Developmental Dysplasia of the Hip: Beyond the Clinical Diagnosis

Tanya L. Tivorsak, B.A., Kalpesh Patel, M.D., Kimberly Carney, M.D., Nina B. Klionsky, M.D., Gary B. Tebor, M.D., Johnny U.V. Monu, M.D.

University of Rochester School of Medicine, Departments of Imaging Sciences and Orthopedics, Rochester, NY, United States
Objectives

- Review the spectrum of DDH
- Learn the current imaging criteria
- What the surgeon needs to know from the images
- Compare DDH versus hip dysplasia/dislocation in congenital disorders
- Current management options
Introduction
Definition

- Formerly known as congenital dislocation of the hip joint – but term changed since DDH is a developmental process and is not always detectable at birth.

- The term *dysplasia* tends to be used for hips with a positive Ortolani sign (hip that can be dislocated or a dislocated hip that is able to be relocated).

- The term *dislocation* tends to be used for hips with a negative Ortolani sign (unreducible hip).
Wide Spectrum of Conditions

(1) Primary dysplasia without instability
(2) Instability (subluxable and dislocatable)
(3) Subluxed
(4) Dislocated
Teratologic hip conditions are considered a different entity from DDH. They arise earlier in fetal development and are associated with other malformations.

However, there is conflicting literature in whether teratologic hips are part of the DDH spectrum or not.
Etiology

- Multifactorial – genetic + intrauterine environmental factors

- Usually unilateral (80% of the time), occurs more frequently in the left hip – since the left hip of the fetus usually lies posteriorly against the mother’s L-spine, limiting abduction
Risk Factors

- Native-Americans
- Family history
- Females
- Breech delivery
- Oligohydramnios
- First born
- Persistent hip asymmetry
Embryology – Periods of Risk for Hip Dysplasia

After last menstrual period in fetal development:

- **12 weeks** – lower limb rotates medially after hip joint arises at 7-11 wks – dysplasias are teratologic

- **18 weeks** – hip muscle development – dysplasias due to neuromuscular disorders

- Between perinatal period and 1st few weeks of birth – femoral head grows faster than acetabulum, minimal coverage of head – dysplasias due to mechanical factors - oligohydramnios, breech position

- Postnatal period – labral growth more rapid (more coverage of femoral head) – dysplasias tend to be due to functional factors instead – increased estrogens causing ligamentous laxity, swaddling
Natural History

- Loss of tight fit between acetabulum and femoral head in the hip → may result in dysplasia or dislocation

- Findings – shallow acetabulum with femoral anteversion
Natural History

Normal Hip – labrum is everted

Subluxed Hip – some inversion of labrum

Dislocated Hip – inversion of labrum, which becomes hypertrophied → called “limbus,” which may prevent hip reduction

L = Labrum, C = Capsule
Complications – If Untreated

- Pain
- Early osteoarthritis
- Limb length discrepancy
- Decreased agility
- Abnormal gait/limping
Clinical Diagnosis
Clinical Diagnosis

- Ortolani’s (reduction) and Barlow’s (dislocation) maneuver

- Shortened leg with limited abduction when flexed (6-8 wks of age)

- Asymmetry of thigh folds (rare)

- Galeazzi’s sign (6-8 wks) - uneven knee levels when the supine infant's feet are placed together on the exam table with the hips/knees flexed usually seen in unilateral DDH.
Clinical Diagnosis

- If hip dysplasia or dislocation is suspected, the patient should be examined to rule out any underlying medical or neuromuscular disorder.
Recommendations for screening

<table>
<thead>
<tr>
<th>Condition</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal exam</td>
<td>Refer to orthopedist</td>
</tr>
<tr>
<td>Inconclusive exam (i.e. hip click that seems benign/uncertain)</td>
<td>Do follow-up exam in 2 wks – if the exam is positive or still inconclusive, refer to orthopedist and recommend US</td>
</tr>
<tr>
<td>Negative exam + risk factors</td>
<td>Recommend imaging at 4-6 wks</td>
</tr>
</tbody>
</table>
Imaging in DDH
Imaging Modalities in DDH

