Skip to main content
Explore URMC

URMC Logo

menu
URMC / Department of Neuroscience / NeuroNews @ UR

Neuroscience News from the UR Community

20172016201520142013 Archive

This Music Teacher Played His Saxophone While In Brain Surgery

Monday, August 28, 2017

Dan Fabbio was 25 and working on a master's degree in music education when he stopped being able to hear music in stereo. Music no longer felt the same to him.

When he was diagnosed with a brain tumor, he immediately worried about cancer. Fortunately, his tumor was benign. Unfortunately, it was located in a part of the brain known to be active when people listen to and make music.

Fabbio told his surgeon that music was the most important thing is his life. It was his passion as well as his profession.

His surgeon understood. He's someone whose passion has been mapping the brain so he can help patients retain as much function as possible.

Dr. Web Pilcher, chair of the Department of Neurosurgery at the University of Rochester Medical Center, and his colleague Brad Mahon, a cognitive neuroscientist, had developed a brain mapping program. Since 2011, they've used the program to treat all kinds of patients with brain tumors: mathematicians, lawyers, a bus driver, a furniture maker. Fabbio was their first musician.

The idea behind the program is to learn as much as possible about the patient's life and the patient's brain before surgery to minimize damage to it during the procedure.

"Removing a tumor from the brain can have significant consequences depending upon its location," Pilcher says. "Both the tumor itself and the operation to remove it can damage tissue and disrupt communication between different parts of the brain."

Ahead of Fabbio's surgery, it was important to understand exactly what parts of his brain were responsible for his musical abilities. The team spent six months studying the functional and structural organization of Fabbio's brain, Mahon tells All Things Considered host Robert Siegel.

Read More: This Music Teacher Played His Saxophone While In Brain Surgery

Do the Drugs that Keep HIV Patients Alive Damage Their Brains?

Friday, August 25, 2017

Researchers from the University of Rochester Medical Center recently set out to understand whether drugs used to keep HIV patients alive could be damaging their brains.  On the contrary, early results from their clinical study showed that short-term use of combination anti-retroviral therapy (cART) improved mental function in HIV-infected individuals. 

Giovanni Schifitto, M.D., M.S., professor of Neurology at the University of Rochester Medical Center, is leading the study to better understand the short and long term effects of combination antiretroviral therapy on HIV patients’ brains. At 12 weeks, the therapy appears to improve mental performance and functional connectivity in the brain.

HIV patients often experience mental decline ranging from mild impairment to full-blown dementia. Experts have long debated the cause of that mental decline: HIV itself, or the drug used to combat it.

Some of the first HIV drugs were known to cause damage to peripheral nerves. Newer anti-retroviral drugs are believed to be safer, but patients taking these drugs continue to experience mental impairment - even when their viral load is extremely low.  In fact, some studies have shown improvement in HIV patients’ mental function when they stop using cART.

“But those studies were very indirect,” said Schifitto, who is also the director of the Clinical Research Center and function leader for Participant and Clinical Interactions at the CTSI. “They studied cohorts of people who were already on medications, which makes it very hard to pull apart whether the virus or the drug is to blame for effects in the brain.”

Schifitto’s clinical study, on the other hand, followed 17 HIV-infected individuals who had not received any treatment prior to the study. These patients scored worse on mental function tests and brain imaging revealed fewer connections in their brains than the HIV-negative control group.

After receiving cART for 12 weeks, the HIV patients’ mental performance and functional brain connectivity improved nearly to the level of the HIV-negative group. This not only suggests that short term cART use does not damage the brain, but that the virus is the culprit for early mental impairment in HIV-infected patients.

However, this is just a first step of the study, which will enroll and follow over 150 participants for two years. It is possible that cART will cause mental decline after prolonged use and the team want to track if and when that happens.  They are also monitoring sleep, mood, and several other factors that can impact mental function in HIV patients taking cART. 

In the end, the outcomes of the short and long term studies may help health care providers tailor cART cocktails and treatment schedules to individual patients’ needs. The results could also have implications for preventative use of cART in individuals who are at high risk for contracting HIV, a practice called pre-exposure prophylaxis (PrEP).

The study started with just a single site at the University of Rochester Medical Center, but now includes sites at Cornell Medical Imaging Center, Gay Men’s Health Crisis, SUNY Upstate Medical, University at Buffalo, and University of Texas Health Science Center at Houston.  It also utilized the CTSI’s Clinical Research Center, a dedicated space for researchers to conduct safe and controlled clinical studies with the support of highly trained clinical research staff.

