Boxers or Briefs

Jeanne O'Brien MD
Assistant Professor of Urology and Male Infertility
University of Rochester Medical Center, Department of Urology
Male Infertility: Definitions

- Primary infertility: inability to achieve pregnancy > 1yr
- Secondary infertility: previously fertile, now unable >1 yr
- Azoospermia: no sperm in semen
- Oligospermia: reduced sperm concentration <20 million/ml
- Asthenospermia: reduced percent motility <50%
- Teratospermia: reduced percent normal forms <30%
- IVF: in vitro fertilization
- ICSI: intra-cytoplasmic sperm injection
Etiology of Male Infertility

- Varicocele (35-40%)
- Idiopathic (25%)
- Infection (~10%)
- Genetic (~10%)
- Endocrine (<5%)
- Immunologic (<5%)
- Obstruction (<5%)
- Cryptorchidism (<5%)

Greenberg et al, J Urology 1978
Male Infertility: Evaluation

Basic Evaluation:
- History (Questionnaire)
- Physical examination
- Standard semen analysis
- Hormonal evaluation

Optional Additional Evaluation:
- Genetic counseling and evaluation
- Specialized sperm function tests
- Imaging studies
- Testis biopsy
Male Infertility: History

- Duration of infertility
 - Previous treatments
 - Female-factor (anovulation, tubal obstruction)

- Sexual history
 - timing and mechanics of intercourse
 - lubricants (peanut oil, olive oil, egg whites ok)
History

- Childhood & Development
 - cryptorchidism
 - pubertal development
- Medical History
 - systemic illness
- Surgical History
 - abdominal, pelvic or scrotal surgery
History

- Infections
 - STDs, prostatitis, orchitis (post-pubertal mumps)

- Environmental gonadotoxins
 - smoking
 - ETOH
 - radiation, chemicals, pesticides, chemotherapy
 - Heat exposure (short order cook, tanning booths, hot tub/bath)

- Medications (steroids, herbal supplements, hair growth products)
History: Medications

- **Hormonal (pre-testicular)**
 - e.g. androgens, anti-androgens, estrogens

- **Gonadotoxic (testicular)**
 - e.g. chemotherapy/alkylating agents

- **Sperm-toxic (post-testicular)**
 - e.g. Ca-channel blockers
Anatomy of the male reproductive tract
Physical Examination

- **General**
 - Body habitus (muscle mass), hair distribution
 - Evidence of normal virilization
- **CNS**
 - visual fields (r/o pituitary adenoma)
 - sense of smell (Kallmann’s Syndrome - HypoHypo)
- **Abdomen/Pelvis**
 - Surgical scars
Physical Examination

Genital/Prostate

- **Penis:**
 - length (normal development)
 - position of urethral meatus (deposition of semen)

- **Prostate:**
 - size
 - firmness
 - tenderness
 - presence of cysts (ejaculatory duct)
Physical Examination

Testis:

- position (cryptorchid?)
- volume (normal ~15-25ml)*
- firmness (normal = firm)

*Note: Normally, >70% of testis volume is from germ cells alone. Therefore, a soft and/or small testis is indicative of abnormal spermatogenesis.
Physical Examination

Testis:
- Seminiferous tubules
 - Germ cells
 - Sertoli cells
- Interstitium
 - Leydig cells
 - Macrophages, endothelial cells

Spermatogenesis
- ~74 days in humans (epididymal transit ~15 days)

Clinical correlate: Need to wait 3 months after any intervention (medical or surgical) to see a change in semen quality
Physical Examination

Epididymis:
- fullness
- cystic changes

Vas deferens:
- congenital absence of vas (CAVD)
 Cystic fibrosis mutations
 Woolfian duct anomalies
Overview of sexual differentiation in the male
(modified from Male Reproductive Biology, eds Lipshultz, Howards)
Varicocele: Diagnosis

- **Definition:** dilated testicular veins due to reflux of blood
- **Established by physical examination (in a warm room)**
 - Grade 1: palpable with valsala only
 - Grade 2: palpable (> 1cm cord) without valsala
 - Grade 3: large, visible varicocele
- **Other modalities used to diagnose a sub-clinical varicocele:** ultrasound, venography, doppler stethoscope
- **However, the subclinical varicocele does not require repair!**

WHO Fertil Steril 1985
Howards Fertil Steril 1992
Varicocele

Etiology: probably multi-factorial

The absence or incompetence of venous valves resulting in reflux of venous blood

The anatomic differences (length, insertion) between the left and right internal spermatic vein.

