of Rochester Medical Center were Drs. Edward M. Schwarz, Ph.D. and Hani Awad, Ph.D.

Read More: URMC Research Could Extend Life of Arthritic Joints

Professor Edward Schwarz Awarded a P30 Core Center Grant

Monday, August 1, 2011

Orthopaedics and Biomedical Engineering professor, Edward Schwarz has been awarded a P30 Core Center grant that will provide shared facilities and services to NIH-funded investigators who are addressing scientific problems in musculoskeletal biology and medicine, in order to improve efficiency, accelerate the pace of research, and facilitate clinical translation. It also facilities the development and promotion of Research Assistant Professors (RAP) and unfunded physician-scientists (UPS) to become national leaders.

Researchers Unzip MRSA and Discover Route for Vaccine

Tuesday, January 18, 2011

hipbone

X-ray of a hipbone

University of Rochester Medical Center orthopaedic scientists are a step closer to developing a vaccine to prevent life-threatening methicillin-resistant staphylococcus aureus (MRSA) infections following bone and joint surgery.

The Orthopaedic Research Society invited URMC researchers to present their findings on Jan. 16, 2011, at the ORS annual meeting in Long Beach, Calif. The team is led by Edward M. Schwarz, Ph.D., professor of Orthopaedics and associate director of the URMC Center for Musculoskeletal Research. John Varrone, a second-year graduate student in Schwarz's lab, will discuss the data at ORS and the ongoing search for attractive molecular candidates for use in a vaccine.

Read More: Researchers Unzip MRSA and Discover Route for Vaccine

Scientists Explore Why Some Psoriasis Patients Suffer Joint Damage

Tuesday, June 22, 2010

A new grant from the National Psoriasis Foundation could help University of Rochester Medical Center (URMC) scientists find ways to forecast which patients with the red, flaky skin disorder are most likely to suffer from an arthritic disease that sometimes follows.

With the $200,000 grant, Christopher Ritchlin, M.D., M.P.H. and colleagues plan to spend two years following between 60 and 100 patients with both psoriasis and psoriatic arthritis. Over that time, they'll track how popular medications (like methotrexate and newer anti-TNF drugs) affect participants' levels of DC-STAMP - a molecule that plays a role in autoimmunity and the formation of osteoclasts, or bone-absorbing cells. Ritchlin's team, in concert with URMC professor of Orthopedics Edward Schwarz, Ph.D., was the first ever to implicate DC-STAMP as a potential biomarker for any form of arthritis, igniting a blaze of similar research in the field.

Read More: Scientists Explore Why Some Psoriasis Patients Suffer Joint Damage

URMC Scientists Awarded $6.8 Million in Stem Cell Research Grants

Wednesday, March 18, 2009

Ten scientists from the University of Rochester Medical Center (URMC) have been awarded more than $6.8 million by the Empire State Stem Cell Board. The grants are for a wide range of research programs in the fields of neurological disorders, cancer, musculoskeletal diseases, the blood system, and efforts to understand the fundamental mechanics of stem cell biology.

New Bone Cement May Prevent Amputations

Tuesday, January 27, 2009

Image of Acinetobacter baumannii

Acinetobacter baumannii

Old technologies, bone cement and a well known antibiotic, may effectively fight an emerging infection in soldiers with compound bone fractures, according to a study published online today in the Journal of Orthopaedic Research. Not common in the United States and not potentially fatal, A. baumannii OM had been largely ignored until recently by physicians and the pharmaceutical industry, which focuses on life-threatening infections that affect millions, not hundreds. Then military outbreaks of the infection started among American soldiers returning from Iraq in 2003, with the number of A. baumannii OM infections seen in field hospitals, and in stateside facilities receiving injured soldiers, growing.

If you apply the findings from two small studies to the entire U.S. military, which is a leap, perhaps 2,000 soldiers come into field hospitals with compound fractures each year that become infected with A. baumannii, said Edward Schwarz, Ph.D., professor of Orthopaedics within the Center for Musculoskeletal Research at the University of Rochester Medical Center. About a third of them go on to get a staph infection after they reach the hospital, with about a third of those, perhaps 200 soldiers, suffering infectious complications that could cost them a limb. Studies already underway in our lab seek to clarify how the initial infections could gradually be replaced by catastrophic MRSA, and to prove that we can save limbs by putting an established antibiotic into bone cement for the first time.