"Read More: Do the Drugs that Keep HIV Patients Alive Damage Their Brains?

Study Uncovers Potential Tool, Based on Rapid Eye Movements, for Detecting Autism Earlier

Tuesday, August 15, 2017

“Researchers have long fixed their attention on eye-tracking in detecting autism spectrum disorders, but now they may have discovered a new tool that could lead to earlier diagnosis and intervention.” the research is by John Foxe, the Kilian J. and Caroline F. Schmitt Professor in Neuroscience and chair of the Department of Neuroscience.

In a July 12 article in the European Journal of Neuroscience, researchers at the University of Rochester linked differences in the cerebellar vermis (in the rear of the cerebellum, which controls the development of human movement, social skills and emotional development) to the plasticity of saccadic or rapid eye movements within a subgroup of people with disorders on the autism spectrum (ASD).

Rapid eye movements (also known as saccade) may be the key, say Edward G. Freeman, Ph.D., and John J. Foxe Ph.D. These eye movements-typically quick, precise and accurate in healthy eyes-occur when we shift our gaze between objects and are important in interacting with the world. Sometimes though, in people with ASD, the movements can "over- or undershoot the intended target locations," they wrote in the study.

Read More: Study Uncovers Potential Tool, Based on Rapid Eye Movements, for Detecting Autism Earlier

Neurology and Neurosurgery Earn Top 50 Ranking in U.S. News & World Report's 'Best Hospitals'

Wednesday, August 9, 2017

Neurosurgery group Photo

Strong Memorial Hospital’s Neurology and Neurosurgery specialty program has been ranked among the top 50 in the nation for 2017-2018 by U.S. News & World Report. The program ranked 39th among the nation’s hospitals, and this is the seventh consecutive year it has been nationally ranked by U.S. News.

In June, UR Medicine’s Golisano Children’s Hospital was recognized as one of the nation’s best children’s hospitals in three specialty areas — Neonatology, Nephrology, and Neurology and Neurosurgery — in the U.S. News & World Report’s Best Children’s Hospital rankings.

For the 2017-18 adult rankings, U.S. News evaluated more than 4,500 U.S. hospitals; only 152 were ranked in at least one specialty.

Eight Strong Memorial Hospital specialty programs earned High Performing ratings: Cardiology and Heart Surgery, Diabetes and Endocrinology, Gastroenterology and GI Surgery, Geriatrics, Nephrology, Orthopaedics, Pulmonology, and Urology.

U.S. News recognized hospitals that were high-performing across multiple areas of care and ranked them within their states and by metropolitan areas. U.S. News rated Strong Memorial as the top hospital in the Rochester Metro area and fourth among New York state hospitals.

U.S. News evaluates nearly 5,000 hospitals nationwide for its Best Hospitals rankings; methodologies include objective measures such as patient survival, the number of times a given procedure is performed, infection rates, adequacy of nurse staffing and more.

Read More: Neurology and Neurosurgery Earn Top 50 Ranking in U.S. News & World Report's 'Best Hospitals'

Patient-Derived Support Cells Stunt Mouse Brain Development

Monday, August 7, 2017

Errant glia may underlie childhood-onset schizophrenia illness process

At least some cases of schizophrenia may be caused by an illness process rooted in wayward support cells instead of the neurons they sustain, suggest experiments by NIMH-funded researchers. Such glial cells, generated – via a disease-in-a-dish technology – from patients with childhood onset schizophrenia, stunted neural circuit development when grafted into developing mouse brains. The animals grew up to display anxiety-like behaviors, antisocial tendencies, sleep-disturbances, and a lack of motivation, mimicking some features of the human illness.

NIMH grantee Steven Goldman, M.D., Ph.D., of the University of Rochester, and colleagues, report on their findings in the August 3, 2017 issue of Cell Stem Cell. An accompanying editorial heralds their discovery as “one of the most creative and compelling uses of stem cell technology for disease modeling” – with potential implications for improved treatments.

Although evidence was mounting of glial-related abnormalities in schizophrenia prior to the new study, researchers didn’t know whether these might just be secondary to a neuron-rooted illness process. Animal models to sort this out were lacking, so Goldman and his team set out to develop one. They generated induced pluripotent stem cells (iPSCs) from skin cells of patients who had experienced onset of psychosis before puberty. While rare, such cases of childhood onset schizophrenia are thought to be more genetically-influenced and severe than more typical cases with onset in late adolescence or early adulthood.