- **Ultrasound** – for screening, useful in neonatal period
- **Radiographs** – useful after the femoral head starts to ossify (3-4 months of age)
- **MRI** – evaluation of difficult cases and complications of DDH
- **CT** – most commonly used post-treatment to view reduction
Ultrasonography

- Dynamic Standard Minimum Examination –

 1. **Static** (Graf method) assessment in coronal plane with the hip at rest, based on shape and depth of acetabulum by morphology and angular measurements

 2. **Dynamic** (Harcke method) assessment in transverse plane with the hip under stress
To get this view – the transducer is placed in coronal orientation over the lateral aspect of the hip, with the infant supine or in the lateral decubitus position.
Normal Graf Measurements

- \(\alpha \) angle (normal = \(> 60^\circ \)) indicates angle of bony acetabulum.

- \(\beta \) angle (normal = \(< 55^\circ \)), indicates angle of cartilaginous femoral head coverage.

- Femoral head coverage by acetabulum – normal radio of \(d/D \) is \(> 50\% \).
Dynamic

Axial/transverse flex stress view on US: Femoral head ossification visualized (open arrow) with ischium (thin arrow). Compare anatomy with CT (similar positioning). This hip was nonsubluxable. If the hip subluxes posteriorly on this view, it is abnormal.

To get this view: Place U/S transducer over femoral head transverse to pelvis, flex hip, and exert posterior stress on knee.
Graf vs Harcke Classification

- **Harcke's methods** are more equivocal for evaluation since they depend on hip stability tests – many DDH cases may not yield positive results in Harcke’s test (i.e. not subluxable).

- **Graf's classification** gives a better indication of the normal and dysplastic conditions.
U/S Graf classification**

<table>
<thead>
<tr>
<th>Class</th>
<th>Features</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - mature</td>
<td>Good bony modeling, α angle > 60°</td>
<td>None</td>
</tr>
<tr>
<td>Ila(+) - physiologic immaturity</td>
<td>Satisfactory bony modeling, α angle = 50° - 59°</td>
<td>Follow-up, no Tx</td>
</tr>
</tbody>
</table>
| Ila(-) – maturational deficit < 3 mo old | α angle = 50° - 59°, β Angle < 55°
\cdot Deficient bony modeling
\cdot Cartilaginous acetabular roof is still broad and covers femoral head | Pavlik harness or if borderline - just follow-up |
| IIb – delayed osseous development > 3 mo | -------------------Same as Ila(-)--------------------------- | Pavlik harness |
| IIc – critical zone hip | α angle 43°-49°, β Angle < 77° in IIc, > 77° in IId
\cdot Deficient/highly deficient bony modeling
\cdot Cartilaginous acetabular roof is still broad | Pavlik harness |
| IIId – decentering hip | α angle < 43°, β Angle > 77°
\cdot Poor bony modeling, flattened bony promontory
\cdot Displaced cartilage roof triangle | Pavlik (> 95% successful in IIa/b, 50% successful in IV), possible reduction |

**Classification does not take into account the position of the femoral head.

(Adapted from Graf, 1987)
Graf IIa – 3 week old female with FHx of DDH

Femoral head coverage by acetabulum ~ 50%

IIa – Physiologic Immaturity

\[\beta > 55° \]

\[\alpha 50°-60° \]
Graf IIc – 3 week old with hip click

Lateral and superior displacement of femoral head

\[\beta \quad 61° - 65° \]

\[\alpha \quad 41° - 46° \]

< 50% coverage of femoral head by acetabulum
Graf III: 2 day-old female with high risk FHx (mother, sister with severe hip dysplasia) and negative Ortolani and Barlow’s tests (dislocated hip unable to be reduced)

Pulvinar (P) = fibrofatty tissue between acetabulum and femoral head, more evident in DDH due to femoral head not pressing against it in the acetabulum.

