Skip to main content
Explore URMC

URMC Logo

URMC / Department of Neuroscience / NeuroNews @ UR

Neuroscience News from the UR Community

20172016201520142013 Archive

Professor Ed Brown receives NIH grant for research project, "Using Second Harmonic Generation to Predict Metastatic Outcome in Colon Adenocarcinoma"

Monday, March 20, 2017

Professor Edward Brown has received NIH funding for his research project titled, "Using Second Harmonic Generation to Predict Metastatic Outcome in Colon Adenocarcinoma."

"In summary, we previously discovered that an optical scattering phenomenon from primary tumor samples provides an independent prognostic indicator of time to metastasis in colon cancer patients," Professor Brown says. "With this grant we will explore if and how this can be used to improve prediction of outcomes for individual patients, leading to improved therapy decisions."

Abstract:

When treating a colon adenocarcinoma (CA) patient, after surgical resection of the tumor the clinician must formulate a plan for adjuvant systemic therapy. This decision is based upon an assessment of the risk of systemic disease recurrence, and is currently informed by pathological factors such as stage, histological grade, and lymph node status. Improvement of the accuracy of risk assessment for individual patients is an area of recognized need. Much of the current information used to assess risk focuses on the cells within tumors, including their morphological properties. Less attention is paid to the extracellular matrix through which metastasizing cells must travel. Second harmonic generation (SHG) is an optical scattering phenomenon whose directionality (as quantified by the “F/B” ratio) is affected by the diameter, spacing, and disorder of fibrils within collagen fibers. Our preliminary data suggests that F/B analysis of tumor samples provides prognostic information about future metastasis that is “matrix-focused” and hence complementary to current “cell-focused” methods. Consequently we hypothesize that F/B is a clinically useful predictor of metastatic outcome in colon adenocarcinoma. In a preliminary study in 44 Stage I colon adenocarcinoma samples we found that F/B of the primary tumor is a significant prognostic indicator of progression free survival time. Significantly, the quartile of patients with the lowest F/B ratio had a 15 year progression free survival percentage of below 50%. In other words, in this study F/B could identify a subset of Stage I patients who had survival statistics similar to Stage III patients. Stage I patients are rarely prescribed adjuvant chemotherapy while Stage III patients are almost always prescribed it. This suggests that F/B can identify patients who would have benefitted from adjuvant chemotherapy and who were left untreated based upon current prognostic indicators. The prognostic trend was also evident in a cohort of 72 Stage II colon adenocarcinoma samples, although it was not significant. This project will move this idea closer to the clinic by first (Aim 1) using archived samples and follow up data in separate training and validation sets to develop predictive algorithms that include F/B, in addition to clinical and genomic information. Second it will (Aim 2) quantify the effect of adjuvant chemotherapy on the predictive ability of the algorithms, as well as quantify their ability to predict chemotherapeutic efficacy. We predict that F/B analysis will be an effective tool that can reach the clinic rapidly after this study to improve metastatic risk assessment. Improving the accuracy of risk estimation for an individual patient will allow clinicians to treat those patients who are destined for metastases, improving outcomes, while avoiding treatment for those patients who are not, reducing overtreatment.

"""Read More: Professor Ed Brown receives NIH grant for research project, "Using Second Harmonic Generation to Predict Metastatic Outcome in Colon Adenocarcinoma"

Annual Death Toll From Alzheimer's Nearly Doubles in 15 Years

Thursday, March 9, 2017

Alzheimer’s disease claims nearly twice as many American lives annually as it did 15 years ago, according to a new report. “Partly, it is due to increasing numbers of older individuals, partly due to success in treating other leading causes of death, and partly due to increasing awareness that AD [Alzheimer’s] is a lethal disease,” says Anton Porsteinsson, the William and Sheila Konar Endowed Professor of Psychiatry and director of the University’s Alzheimer’s Disease Care, Research, and Education Program.

Read More: Annual Death Toll From Alzheimer's Nearly Doubles in 15 Years

Protein Key to Nerve Health Hitches a Ride on Brain’s Garbage Truck

Thursday, March 9, 2017

A new study led by Rashid Deane, research professor of neurosurgery, shows that the brain’s waste-removal system serves as both trash collector and delivery service, providing neurons with a protein important to maintaining cognitive function while simultaneously cleaning brain tissue. The research may help explain why different genetic varieties of the protein can indicate risk for Alzheimer’s disease or promote longevity.