Read More: Patient-Derived Support Cells Stunt Mouse Brain Development

Michael Tanenhaus Awarded Top Cognitive Science Prize

Wednesday, August 2, 2017

Michael Tanenhaus, the Beverly Petterson Bishop and Charles W. Bishop Professor of Brain and Cognitive Sciences, is this year’s recipient of the prestigious David E. Rumelhart Prize, the premier award in the field of cognitive science. He accepted the award at the annual meeting of the Cognitive Science Society last week.

The prize, which includes a $100,000 monetary award, has been bestowed annually since 2001 to an individual or team making a significant contribution to the theoretical foundations of human cognition.

Over the course of his 40-year career, Tanenhaus has focused his research on the mechanisms underlying spoken language and reading comprehension. He is best known as the creator of the Visual World Paradigm, which uses eye movements to study the mechanisms behind speech and language comprehension. This paradigm has been widely adopted for studying language development and disorders.

Below, Tanenhaus discusses this award and his research in his own words:

To use the English expression, I was gobsmacked to learn I had been awarded the Rumelhart Prize. The previous winners have been giants in cognitive science from multiple disciplines, so it’s humbling to be considered worthy.

All of my influential work was conducted in collaboration with a remarkable group of graduate students and post-docs who flowed through the lab as well as collaborations with [University of Rochester professors] Dick Aslin and Greg Carlson, among others. I can take credit for the body of work. However, for every important step there were talented students who led the way. Consider the development of the Visual World Paradigm, a method where we monitored eye-movements using a head-mounted eye-tracker, while participants followed instructions to manipulate objects in a workspace or pictures displayed on a screen. This paradigm allowed us to ask questions about spoken language processing that ranged from speech perception to interactive conversation, widening the domains of inquiry, and revealing important properties of natural language processing. Students led these projects. Their projects formed the initial foundation for their research programs, and pioneered application of the paradigm to new areas of inquiry within language processing.

At the same time, the award is a Rochester story. My work took place in a remarkable interdisciplinary community in cognitive science and later the language sciences that spanned multiple departments, including linguistics, computer science and BCS. The communities created a culture of collaboration, joint mentoring of students, and synergy among research programs that attracted exceptional students and encouraged innovative interdisciplinary research.

Read More: Michael Tanenhaus Awarded Top Cognitive Science Prize

Scientists Inject Ferrets' Brains With Rabies to Study ... Vision?

Friday, July 28, 2017

Photo of a ferret

Newly appointed Dept. of Neuroscience faculty member, Farran Briggs, Ph.D. has her research highlighted on Wired.

When ferrets get a rabies shot in a neurobiology lab, they don't get infected with the virus—or even inoculated against it. They get a brain hack that might just explain how your brain handles vision, and maybe even your other senses, too.

In a lab at Dartmouth, scientists are experimenting with targeted injections of a modified rabies virus into the brains of ferrets—essentially allowing them to control how the animal responds to simple visual patterns. The goal is to understand the brain's enormously complex visual processing system. But really? Rabies? Ferrets? Are these guys just screwing around?

Lots of visual research depends on lab mice—the most popular of model organisms in biology. But Dartmouth neuroscientist and lead author Farran Briggs wanted to study an animal that uses its vision the same way humans do, in an evolutionary sense: to prey on tasty snacks. Mice aren’t predators, and their vision falls solidly in the ‘legally blind’ range. So these vision researchers turned to the notoriously vicious ferret and its front-facing eyes. They're color blind, but at the neural level, ferrets’ visual systems have “remarkable similarities to a primate, and a human,” says Briggs. (Ferrets also help avoid the ethical issues of experimenting on primates.)

Read More: Scientists Inject Ferrets' Brains With Rabies to Study ... Vision?

Eye Test Could Help Diagnose Autism

Monday, July 24, 2017

Close-up photo of human eye

A new study out in European Journal of Neuroscience could herald a new tool that helps physicians identify a sub-group of people with Autism spectrum disorders (ASD). The test, which consists of measuring rapid eye movements, may indicate deficits in an area of the brain that plays an important role in emotional and social development.

“These findings build upon a growing field of research that show that eye movement could serve as a window into a part of the brain that plays a role in a number of neurological and development disorders, such as Autism,” said John Foxe, Ph.D., director of the University of Rochester Medical Center Del Monte Neuroscience Institute and co-author of the study.