![Cartilaginous acetabular roof superiorly displaced](image)

- α: 37°-49°
- β: 68°-80°

30% coverage of left femoral head by acetabulum
Pelvic Radiographs

- Views - supine frontal or standing frontal (older children)

USEFUL FOR:

- After 3-6 mo of age – femoral head ossification visible
- Evaluating abnormalities of lower L-spine, sacrum, proximal femur
- Assessment of hip flexion in Pavlik harness placement in infants
- Maintenance of reduction
- Track resolution of acetabular dysplasia
- Monitor for AVN
Reliable Radiographic Parameters

1. Acetabular Angle (useful for assessment of resolution)
2. Femoral head position with reference to Hilgenreiner’s and Perkin’s (H and P) lines
3. Shenton’s arc
4. Center-edge angle (Wiberg and Ogata)

These parameters are useful to the orthopedic surgeon in evaluating DDH.
Acetabular Angle

- Angle between Hilgenreiner’s line (line through triradiate cartilages) and line through the superior acetabular roof

Normal pelvis radiograph in 10 mo old male
Acetabular Angle – Normal Values

- **< Age 2**: 17° - 30°

- **> Age 2**: 18° ± 4°

- Angle decreases with age due to modeling of the acetabulum by the femoral head and/or bone maturation along the acetabular roof.
Femoral Head Position and Shenton’s Arc

1) Normal ossified capital femoral epiphysis in lower inner quadrant (H- and P-lines)

2) Shenton’s arc

Normal Hip Radiograph

P line (Perkins)
Vertical, tangent to lateral rim of acetabulum, perpendicular to H line

H line
Center-Edge (CE) Angle of Wiberg

- Line to most lateral point of acetabular roof
- Line parallel to longitudinal body axis
- Femoral head center

Quantitates lateral coverage of femoral head by the acetabulum
Center-edge (CE) angle of Wiberg

- Normal values:
 - > 19° in 5-8 years
 - > 25° in 9-12 years
 - > 26°- 30° in 13-20 years

- More reliable in children over age 5 since femoral head center is difficult to define in children under age 5
Refined CE Angle of Ogata

Similar to CE angle of Wiberg except the lateral line is tangent to the lateral point of bony condensation

Image modified from Omeroglu et al., 2002
Comparison of CE Angles in DDH vs. Normal Hip

DDH

Normal Hip

Line for CE angle of Ogata = -5° - 0°

Line for CE angle of Wiberg = 10°

Femoral head center

Lateral pt of bony condensation

Wiberg

Ogata

Wiberg and Ogata
Refined CE Angle of Ogata

Problems with CE angle of Wiberg:

- May overestimate lateral femoral head coverage in severe cases.

- Subchondral bony condensation in acetabular roof represents magnitude of compressive stresses, not lateral point of acetabulum.

- A poor acetabular cover has shown to be present in hips with a normal CE angle of Wiberg but in which the lateral point of bony condensation is short of the lateral rim of acetabular roof.

- Refined CE angle of Ogata addresses these problems.
Radiograph: Late-diagnosed DDH in a 7 year-old female from Mexico
Radiograph: Late-diagnosed DDH in a 7 year-old female from Mexico
Arthrogram – 6 month-old female with left DDH

Left hip: Femur appears laterally displaced.

Left hip: Medial pooling of contrast in the joint space. The femoral head is subluxed superiorly laterally.
CT

- Most commonly used to document reduction if child is placed in spica cast.

- Can be performed preoperatively in the older child in severe cases to help the surgeon in planning treatment procedures.

- Protocol = 0.75 – 1.5 mm collimation and 0.5 – 1.0 mm reconstructions, scan only through the hip joint.

- 3-D reconstruction for better hip analysis in complex cases and for preoperative planning.
CT reconstruction: Right hip dysplasia s/p varus osteotomy of proximal femur shaft

Flattened femoral head that is laterally subluxed, dysplastic and shallow acetabulum.
MRI

- Evaluation of difficult cases – if acetabular formation is inconclusive and subluxation still remains after conservative treatment.

- Evaluation of newborns with cartilaginous femoral heads (not ossified yet) in difficult cases.

- Evaluate treatment complications (i.e. AVN).
11 month old male with DDH

Axial Gradient Echo:

Left hip: High-riding femoral head (1) abuts posterior lip of acetabulum (arrow) and (2) is rotated and displaced posterior laterally.

