Research Programs

Bone Biology and Disease:

Our Bone Biology and Disease program is focused on defining the signals and mechanisms important for bone formation and resorption in both normal and pathological situations (osteoporosis and osteopetrosis). While it is known that osteoblasts differentiate and localize the formation of new bone to regions where osteoclastic bone resorption has occurred, the signals responsible for this coupling effect are unknown and have become a focus of this research program. Another major research area in this program is centered on the pathophysiology of bone erosions in inflammatory arthritis, wear debris-induced osteolysis, which is responsible for aseptic loosening of orthopaedic implants, and bone infections, or osteomyelitis. We have also made major advances in understanding how environmental hazards/toxins, such as lead and smoke, can predispose individuals to bone loss or osteoporosis.

Image of Annals of the Rheumatic Diseases

Program Faculty:  Cheryl Ackert-Bicknell, Brendan Boyce, Laura Calvi, Roman Eliseev, J. Edward Puzas, Edward M. Schwarz, Lianping Xing

Cartilage Biology and Arthritis:

Our Cartilage Biology and Arthritis program investigates the mechanisms of chondrogenesis, chondrocyte maturation, and chondrocyte metabolism during normal skeletal growth and cartilage disease. A major emphasis of this program is geared toward using genetic and injury induced animal models to uncover the pathologic processes associated with inflammatory and non-inflammatory arthritis including: rheumatoid arthritis, psoriatic arthritis, lupus arthritis, and osteoarthritis. Our belief is that combining laboratory research with clinical investigation is the most effective way to bring better treatments to people affected by all types of arthritic disease.

Image of JBMR and Arthritis & Rheumatism journals

Program Faculty:  Brendan Boyce, John Elfar, Jennifer Jonason, Amy Lerner, Robert Mooney,Christopher Ritchlin, Randy Rosier, Edward M. Schwarz, Lianping Xing, Xinping Zhang, Michael J. Zuscik

Musculoskeletal Stem Cell Biology:     

Our Musculoskeletal Stem Cell Biology program covers broad interests in the identification, self-renewal, maintenance, cell fate determination, and differentiation of several types of musculoskeletal stem cells. These include mesenchymal stem cells that give rise to cartilage, bone, fat, and connective tissues, hematopoietic stem cells that generate all blood cells and are housed in the bone marrow, and skeletal muscle stem cells that are required for skeletal muscle growth and regeneration. We study these stem cells both in the context of embryonic development and adult musculoskeletal repair and tissue engineering. We are attempting to gain a broader understanding of the molecular circuits that regulate stem cell self-renewal and differentiation so that we may develop strategies to manipulate musculoskeletal stem cells for treatments of congenital skeletal dysplasias, age-related skeletal diseases (osteoporosis and osteoarthritis), bone fractures, myelodysplasias, sarcopenia, neuromuscular degenerative disorders, and skeletal and hematopoietic related cancers

Image of Journal of Orthopaedic Research

Program Faculty:  Cheryl Ackert-Bicknell, Hani Awad, Danielle Benoit, Brendan Boyce, Laura Calvi, Joe Chakkalakal, Roman Eliseev, Jennifer Jonason, Alayna Loiselle, J. Edward Puzas, Randy Rosier, Edward M. Schwarz, Lianping Xing, Xinping Zhang, Michael J. Zuscik

Musculoskeletal Repair and Maintenance:

In our Musculoskeletal Repair program, we perform translational studies designed to help understand common problems encountered by physicians when treating a wide array of musculoskeletal related injuries. Animal models of facture healing, structural bone grafting, distraction osteogenesis, skeletal muscle degeneration, skeletal muscle atrophy, and tendon injury have been developed to study repair mechanisms. Current applications of our animal models include: identifying mechanisms for enhanced musculoskeletal repair, devising cell-based tissue engineering, pharmacological and gene therapy approaches to enhance bone, tendon and skeletal muscle repair, regeneration or maintenance, and identifying cell-signaling pathways that control mesenchymal and skeletal muscle stem cell activation, expansion, and differentiation during bone, cartilage and skeletal muscle repair.

Image of Molecular Therapy Journal

Program Faculty: Cheryl Ackert-Bicknell, Hani Awad, Danielle Benoit, Joe Chakkalakal, John ElfarAlayna Loiselle, Edward M. Schwarz, Xinping Zhang, Michael J. Zuscik

Musculoskeletal Development:

Our Musculoskeletal Development program is focused on identifying the mechanisms that underlie multiple aspects of axial and appendicular skeletal and skeletal muscle development including: patterning events, chondrogenesis, myogenesis, endochondral and intramembranous bone development, and joint formation. Developmental studies using genetic mouse models and primary cell culture techniques have identified multiple signaling molecules and transcription factors that are not only critical for normal musculoskeletal development, but are also implicated in congenital pediatric musculoskeletal disorders and adult musculoskeletal diseases.

Image of Journal of Orthopaedic Research

Program Faculty: Joe Chakkalakal, Jennifer Jonason, James Sanders, Michael Zuscik

Bone Cancer Biology:

Bone is a common site of breast and prostate cancer metastasis. It is also a site for the formation of primary tumors. In our Bone Cancer Biology program, we are studying the mechanisms of bone destruction following breast and prostate cancer metastasis and the regulation of malignant progression. Additional fields of active study include investigations into the mechanisms of radiation therapy resistance that is exhibited by cartilage and tumor cells and the survival vs. apoptotic processes of primary bone tumor cells.

Program Faculty: J. Edward Puzas, Wakenda Tyler, Roman Eliseev

Upcoming Speakers

Aug. 5 , 2015
8:30 am - 9:30 am
Neuman Room (Rm 1-6823)

Laura Shum - Mesenchymal Stem Cell Metabolism & Bone Degeneration

Maureen Newman - Targeted Osteoanabolic GSK-3β Inhibition Via Bone-Homing Polymer Therapeutics