ASD is characterized by a wide range of symptoms that can vary in severity from person to person. This unpredictability not only presents a challenge for diagnosis, but also how best to devise a course of treatment. Identifying the specific phenotype of the disorder is, therefore, an essential first step to providing effective care.

"Read More: Eye Test Could Help Diagnose Autism

Faulty Support Cells Disrupt Communication in Brains of People with Schizophrenia

Thursday, July 20, 2017

Astrocytes

Astrocytes help coordinate communication
between neurons. The one on the left is
derived from a healthy brain and the one on
the right is from an individual diagnosed
with schizophrenia.

New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia into mice, the animal’s nerve cell networks did not mature properly and the mice exhibited the same anti-social and anxious behaviors seen in people with the disease.

“The findings of this study argue that glial cell dysfunction may be the basis of childhood-onset schizophrenia,” said University of Rochester Medical Center (URMC) neurologist Steve Goldman, M.D., Ph.D., co-director of the Center for Translational Neuromedicine and lead author of the study which appears today in the journal Cell. “The inability of these cells to do their job, which is to help nerve cells build and maintain healthy and effective communication networks, appears to be a primary contributor to the disease.”

Read More: Faulty Support Cells Disrupt Communication in Brains of People with Schizophrenia

NIH Grant to Examine ‘Person-Centered’ Approach to Cognitive Training

Thursday, July 20, 2017

Photo of Feng Vankee LinThe National Institutes of Health has awarded a grant to URMC researchers exploring methods of making cognitive training more effective for older adults by improving their attitudes toward computers.

Feng Vankee Lin, Ph.D., RN, an SON assistant professor and director of the CogT Lab promoting successful aging, and Benjamin Chapman, Ph.D., MPH, associate professor of Psychiatry, are principal investigators on the $421,000, two-year study.

Computerized cognitive training methods, such as online “brain games” have been widely implemented among adults with mild cognitive impairment (MCI) in recent years. However those interventions have not proven to be a consistently reliable method of improving or maintaining the cognitive health of older adults. Results are highly variable, and one possible explanation lies in how comfortable seniors feel using technology.

Photo of Benjamin Chapman“The goal of this study is to generate a proof-of-concept for an intervention that may improve attitudes toward computers among those older adults with MCI,” said Lin, who is now principal or co-investigator on six current NIH grants. “Improving the intervention engagement of those individuals, we think, will then help us develop more effective computerized cognitive interventions in the future. It is the first study that we know of that strives to augment computerized cognitive training by addressing an attitudinal or affective element of the person.”

At the core of the study is the notion of person-centered care – integrating individuals’ preference throughout the process of intervention. The person-centered approached has been shown to improve engagement among older persons, including those with MCI, and pilot data collected at assisted-living facilities suggests that computer-led leisure activities promotes psychological well-being among older persons with MCI and may change their perception about technology. A computer used for fun activities may no longer seem daunting, complex, or irrelevant, but instead be seen as familiar and enjoyable.

“These results are consistent with a number of theories indicating that exposure to pleasurable experiences with an object or task improves several dimensions of attitudes, including affective and cognitive components, as well as behavior and motivation,” Lin said.

Grounded in this pilot data and the theory around it, investigators will lead a small randomized controlled trial among assisted-living residents to assess whether a period of computer-led leisure activities prior to cognitive training improves attitudes toward computers, engagement with the intervention, or cognitive outcomes.

Anton Porsteinsson, M.D., professor of Neurology, is a co-investigator on the grant, which is also receiving recruitment support from Dallas Nelson, M.D., and Sarah Howd, M.D., in the Department of Medicine’s Division of Geriatrics and Aging.

UR Medicine Recognized for Stroke Care

Tuesday, June 27, 2017

Get with the Guidelines 2017

The American Heart Association/American Stroke Association (AHA/ASA) has once again honored the UR Medicine Strong Memorial Hospital as having met its highest standards of care for stroke.

Strong Memorial Hospital has received the AHA/ASA Get With The Guidelines program’s Stroke Gold Plus Quality Achievement Award. The hospital was also tapped for the Target: Stroke Honor Role Elite Plus, which recognizes hospitals that have consistently and successfully reduced door-to-needle time – the window of time between a stroke victim’s arrival at the hospital, the diagnosis of an acute ischemic stroke, and the administration of the clot-busting drug tPA. If given intravenously in the first three hours after the start of stroke symptoms, tPA has been shown to significantly reduce the effects of stroke and lessen the chance of permanent disability.