Read More: Protein Key to Nerve Health Hitches a Ride on Brain’s Garbage Truck

Clinical Trials Aim to Reduce Stress Burden for Dementia Caregivers

Monday, March 6, 2017

Photo of an elderly couple

Caring for a loved one with dementia can be very
stressful, but two URMC research studies are
exploring ways to help caregivers manage stress
and improve their own health.

Caring for a loved one with Alzheimer’s disease or dementia can not only be very stressful, but can negatively affect the well-being of the caregiver. A pair of studies at the University of Rochester Medical Center is exploring ways to help caregivers manage stress and improve their own health so they can more effectively provide care for their loved one.

Kathi Heffner, Ph.D., associate professor in the School of Nursing and Department of Psychiatry, and Jan Moynihan, Ph.D., the George L. Engel Professor in Psychosocial Medicine in the Departments of Psychiatry and Microbiology and Immunology, were awarded more than $5.66 million in NIH funding for two five-year randomized clinical intervention trials focusing on reducing the effects of caregiving on immune health.

Heffner is principal investigator on a cognitive training intervention trial looking at different types of brain training activities and whether they have an effect on the aging of the caregiver’s immune system. Moynihan is leading a study on mindfulness-based stress reduction (MBSR), to see if mindfulness can lead to better immune response to the influenza vaccine.

Read More: Clinical Trials Aim to Reduce Stress Burden for Dementia Caregivers

SFN Rochester Chapter News

Thursday, March 2, 2017

The grant application to support the Rochester Society for Neuroscience chapter was recently funded due to efforts by Past President, Doug Portman. Thanks to Doug’s efforts and excellent leadership over the last two years, we can continue our efforts to increase neuroscience awareness and education in our community.

The current Chapter President, Liz Romanski, would like to congratulate the organizers and volunteers for hosting a very successful, first ever, Rochester Brain Bee on February 11, 2017 (picture attached). Ten students from high schools in the Rochester area competed in the Brain Bee, answering questions spanning a large body of neuroscience facts covering brain development, cognition, disease processes, neuroimaging, etc. The three finalists in the Brain Bee were:

  1. Neli Kotlyar, Pittsford Mendon High School (grade 10)
  2. Maha Khokhar, Pittsford Sutherland High School (grade 12)
  3. Kathryn Gentile, Pittsford Mendon High School (grade 11)

Photo of the 2017 Brain Bee Team

Heather Natola and Nicole Peltier were the organizers of the Brain Bee, and were assisted by volunteers from the Brain Awareness committee including Neuroscience graduate students Jessie Hogestyn and Josh Hinkle, and BCS grad students Alyssa Kersey, Carol Jew, and Matt Overlan. The winner of the Brain Bee will fly to Baltimore, MD in March for the National Brain Bee. Funding was made possible by the Society for Neuroscience Chapter, the Neuroscience Graduate Program, and the Department of Neuroscience with prizes from local businesses and donations from Drs. Huxlin and Nehrke. Great job all!

Professor Edward Brown and Professor Catherine K. Kuo receive grant from Department of Defense office of the Congressionally Directed Medical Research Programs

Thursday, February 23, 2017

The Department of Defense office of the Congressionally Directed Medical Research Programs has awarded Professor Edward Brown and Professor Catherine K. Kuo a grant for their research project titled, "Understanding the Role of Matrix Microstructure in Metastasis.” The goal of this project is to evaluate molecular mechanisms underlying the ability of an optical scattering phenomenon to predict metastatic outcome in patient samples.

Schor to Receive Child Neurology Society's Highest Honor

Tuesday, February 21, 2017

Photo of Nina Schor

Nina Schor, M.D., Ph.D., William H. Eilinger Chair of Pediatrics and the pediatrician-in-chief at UR Medicine’s Golisano Children’s Hospital, has been named the recipient of the Child Neurology Society’s 2017 Hower Award, the organization’s highest honor.

The award is given annually to a child neurologist for being an outstanding teacher, scholar, and for making high levels of contributions to the field and to the Child Neurology Society. Schor, who has spent much of her career researching neuroblastoma, one of the most common childhood cancers, will be recognized at the society’s annual meeting in October, in Kansas City, Mo. She will also have the honor of giving the annual Hower lecture.