Increased hydrostatic pressure

Varicocele: Prevalence

- in the general male population ~ 15%
- in men with primary infertility ~ 35%
- in men with secondary infertility ~ 50-80%
- bilateral varicoceles ~ 15-50%
- isolated right sided varicocele rare

Clarke *JAMA* 1966
Varicocele-Induced Pathology

Testis atrophy
- men with a left varicocele have a relative left testicular atrophy

Testis histology (non-specific)
- Hypospermatogenes
- sloughing of germ cells
- Sertoli cell vacuoles
- Leydig cell hyperplasia

Leydig cell dysfunction
- Lower serum Testosterone (T) levels
- Blunted T rise in response to LH stimulation

Testicular Pain
- Mechanism unknown
Semen Analysis

<table>
<thead>
<tr>
<th>Semen Parameters</th>
<th>Normal range (WHO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>(1.5 - 5 mL)</td>
</tr>
<tr>
<td>Sperm density</td>
<td>(>20 million/mL)</td>
</tr>
<tr>
<td>Sperm motility</td>
<td>(>50%)</td>
</tr>
<tr>
<td>Sperm morphology</td>
<td>(>30% normal forms)</td>
</tr>
<tr>
<td>Leukocyte density</td>
<td>(<1 million/mL)</td>
</tr>
</tbody>
</table>

- Need at least 2 S/As (because parameters are highly variable)
- S/A is not a measure of fertility but fertility potential
In Vitro Maturation of Germ Cells

Spermatogenesis: orderly differentiation of immature germ cells to mature spermatozoa

1. Mitotic phase
 - quantitative phase
2. Meiotic phase
 - generation of haploid spermatids
3. Spermiogenesis
 - differentiation of spermatid
In Vitro Maturation of Germ Cells

Two separate events observed in vitro

1. Spermatid differentiation (round to elongated)

2. Meiotic progression (spermatocyte to spermatid)

In Vitro Maturation of Germ Cells:

Assessment of in vitro maturation depends on serial sampling and identification of most mature germ cell by light microscopy.

- Round spermatid
- Elongating spermatid
- Elongated spermatid
Human Ejaculate: Morphologic Abnormalities

Sperm head defects

Sperm mid-piece defects

Sperm tail defects
Semen Analysis: Critical Review

Guzick et al, *NEJM* 2001

Evaluated 765 infertile men and 696 fertile controls to determine semen parameter thresholds that best discriminate between fertile and infertile men.

Infertile couples
- part of a randomized Assisted Reproduction trial.
- female partners had a normal, complete evaluation (poorly controlled in prior studies).

Fertile controls
- recruited from prenatal classes.
- wives were pregnant or had delivered in the previous 2 yrs
Guzick et al, *NEJM* 2001

Methods:

2 semen samples were collected from each patient. Technicians from the 9 centers were trained at a central site. Stained sperm smears were sent to a central site for strict morphology assessment (by a single technician).

Statistical Analysis:

Classification-and-regression-tree (CART) analysis was used to define thresholds for classifying infertility. Receiver-operating-characteristic (ROC) curves were used to test the discriminatory power of each variable.
Semen Analysis: Critical Review

Guzick et al, *NEJM* 2001

Results:

Considerable overlap between sperm measurements from fertile and infertile men noted.

The odds of infertility increased with an increasing number of abnormal sperm measurements.

% normal morphology has the greatest (albeit poor) discriminatory power.

Area under ROC curve for normal morphology (0.66) is greater than for sperm concentration (0.60) & motility (0.59).
<table>
<thead>
<tr>
<th>Variable</th>
<th>Concentration (x10^6/ml)</th>
<th>Motility (%)</th>
<th>Morphology (% normal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertile range</td>
<td>>48.0</td>
<td>>63</td>
<td>>12</td>
</tr>
<tr>
<td>Indeterminate range</td>
<td>13.5-48</td>
<td>32-63</td>
<td>9-12</td>
</tr>
<tr>
<td>Subfertile range</td>
<td><13.5</td>
<td><32</td>
<td><9</td>
</tr>
</tbody>
</table>

Guzick et al, *NEJM* 2001

Semen Analysis: Critical Review
Semen Analysis: Critical Review

Guzick et al, *NEJM* 2001

Conclusions:

None of the semen parameters is a powerful discriminator. Using three categories is more clinically relevant.

- Fertile
- Indeterminate
- Subfertile

vs.

--Fertile

--Infertile

There is a need for identifying of new markers of male infertility.
FSH, Testosterone and Testicular Function

FSH

Sertoli Cell

Testosterone

Spermatogenesis
What is “Normal FSH”

- Given the negative feedback on FSH, a “high” FSH can be indicative of testicular failure.

- What is “normal”?

- In our laboratory system, the normal range for FSH in the post pubescent male is defined as 1.4-18.1 mIU/ml.