“This recognition is a testament to the hard work of our outstanding team of nurses, physicians, and therapists and their dedication to provide the highest quality of care to stroke victims,” said neurologist Curtis Benesch, M.D., M.P.H., the medical director of the UR Medicine Comprehensive Stroke Center.

“This award reflects a singular focus on improving the care stroke victims receive from the first 911 call to when they arrive at the hospital through operating room, neurocritical care, and rehabilitation,” said Tarun Bhalla, M.D., Ph.D., the surgical director of the Comprehensive Stroke Center.

Strong Memorial Hospital is home to the region’s only Comprehensive Stroke Center, a designation by the Joint Commission that indicates that the hospital either meets or exceeds the highest standards of care required to provide timely and comprehensive care to patients with complex cerebrovascular disease.

The AHA/ASA Get With the Guidelines program recognizes hospitals that have reached aggressive goals of treating stroke patients and comply with core standard levels of care. For more information about the Get With The Guidelines program, visit the AHA/ASA website.

"Read More: UR Medicine Recognized for Stroke Care

Depressed Patients More Likely to be Prescribed Opioids

Tuesday, June 20, 2017

A new study shows that patients with low back pain who were depressed were more likely to be prescribed opioids and receive higher doses. Understanding these prescribing patterns sheds new light on the current opioid epidemic and may help determine whether efforts to control prescription opioid abuse are effective.

“Our findings show that these drugs are more often prescribed to low back pain patients who also have symptoms of depression and there is strong evidence that depressed patients are at greater risk for misuse and overdose of opioids,” said John Markman, M.D., director of the Department of Neurosurgery’s Translational Pain Research Program at the University of Rochester Medical Center (URMC) and senior author of the study which appears in PAIN Reports, a journal of the International Association for the Study of Pain.

Low back pain is a leading cause of disability in the U.S., the most common condition for which opioids are a prescribed treatment.

Using data from the Medical Expenditure Panel Survey, a federally-compiled set of large-scale surveys of families and individuals, their medical providers, and employers across the U.S., the researchers compiled opioid prescription data from 2004-2009.

"Read More: Depressed Patients More Likely to be Prescribed Opioids

Ed Freedman and John Foxe Publish in EJN

Friday, June 16, 2017

Photo of Dr. Ed Freedman

Ed Freedman and John Foxe have just published preliminary data from a study examining eye movement changes in individuals with Autism Spectrum Disorders (ASD), particularly looking at the role of the cerebellum (DOI: 10.1111/ejn.13625). The cerebellum, Latin for ‘little’ brain, sits at the base of brain, underneath the cerebral cortex. Although it has been called ‘mini’, the cerebellum actually has more neurons, or cells, than the cerebral cortex. Classically considered to play a role in the control of movements and the learning of motor patterns, it is now known to play a role in emotion and cognition through its connection to the rest of the brain. And, there is evidence that the structure of the cerebellum is altered in a sub-population of individuals with ASD.

Photo of Dr. John Foxe

In the current paper, Ed and John present the results of experiments tracking the rapid eye-movements made when looking from one object to another, or saccades, in individuals with ASD. Accuracy and precision are maintained by careful comparison of the movement command produced by the brain and the results of the actual movement. Any differences between these lead to adjustments of the commands for ensuing saccades. This type of sensorimotor adaptation is dependent on the proper functioning of the cerebellum. However, there is anatomical evidence that some people with an ASD have cerebella with slightly altered structure. If the cerebellar structure is altered, is its function also altered in this sub-group of people? Assessing the ability of people with an ASD to adapt saccade amplitudes is one way to determine whether this function of the cerebellum is altered in ASD.

Another point of interest is determining if the deficits in saccades relate to any of the other key symptoms observed in ASD.

If saccade adaptation deficits do turn out to be a consistent finding in a sub-group of children with ASD, this raises the possibility that saccade adaptation measures may have utility as an early-detection endophenotype. Changes in cerebellar structure most likely occur in utero and very recent work has shown that saccadic adaptation can be measured in children as young as 10-41 months of age is a most encouraging development indeed. - Ed and John

Read More: Ed Freedman and John Foxe Publish in EJN

Stem Cells May Be the Key to Staying Strong in Old Age

Tuesday, June 13, 2017

University of Rochester Medical Center researchers have discovered that loss of muscle stem cells is the main driving force behind muscle decline in old age in mice. Their finding challenges the current prevailing theory that age-related muscle decline is primarily caused by loss of motor neurons. Study authors hope to develop a drug or therapy that can slow muscle stem cell loss and muscle decline in the future.