Read More: New Bone Cement May Prevent Amputations

Researchers Detail How Aging Undermines Bone Healing

Thursday, January 15, 2009

Hip Fracture

Hip Fracture

Researchers have unraveled crucial details of how aging causes broken bones to heal slowly, or not at all, according to study results published online today in the Journal of Bone and Mineral Research. The research team also successfully conducted preclinical tests on a potential new class of treatments designed to rescue healing capability lost to aging.

Along with Dr. Regis O'Keefe, the study effort was led by Amish Naik, Chao Xie, Michael Zuscik, Edward Schwarz, Hani Awad, J. Edward Puzas, Brendan Boyce and Xinping Zhang within the Center for Musculoskeletal Research, as well as by Paul Kingsley within the Department of Pediatrics, at the Medical Center.

Read More: Researchers Detail How Aging Undermines Bone Healing

Researchers Discover How Rheumatoid Arthritis Causes Bone Loss

Friday, August 22, 2008

Researchers have discovered key details of how rheumatoid arthritis (RA) destroys bone, according to a study published in the Aug. 22 edition of the Journal of Biological Chemistry. The findings are already guiding attempts to design new drugs to reverse RA-related bone loss and may also address more common forms of osteoporosis with a few adjustments.

The significance of our study is that it identifies SMURF1 as the signaling partner through which TNF does damage in RA-related bone loss, said Lianping Xing, Ph.D., assistant professor of Pathology and Laboratory Medicine at the University of Rochester Medical Center. That has enabled researchers to begin designing small molecule drugs to shut down the action of SMURF1 and its relatives. Furthermore, since mice engineered to have less SMURF1 expression develop thicker bones, future drugs that shut down SMURF1 may be also useful against more common forms of osteoporosis simply by changing the dose. Of course, this is early-stage work with many obstacles ahead, but it is exciting nonetheless.

Along with Xing, the study was led by Ruolin Guo, Motozo Yamashita, Qian Zhang, Quan Zhou, Di Chen, David G. Reynolds, Hani Awad, Laura Yanoso, Lan Zhao, Edward Schwarz, Ying Zhang and Brendan Boyce within the Department of Pathology and Laboratory Medicine at University of Rochester.

Read More: Researchers Discover How Rheumatoid Arthritis Causes Bone Loss

Freeze-Dried Tendon Implants Prove Effective In Early Studies

Tuesday, January 8, 2008

Donated, freeze-dried tendon grafts loaded with gene therapy may soon offer effective repair of injured tendons, a goal that has eluded surgeons to date. According to study data published online today in the journal Molecular Therapy, a new graft technique may provide the first effective framework around which flexor tendon tissue can reorganize as it heals. Such tissue-engineering approaches could significantly improve repair of anterior cruciate ligaments and rotator cuffs as well, researchers said. The study was in a mouse model designed to resemble hard-to-repair flexor tendons in human hands, and the results should provide an impetus for future clinical trials.

Along with Dr. Hani Awad, study authors were Patrick Basile, M.D., Tulin Dadali, B.S., Justin Jacobson, M.D., Yasuhiko Nishio, Ph.D., M. Hicham Drissi, Ph.D., Howard Langstein, M.D., David Mitten, M.D., Regis J O'Keefe, M.D., Ph.D., and Edward Schwarz, Ph.D. from the University of Rochester Medical Center as well as Sys Hasslund, Michael Ulrich-Vinther and Kjeld Soballe from Aarhus University.

Read More: Freeze-Dried Tendon Implants Prove Effective In Early Studies

New Research Center to Translate Basic Science into Faster Bone Healing

Thursday, October 19, 2006

Image of the Knee Anatomy

Knee Anatomy

Researchers from the University of Rochester Medical Center have received a $7.8 million grant to speed the conversion of basic bone science into new treatments that prevent arthritis, improve fracture healing and save limbs. In one case, the research aims to confirm preliminary findings that a handful of patients, previously confined to wheelchairs by fractures that would not heal, were able to walk again after receiving a drug treatment that finally healed the bone.