“I am so honored and excited to accept this award and present the associated lecture to an audience comprised of my colleagues, friends, mentors, and trainees,” said Schor.

The Child Neurology Society is the preeminent non-profit professional association of pediatric neurologists in the United States, Canada, and worldwide. Schor, the University of Rochester Medical Center’s seventh Chair of the Department of Pediatrics, joined the university in 2006.

Read More: Schor to Receive Child Neurology Society's Highest Honor

Project Explores Machine Learning to Help Predict Alzheimer’s Disease

Friday, February 17, 2017

Feng Vankee Lin, assistant professor of Nursing, and Rajeev Raizada, assistant professor of Brain and Cognitive Sciences, have been awarded a Collaborative Pilot Award in Health Analytics from the Goergen Institute for Data Science.

The one-year project will use big data in an effort to develop an algorithm for predicting Alzheimer’s disease. The project will analyze large brain-imaging datasets and use multiple machine-learning approaches to uncover diagnostic patterns and create a more reliable predictive model for detecting Alzheimer’s disease.

“It will help initiate a new research area focusing on neuroimaging methodology development in relation to Alzheimer’s disease,” said Lin.

The award includes a $35,000 grant for the project, which runs from Feb. 1, 2017 to Jan. 31, 2018.

Located in Wegmans Hall, the Goergen Institute for Data Science is a hub for interdisciplinary data science research. Its work in health analytics – using data to predict individual health outcomes – includes advances in using data to help analyze the brain more effectively and sharing the data with other researchers to discover more ways to improve outcomes for patients.

URMC Drug Extends Effectiveness of HIV Therapy

Monday, January 30, 2017

Major Step toward Longer-Lasting HIV Treatment

Image of hand stating Stop HIV

A drug developed at the University of Rochester Medical Center extends the effectiveness of multiple HIV therapies by unleashing a cell’s own protective machinery on the virus. The finding, published today in the Journal of Clinical Investigation, is an important step toward the creation of long-acting HIV drugs that could be administered once or twice per year, in contrast to current HIV treatments that must be taken daily.

The drug, called URMC-099, was developed in the laboratory of UR scientist Harris A. (“Handy”) Gelbard, M.D., Ph.D. When combined with “nanoformulated” versions of two commonly used anti-HIV drugs (also called antiretroviral drugs), URMC-099 lifts the brakes on a process called autophagy.

Normally, autophagy allows cells to get rid of intracellular “trash,” including invading viruses. In HIV infection, the virus prevents cells from turning on autophagy; one of the many tricks it uses to survive. When the brake on autophagy is lifted, cells are able to digest any virus that remains after treatment with antiretroviral therapy, leaving cells free of virus for extended periods of time.

Photo of Dr. Gelbard

Harris A. (“Handy”) Gelbard, M.D., Ph.D.

“This study shows that URMC-099 has the potential to reduce the frequency of HIV therapy, which would eliminate the burden of daily treatment, greatly increase compliance and help people better manage the disease,” said Gelbard, professor and director of UR’s Center for Neural Development and Disease, who has studied HIV/AIDS for the past 25 years. The finding builds on previous research that Gelbard conducted with Howard E. Gendelman, M.D., professor and chair of the Department of Pharmacology/Experimental Neuroscience at the University of Nebraska Medical Center.

Read More: URMC Drug Extends Effectiveness of HIV Therapy

Liz Romanski to serve as President of Rochester Chapter of Society for Neuroscience

Wednesday, January 25, 2017

Liz Romanski, Associate Professor of Neuroscience at the University of Rochester, will serve as President of the Rochester Chapter of the Society for Neuroscience for the 2017-2108 term.

The Chapter is involved in a number of activities designed to strengthen Neuroscience research, education, and outreach in the Rochester area. In addition to Dr. Romanski, the Chapter's current leadership council includes Secretary/Treasurer Chris Holt, Faculty Councilor Amy Kiernan, Past Presidents Krystel Huxlin and Doug Portman, Postdoctoral Councilor Sarah Heilbronner, Graduate Student Councilor Heather Natola, and Administrative Coordinator Ania Dworzanski.

Congratulations Liz!!