"Read More: Stem Cells May Be the Key to Staying Strong in Old Age

Free Telemedicine Program for Parkinson's Patients

Wednesday, May 31, 2017

A program called Parkinson's Disease Care New York exists to help eliminate the obstacles facing patients who need to see a neurologist. This type of doctor can mainly be found in large metropolis areas so anyone in a rural community might have a tough time getting access to healthcare.

By linking the patient to the doctor via computer, the neurologist can monitor symptoms more regularly and follow the patient more closely--even diagnose new treatments without the patient even leaving their home. Currently 109 patients are enrolled and the program can provide for 500 people statewide. To find out more, go to the PDCNY facebook page.

"Read More: Free Telemedicine Program for Parkinson's Patients

Featured in The Science Times: How Alzheimer's Catches People Skimping Sleep: New Study Explains Cause Of Dementia

Wednesday, May 24, 2017

Photo of Dr. Maiken Nedergaard

A recent scientific study shows that insufficient amount of sleep leads to the development of Alzheimer's disease. Researchers gain more evidence and are beginning to believe that lack and poor quality of sleep results to the fusion of Amyloids, proteins that bond together to form Alzheimer's plaques.

Dr. Maiken Nedergaard, the lead researcher from the University of Rochester Medical Center, explains the glymphatic system that is present in humans. She says that this system is 10 times more active when in slumber than when awake. The process allows cerebrospinal fluid to flow through spaces around the neurons of people's brains. This a method of purging unwanted proteins (Amyloids) and other wastes into the circulatory system garbage collectors and eventually flushes it out of the body.

In simple terms, Nedergaard explains that the brain has its own sanitation and public works department. It is like a network of sewer facilities mostly done during the brain's nightlife. An example of a housekeeping staff descending to building offices for a cleanup duty to avoid the lumping compound that causes Alzheimer's.

Read More: Featured in The Science Times: How Alzheimer's Catches People Skimping Sleep: New Study Explains Cause Of Dementia

Introducing the Center for NeuroTherapeutics Discovery

Tuesday, May 16, 2017

The Center for Neural Development and Disease, led by Harris A. (Handy) Gelbard, M.D., Ph.D., since 2008, will now be the Center for NeuroTherapeutics Discovery, reflecting an increased emphasis on translation and the creation of intellectual property that will lead to new therapies for nervous system disorders.

Gelbard, professor of Neurology, Pediatrics, Neuroscience and Microbiology & Immunology, will continue as director. His research, coupled with the work of Charles Thornton, M.D., professor of Neurology and Neuroscience, and Marc Halterman, M.D., Ph.D., associate professor of Neurology, Neuroscience and Pediatrics, will serve as the anchor of the new center. The trio has a strong track record of grants, publications, and patents, as well as academic and commercial relationships that they are actively pursuing to bring new treatments to the public.

“The Center for NeuroTherapeutics Discovery was developed out of the Center for Neural Development and Disease to create more visibility for academic and commercial partnerships as a necessary bridge for bringing new therapeutics forward,” said Gelbard. “This represents a way to do the best and most cutting edge science possible in a time when the traditional avenues towards funding academic research are changing rapidly.”

The center will bring together many investigators from across the Medical Center and River Campus to identify the mechanisms that lead to various neurological disorders, including HIV-associated neurocognitive disorder (Gelbard lab), myotonic dystrophy (Thornton lab) and stroke (Halterman lab). The center remains committed to its members that investigate the molecular signaling events that lead to nervous system disease during development and aging. Industry partnerships and resources will be sought to fast-track existing therapies or create new molecules that affect these disease mechanisms.

Treatments that harness the immune system to help regenerate damaged cells will be a major focus at the center; the team believes that this approach is broadly applicable to a range of acute and chronic neurodegenerative disorders, such as Parkinson’s disease, multiple sclerosis and Alzheimer’s disease.

Dr. Adam Rouse Receives an NIH K99/R00 Award

Friday, May 12, 2017

Photo of Adam Rouse

Dr. Adam Rouse, Post-doctoral Fellow in Neuroscience, recently received an NIH K99/R00 Pathway to Independence Award from the National Institute of Neurological Disorders and Stroke (NINDS). His project “Neural encoding of motor precision for advancing brain-machine interfaces” will study how motor areas of the brain encode different movements and use advanced mathematical models to build brain-machine interfaces that are more precise and intuitive to the user. In addition to his current mentor, Dr. Marc Schieber, Professor in Neurology and Neuroscience, the award will also support Dr. Rouse’s career development with additional mentoring from Dr. Robert Jacobs, Professor in Brain and Cognitive Sciences, and Dr. Sridevi Sarma, Associate Professor in Biomedical Engineering at Johns Hopkins University.