- Nearly all male patients have “normal” FSH.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age</td>
<td>35</td>
</tr>
<tr>
<td>Mean Motility</td>
<td>33%</td>
</tr>
<tr>
<td>Mean Morphology</td>
<td>14%</td>
</tr>
<tr>
<td>Mean Volume</td>
<td>3 ml</td>
</tr>
<tr>
<td>Mean Sperm Conc.</td>
<td>412 (77%)</td>
</tr>
<tr>
<td>Mean FSH</td>
<td>6.6 miU/ml</td>
</tr>
<tr>
<td>Mean Test/FSH</td>
<td>105</td>
</tr>
<tr>
<td>Normal Volume</td>
<td>412 (77%)</td>
</tr>
<tr>
<td>Abnormal Volume</td>
<td>126 (23%)</td>
</tr>
<tr>
<td>Normal Motility</td>
<td>120 (22%)</td>
</tr>
<tr>
<td>Abnormal Motility</td>
<td>418 (78%)</td>
</tr>
<tr>
<td>Normal Morphology</td>
<td>436 (81%)</td>
</tr>
<tr>
<td>Abnormal Morphology</td>
<td>102 (19%)</td>
</tr>
<tr>
<td>Azoospermia</td>
<td>63 (12%)</td>
</tr>
<tr>
<td>Oligospermia</td>
<td>192 (36%)</td>
</tr>
<tr>
<td>Normal Sperm Concentration</td>
<td>283 (53%)</td>
</tr>
</tbody>
</table>
Conclusion

- FSH level > 4.5 miU/ml showed statistically significant associations with abnormal sperm motility, concentration, and morphology (p<0.0001).

Semen parameters were more likely to be abnormal with decreasing testosterone/FSH ratios.

- Redefining normal FSH in infertile men would be valuable.

(O’Brien et al, AUA Chicago 2009)
Why examine sperm DNA integrity?

A need for better markers of male fertility potential

Advances in ART (IVF/ICSI) have led us to be more concerned about sperm DNA integrity

- because we have removed the natural barriers to fertilization
- Reports indicate increased birth defects with IVF/ICSI
- To understand the causes of IVF/ICSI failures

To better understand the basic biology of sperm function
DNA, fertilization, and pregnancy

- High levels of sperm DNA damage probably do not affect *fertilization or early embryo development*

- May have an effect on *pregnancy rates* with advanced reproductive technologies (IVF and IVF/ICSI) and *recurrent pregnancy loss* with spontaneous conception

Sperm DNA integrity important here – embryonic genome expressed

2 pronuclei, fertilization

2 cell embryo

4 cell embryo

8 cell embryo

blastocyst
Human Sperm DNA: Characteristics

Highly compacted and packaged with protamines
Protamines held together by disulfide bonds
Exhibits high degree of integrity?
- In fact, 10-15% of sperm have DNA damage (in fertile men)

Biochemically inert?
- In fact, sperm DNA can be modified by endogenous endonucleases
 Lavitrano et al, *Cell* 1989
 Perry et al, *Science* 1999
 Evenson et al, *Hum Reprod* 1999
Sperm DNA Packaging

- Binding of protamines (P1 and P2) to DNA replacing all other protein (histones)
- Formation of toroidal structures (each containing about 50 Kbp of DNA)
- Each sperm contains about 50,000 toroidal structures

Sperm DNA Packaging

Toroidal structures (each containing about 50 Kbp of DNA) seen by EM

Sperm DNA Packaging: Evolution During Epididymal Transit

Progressive DNA compaction through cross-linking of protamine –SH groups (both inter- and intra-molecular)

\[-\text{SH} + \text{SH} \rightarrow \text{S}--\text{S}\-\]

Kosower et al, *J Androl* 1992
Human Sperm DNA Damage: Etiology

Intra-Testicular Causes

Protamine (P1,P2) deficiency is an important cause of sperm DNA damage (found in ~5% of infertile men) and mutations in the protamine gene cluster have been described.

Topoisomerase II and transition protein abnormalities may be a cause of sperm DNA damage (required for repair of induced DNA breaks during super-coiling)

Cellular apoptosis

Human Sperm DNA Damage: Etiology

Post-Testicular or External Causes

Febrile Illness may be a cause of sperm DNA damage
Evenson et al, *J Androl* 2000

Semen oxidants (or reactive oxygen species - ROS) can induce sperm DNA damage
- ROS cause sperm DNA oxidation and fragmentation in vitro
- Residual sperm cytoplasm (a cytologic feature associated with ROS production) correlates with sperm DNA damage
 Fischer et al, *Urology* 2003
Potential causes of DNA fragmentation

- Varicoceles \((Saleh, 2003; Fischer, 2003; Zini, 2000)\)
- Chemotherapy and radiation \((Chatterjee, 2000; Deane, 2004; Kobayashi, 2001)\)
- Cigarette smoking \((Mak, 2000; Kunzle, 2003; Potts, 1999, Sun, 1993)\)
- Apoptosis \((Baccetti, 1996; Sakkas, 2003)\)
- Protamine deficiency \((Cho, 2003)\)
Antisperm Antibodies (ASAs)

5-10% of male infertility attributed to ASAs

? causative factor in male infertility

? association with motility

? association with sperm-egg binding
Antisperm Antibodies: Etiology & Incidence

In women:
- **Incidence:** 9% of infertile vs 4% of fertile women
- **Etiology:** chronic exposure to sperm antigens?