What humans, primates both know when it comes to numbers

Tuesday, January 24, 2017

A study led by Jessica Cantlon, associate professor of brain and cognitive sciences, suggests that primates have the ability to distinguish large and small quantities of objects, irrespective of the surface area they appear to occupy.

Adults and children in the US, adults from a 'low numeracy' tribe in Bolivia and rhesus monkeys ALL possessed the ability to distinguish between large and small quantities of objects, regardless of the surface area they occupy. This ability is likely a shared evolutionary trait, according to a study. The nonverbal visual tests could be used in assessing early math education in young children.

Read More: What humans, primates both know when it comes to numbers

Brain Protein Predicts Recovery Time Following Concussion

Monday, January 9, 2017

Elevated levels of the brain protein tau following a sport-related concussion are associated with a longer recovery period and delayed return to play for athletes, according to a study published in the January 6, 2017 issue of Neurology®, the medical journal of the American Academy of Neurology. The findings suggest that tau, which can be measured in the blood, may serve as a marker to help physicians determine an athlete’s readiness to return to the game.

Despite the 3.8 million sports-related concussions that occur annually in the United States, there are no objective tools to confirm when an athlete is ready to resume play. Returning to play too early, before the brain has healed, increases an athlete’s risk of long-term physical and cognitive problems, especially if he or she sustains another concussion. Currently, physicians and trainers must make return-to-play decisions based on an athlete’s subjective, self-reported symptoms and their performance on standardized tests of memory and attention.

A team led by Jessica Gill, R.N., Ph.D. of the National Institute of Nursing Research at the National Institutes of Health and Jeffrey Bazarian, M.D., M.P.H. of the University of Rochester Medical Center evaluated changes in tau in 46 Division I and III college athletes who experienced a concussion. Tau, which plays a role in the development of chronic traumatic encephalopathy or CTE, frontotemporal dementia and Alzheimer’s disease was measured in preseason blood samples and again within 6 hours following concussion using an ultra-sensitive technology that allows researchers to detect single protein molecules.

Read More: Brain Protein Predicts Recovery Time Following Concussion

A Closer Look at the Eye: Researchers Develop New Retinal Imaging Technique

Thursday, January 5, 2017

photo of David Williams

David Williams, Ph.D.

Researchers at the University of Rochester Medical Center have developed a new imaging technique that could revolutionize how eye health and disease are assessed. The group is first to be able to make out individual cells at the back of the eye that are implicated in vision loss in diseases like glaucoma. They hope their new technique could prevent vision loss via earlier diagnosis and treatment for these diseases.

In a study highlighted in the Proceedings of the National Academy of Sciences, Ethan A. Rossi, Ph.D., assistant professor of Ophthalmology at the University of Pittsburgh School of Medicine, describes a new method to non-invasively image the human retina, a layer of cells at the back of the eye that are essential for vision. The group, led by David Williams, Ph.D., Dean for Research in Arts, Sciences, and Engineering and the William G. Allyn Chair for Medical Optics at the University of Rochester, was able to distinguish individual retinal ganglion cells (RGCs), which bear most of the responsibility of relaying visual information to the brain.

Read More: A Closer Look at the Eye: Researchers Develop New Retinal Imaging Technique

Mother’s Touch May Extend to Brain Development

Thursday, January 5, 2017

child and momA new study sheds light on changes in the brain that may explain why young infants who are placed in an orphanage or foster care often struggle with social relationships later in life.

The findings, which were published in the journal Developmental Psychobiology, come from a team of researchers led by Julie Fudge, M.D., with the University of Rochester Medical Center (URMC) Department of Neuroscience.  The scientists revisited data from a study involving monkeys that took place more than a decade ago at the University of Pittsburgh and was designed to observe the behaviors of newborns that were separated from their biological mothers and raised by another group of females.  The original study noted that these monkeys differed in their social interactions – such as grooming, huddling together, and normal aggression – compared to those that were raised by their mothers.

Like humans, monkey’s brains are not fully developed at birth and the animals are dependent upon the nurturing of caregivers for many months early in life.  Fudge and her colleagues wanted to see if there could find an association between the absence of a primary caregiver and biological changes in the brain that could explain the lasting social impairment observed in the monkeys.

Read More: Mother’s Touch May Extend to Brain Development