Kayson Honored for Improving Care for Huntington’s Patients and Families

Thursday, May 4, 2017

Elise Kayson and Ira ShoulsonElise Kayson, M.S., R.N.C., A.N.P., has been recognized by the Huntington Study Group with its Lifetime Achievement Award for her dedication to seeking treatments that make a difference and improving the quality of life and outcomes for families affected by the disease.

The Huntington Study Group (HSG) is a network of more than 400 investigators, coordinators, scientists, and Huntington’s disease experts spread across more than 100 research sites across the globe. HSG brings together patients, families, academic and industry researchers, foundations, and government agencies to seek new treatments that improve the life of individuals with the disease.

Elise continues to be an essential ingredient and role model for the success of the HSG, the many patients and families who we serve, and is a real prize that we celebrate and emulate,” said Ira Shoulson, M.D., the founder of the HSG, a former professor of Neurology at URMC, and currently a professor of Neurology at Georgetown University.

Elise’s tireless commitment to Huntington’s patients and their families and her 20 plus years of experience in pharmaceutical research has been essential to our efforts to develop new ways to treat this devastating disease,” said URMC neurologist Ray Dorsey, M.D., M.B.A., chair of the HSG. This award recognizes her dedication and critical role she plays in managing the complex research necessary to bring new drugs to market.”

Read More: Kayson Honored for Improving Care for Huntington’s Patients and Families

Dean’s Teaching Fellowship Recipients Named

Thursday, April 27, 2017

The 2017-2019 Dean’s Teaching Fellows have been named. Beau Abar, Ph.D., assistant professor of Emergency Medicine, has been named the Paul F. Griner Dean’s Teaching Fellow. Jessica Shand, M.D., MHS, assistant professor of Pediatrics, has been named the George L. Engel Dean’s Teaching Fellow. Katherine Greenberg, M.D., assistant professor of Adolescent Medicine and Obstetrics and Gynecology, has been named the Jules Cohen Dean’s Teaching Fellow. Linda Callahan, Ph.D., assistant professor of Neuroscience, has been named the Lawrence E. Young Dean’s Teaching Fellow.

The Dean’s Teaching Fellowship Program is a competitive endowed two-year program for faculty who are dedicated to academic careers in medical education. The mission of the program is to develop faculty who can prepare medical students, residents, and practicing physicians to become professionals who are responsive to society’s needs and the ever-changing health care system.

The program typically accepts four Fellows a year who attend a three-hour, bi-weekly seminar series focused on different areas of educational theory, research and teaching methods, educational technology, assessment, curriculum design, faculty development, leadership and career planning. During their time in the program, Fellows conduct a scholarly educational project that is directly translatable to their teaching role and will culminate in a publication or presentation at a national meeting.

University start-ups highlighted in national innovation report

Thursday, April 27, 2017

Two University of Rochester start-up companies are among those singled out in a new report from the Science Coalition. The report, “American-Made Innovation Sparking Economic Growth,” identifies 102 companies that trace their roots to federally-funded university research.
“The innovation that drives economic growth in the U.S. is based, in large part, on the scientific discoveries made in research universities and funded by the federal government,” said Rob Clark, University provost and senior vice president for research. “As a nation, it is imperative that we continue to support the fundamental science that leads to new technologies and improves lives.”
Clerio Vision was founded in 2014 by Wayne Knox and Jon Ellis with the Institute of Optics, and Krystel Huxlin with the Flaum Eye Institute in the Medical Center. The company is developing a new technology that improves eyesight by “writing” a prescription on the cornea using small pulses from a laser that change the focusing power of the eye. Because the technique doesn’t change the shape of the cornea like LASIK procedures, it can be repeated as needed over a person’s lifetime to correct vision. The research to develop the technology was funded in part with a $200,000 grant from the National Institutes of Health (NIH).

Read More: University start-ups highlighted in national innovation report

Duje Tadin Awarded NARSAD Independent Investigator Award from the Brain and Behavior Research Foundation

Tuesday, April 25, 2017

Recently Dr. Duje Tadin, Associate Professor in Brain and Cognitive Sciences and at the Center for Visual Science won the NARSAD Independent Investigator Award from the Brain and Behavior Research Foundation. The title of his project is “A critical role of perceptual inefficiencies in working memory abnormalities in schizophrenia”. He also has a pending application to the Simons Foundation’s SFARI Pilot Awards program with a project titled “Functional consequences of elevated internal noise in autism.”