Right hip: Femoral head rotated and displaced anterior laterally.
11 month-old male with DDH

T2 FSE Coronal Left hip: Femoral head abutting acetabulum (thin arrow), with deformed acetabular fossa (open arrow).
Follow-up of 10 month old male with left hip dislocation, s/p closed reduction with spica cast

Coronal T2 Fat Sat Left Hip: Femoral head (thin arrow) located anteriormedially in shallow acetabulum (open arrow).
11 month old with DDH

Small dysplastic femoral head is posteriorly subluxed (arrow). The acetabulum is shallow and dysplastic (open arrow).
Hip Dysplasia/Dislocation in Congenital Disorders
Several congenital disorders may prompt further evaluation of the hips beyond the routine clinical exam for early diagnosis and management of hip dysplasia.

Hip dysplasia/dislocation present in congenital disorders tend to be teratologic (not in the spectrum of DDH).
19 year-old female with pelvis deformity including bilateral hip dislocation with pseudoacetabulum formation at the iliac bones and absent coccyx, sacrum, and lower two lumbar vertebrae.
Morquio’s Syndrome (mucopolysaccharidoses)

8 year-old female with bilateral high dislocated hips with acetabular dysplasia.
5 yo male with bilateral DDH and Hx of absent ACL/PCL (Larsen’s syndrome?)

Left Hip: Superior and posterior dislocation of femur (thin arrow), head not situated in acetabulum, formation of pseudoacetabulum (open arrow).
5 yo male with bilateral DDH and Hx of absent ACL/PCL (Larsen’s syndrome?)

Right hip: Lateral and superior dislocation (thin arrows) with formation of pseudoacetabulum (open arrow).
5 yo male with bilateral DDH and Hx of absent ACL/PCL (Larsen’s syndrome?)

Pseudoacetabulum formation
Other Congenital Abnormalities with Hip Dysplasia/Dislocation

- Cerebral Palsy
- Arthrogryposis multiplex
- Congenital Myopathy
- Ehlers-Danlos
Differential Diagnosis of DDH

- Various teratologic hip disorders
- Proximal femoral focal deficiency (PFFD)
- Septic hip
Current Management
Infants with SUBLUXABLE Hips

- **Subluxable hip** – hip can move but cannot be completely dislocated (no clunk on exam)

- May just follow with weekly ultrasound for 3 wks, if dysplasia persists – initiate Pavlik harness
Infants with DISLOCATED or SUBLUXED Hips

STEPS:

1) Apply Pavlik harness after clinical diagnosis, then obtain U/S.

2) Then do clinical and U/S follow-up weekly.

3) At 3 wks, if the hip is:
 - Reduced – Continue with harness until normal exam, U/S, and x-ray. Follow-up at 4-6 wks.
 - Questionable (unstable but reducible): Do fixed abduction brace for 3 wks. Afterwards, if the hip is stable, then do Pavlik harness. If it is unstable, follow “Not-Reduced” protocol below.
 - Not Reduced – Closed reduction + arthrogram, possible open reduction with cast.
Treatment in Older Children

- **6 – 18 months of age**: Surgical reduction if Pavlik and/or closed reduction have failed.

- **18 months and older**: Open reduction, femoral or iliac osteotomies.

- Osteotomies re-position the acetabular roof for improved coverage of the femoral head to encourage proper development of the hip joint.
Example of Osteotomies: DDH in 7 year-old female

Post-op – Bilateral pelvic osteotomies (arrows)

2nd surgery, post-op: Revised left pelvic osteotomy, (thin arrow), new femoral osteotomy (open arrow)
8 year-old male with history of previously treated DDH. The femoral head is wide and flattened with a short neck, consistent with avascular necrosis.
Conclusion

- DDH is a wide spectrum of conditions that range from primary dysplasia without instability to severe, unreducible dislocation with a multifactorial etiology.

- Evaluation: Clinical diagnosis, ultrasound, and radiographic evaluation are primary – imaging features helpful to the orthopedic surgeon are: alpha angle and femoral head position on US; acetabular/CE angles, head position, and Shenton’s arc on radiographs.

- CT is helpful for pre-op evaluation in older children or to document reduction; MRI helpful for difficult cases and treatment complications.

- Hip dysplasia/dislocation may be associated with various congenital disorders – usually contain teratologic hips.

- Treatment (hip relocation) includes Pavlik harness, fixed abduction brace, closed reduction, and open reduction with cast (osteotomies).
References

References