One of the research areas, led by Edward M. Schwarz, Ph.D., professor of Orthopaedics, will test a new method for replacing large segments of bone that are too shattered to heal, or are simply missing, to prevent amputation. Bone loss is an urgent issue for car crash victims, bone cancer patients and troops injured in the Middle East. Dead bone donated from cadavers is currently used to replace large portions of missing bone in trauma patients.

Read More: New Research Center to Translate Basic Science into Faster Bone Healing

Study First To Show Potential of Light-Activated Gene Therapy for Knee Injuries

Monday, April 24, 2006

An early study has demonstrated for the first time that laser light can target gene therapy right up to the edge of damaged cartilage, while leaving nearby healthy tissue untouched, according to the April edition of the Journal of Bone and Joint Surgery. True repair of injuries to articular cartilage would enable millions of patients, currently consigned to worsening arthritis and joint replacement, to return to athletic exercise.

For years researchers have been trying to turn on gene therapy precisely within areas of damaged tissue without harming surrounding healthy tissue, said Edward M. Schwarz, Ph.D., professor of Orthopaedics within the Center for Musculoskeletal Research at the University of Rochester Medical Center. Our study shows that we can use our cellular defenses against, of all things, sunlight, to finally achieve safe, precise control over tissue repair.

Read More: Study First To Show Potential of Light-Activated Gene Therapy for Knee Injuries

Gene Therapy Converts Dead Bone Graft to New, Living Tissue

Thursday, February 17, 2005

Researchers have created a way to transform the dead bone of a transplanted skeletal graft into living tissue in an experiment involving mice. The advance, which uses gene therapy to stimulate the body into treating the foreign splint as living bone, is a promising development for the thousands of cancer and trauma patients each year who suffer with fragile and failing bone grafts.

The procedure, designed by a team led by Edward M. Schwarz, Ph.D., associate professor of orthopedics and of microbiology and immunology at the University of Rochester Medical Center, is intended to eventually aid people with various cancers or injuries whose treatment involves the replacement of large sections of bone.

Read More: Gene Therapy Converts Dead Bone Graft to New, Living Tissue

Researchers Warn of Escalation in Osteoporosis in Younger Women

Wednesday, April 9, 2003

Researchers at the University of Rochester Medical Center's Musculoskeletal Research Unit believe that by the year 2005, when the majority of the female baby boomer generation begins entering menopause, more women than ever thought possible will begin to suffer from osteoporosis at a younger age due to high levels of lead exposure in their childhood. The early data indicate that as much as 10 percent of low bone density, the primary symptom of the disease, may be explained by lead in the skeleton.

According to Edward Puzas, Ph.D., the Donald and Mary Clark Professor of Orthopaedics and director of the Musculoskeletal Research Unit, research studies over the past four decades have consistently found that high levels of lead in the bloodstream can have adverse effects on bone growth and development. He and his team are expanding on this finding by trying to uncover the mechanism that explains this phenomenon and its relationship to osteoporosis.

The key investigators on Dr. Puzas’ team are Drs. Regis J. O’Keefe, Edward M. Schwarz, Randy N. Rosier, Michael J. Zuscik and James Campbell.

Read More: Researchers Warn of Escalation in Osteoporosis in Younger Women

One-Two Molecular Punch At Root of Common Arthritis

Monday, March 17, 2003

Scientists have discovered in unprecedented detail the molecular forces that conspire to damage bone in patients with psoriatic arthritis, a disease that affects an estimated 500,000 to 1 million people in the United States. New findings show that people with the disease are awash in a type of cell that specializes in dissolving bone, and their joints have high amounts of a protein that persuades those cells to settle into joints, where most damage is done. Discovery of the one-two punch helps doctors understand why patients are responding so well to new medicines, and it opens the door to new remedies – all for a disease that had no approved treatment little more than a year ago. Among those leading the research effort is Edward Schwarz, Ph.D., of the Center for Musculoskeletal Research.

Read More: One-Two Molecular Punch At Root of Common Arthritis