In men:
- **Incidence:** 10% of infertile vs 3% of fertile men
- **Etiology:** injury to blood-testis barrier?
 - Obstruction (post-vasectomy reversal)
 - Infection (orchitis)
 - Trauma/Torsion
 - Varicocele/cryptorchidism
Antisperm Antibodies: Testing

Indications:
- motility, sperm agglutination

Available tests:
- **Direct:** immunobead or MAR (mixed antiglobulin rxn)
- **Indirect:** SAT, ELISA, MAR
- Others (flow cytometry, radio-labeled)

Direct (on sperm) is more valid than indirect (serum, mucus, seminal plasma) ASA test. Therefore, must be cautious about studies reporting indirect ASA test results.
Hypo-Osmotic Swelling Test (HOST)

Jeyendran et al. 1984,

- Curling of tail in ‘viable’ and straight tail in ‘dead’ sperm
- **Principle:** that ‘viable’ sperm have functionally intact plasma membrane
- Poor viability predicts poor IVF success
- May use to select ‘viable’ testicular (often immotile) sperm
Hormonal Evaluation

Indication:

Abnormal semen parameters

Most useful in azoospermic men (to help differentiate between obstruction and primary T failure)

- FSH
- LH
- Testosterone
- Prolactin
- (Estradiol)
Azoospermia: Normal semen volume

FSH & T-vol

n FSH, n T-vol

T-biopsy

TESE/ICSI

Norm

Abn

Hormonal

Rx

reconstruction

TESE/ICSI
Genetic Evaluation

Karyotype analysis
- Abnormal karyotype in ~3-5% of infertile men
- Klinefelter’s (47 XXY); 1-2% of infertile men

Y- chromosome micro-deletions
- 7-10% of infertile men vs. ~2% of fertile men

Cystic Fibrosis (CF) gene mutations
- Carrier frequency;
 - ~80% in CBAVD vs. ~30% of infertile vs. ~4% fertile men

Genetic evaluation is recommended in all infertile men with severe semen parameters in order to assess and prevent possible iatrogenic transmission of genetic mutations.
Non-Obstructive Azoosperma (NOA):
Etiology

- Idiopathic
- Genetic (chromosomal abn., Y-microdeletion)
- Cryptorchidism
- Iatrogenic (devascularization injury)
- Infectious (post-pubertal mumps orchitis)
- Testicular torsion
- Chemotherapy/radiotherapy-induced
- Medication (hormonal)-induced
- Hormonal deficiency (Kallmann’s syndrome or IHH)
- Anejaculation
Non-Obstructive Azoospermia (NOA)

- **Hypospermatogenesis**
 (0-6 mature spermatids/tubule)

- **Maturation arrest**
 (absence of mature spermatids)

- **Sertoli-cell only**
Non-Obstructive Azoospermia (NOA):
Management Options

- Sperm retrieval from the testis (micro-TESE)
- Genetic counseling for risk to offspring
- Donor sperm, adoption
- TESE: testicular sperm extraction
Micro-Testicular Dissection

- Small areas of spermatogenesis may be distinguished from areas of Sertoli cell-only by microscopic examination
- Microdissection enhances sperm yield and reduces volume of tissue excised

Schlegel et al, *Hum Reprod* 1999
Obstructive Azoospermia (OA): Clinical features

- Normal testicular volume (>15 cc)
- Normal serum levels of FSH, LH, testosterone
- Normal or reduced semen volume (obstructive)
- CBAVD - congenital bilateral absence of the vas
- Normal testicular biopsy (normal spermatogenesis)
Obstructive Azoospermia (OA): Etiology

- Idiopathic OA
- Iatrogenic OA (hernia repair, orchidopexy)
- Infectious (gonorrhea, chlamydia)
- Traumatic
- Genetic - CF with CBAVD or variant thereof
Obstructive Azoospermia (OA): Management Options

- Reconstructive surgery (vasal, epididymal)
- Resection of ejaculatory duct (cyst)
- Sperm retrieval from site proximal to obstruction
- Genetic counseling for CF patients
Male infertility is multifactorial

Hormones, physiology, environment, anatomy and DNA all play a role

It is the delicate balance of all of these factors that must be weighed in order to optimize male fertility

Every evaluation is different and every treatment strategy is geared toward the individual patient and circumstance and must always take into account the female partner
Conclusion

- So, boxers vs. briefs?
- Boxers every time