Well done!!

Gene May Hold Key to Hearing Recovery

Monday, April 24, 2017

man holding open hand to ear

Researchers have discovered that a protein implicated in human longevity may also play a role in restoring hearing after noise exposure. The findings, where were published in the journal Scientific Reports, could one day provide researchers with new tools to prevent hearing loss.

The study reveals that a gene called Forkhead Box O3 (Foxo3) appears to play a role in protecting outer hair cells in the inner ear from damage. The outer hair cells act as a biological sound amplifier and are critical to hearing. When exposed to loud noises, these cells undergo stress. In some individuals, these cells are able to recover, but in others the outer hair cells die, permanently impairing hearing. While hearing aids and other treatments can help recovered some range of hearing, there is currently no biological cure for hearing loss.

“While more than a hundred genes have been identified as being involved in childhood hearing loss, little is known about the genes that regulate hearing recovery after noise exposure,” said Patricia White, Ph.D., a research associate professor in the University of Rochester Medical Center Department of Neuroscience and lead author of the study. “Our study shows that Foxo3 could play an important role in determining which individuals might be more susceptible to noise-induced hearing loss.”

Read More: Gene May Hold Key to Hearing Recovery

Retraining the Brain to See After Stroke

Wednesday, April 12, 2017

New study details “physical therapy” for eyes

photo of a man working with the retraining task

DeMay fixes his gaze on a live image of his own eye
in preparation for the next round of training.

Patients who went partially blind after suffering a stroke regained large swaths of rudimentary sight after undergoing visual training designed by researchers at the University of Rochester Medical Center’s Flaum Eye Institute.

A new study out today in Neurology®, the medical journal of the American Academy of Neurology, provides the first evidence that rigorous visual training recovers basic vision in cortically blind patients with long-standing stroke damage in the primary visual cortex. Damage to this area of the brain prevents visual information from getting to other brain regions that help make sense of it, causing loss of sight in one-quarter to one-half of an individual’s normal field of view. Somewhere between 250,000 and 500,000 people suffer vision loss due to damage to the visual cortex each year.

“We are the only people in the U.S. currently using this type of training to recover vision lost after damage to the primary visual cortex,” said study senior author Krystel Huxlin, Ph.D., director of Research and James V. Aquavella, M.D. Professor of Ophthalmology at URMC’s Flaum Eye Institute. “If you talk to the majority of clinicians, they still believe nothing can be done.”

Read More: Retraining the Brain to See After Stroke

URMC Plays Key Role in New Huntington’s Drug

Thursday, April 6, 2017

University of Rochester Medical Center (URMC) researchers were instrumental in the U.S. Food and Drug Administration’s (FDA) recent approval of SD-809 (deutetrabenazine) to treat Huntington’s disease. Deutetrabenazine is the only the second drug authorized by the agency to treat this rare, inherited neurodegenerative disorder.

The FDA approval was based on results from the First-HD study, a Phase 3 clinical trial which was conducted through the Huntington Study Group (HSG) via a consortium of 34 sites across the U.S. and Canada on behalf of Teva Pharmaceuticals. The study results were published last July in Journal of the American Medical Association.

The URMC Clinical Trials Coordination Center (CTCC) and Department of Biostatistics and Computational Biology – under the leadership of Elise Kayson, M.S., A.N.P., and David Oakes Ph.D. – provided scientific, technical, logistical, and analytical support for the First-HD study The CTCC is part of the Center for Human Experimental Therapeutics (CHET) and is a unique academic-based research organization with decades of experience working with industry, foundations, and governmental researchers in bringing new therapies to market for neurological disorders.

"Read More: URMC Plays Key Role in New Huntington’s Drug

URMC Plays Key Role in New Huntington’s Drug

Wednesday, April 5, 2017

photo of FDA business offices

University of Rochester Medical Center (URMC) researchers were instrumental in the U.S. Food and Drug Administration’s (FDA) recent approval of SD-809 (deutetrabenazine) to treat Huntington’s disease. Deutetrabenazine is the only the second drug authorized by the agency to treat this rare, inherited neurodegenerative disorder.

The FDA approval was based on results from the First-HD study, a Phase 3 clinical trial which was conducted through the Huntington Study Group (HSG) via a consortium of 34 sites across the U.S. and Canada on behalf of Teva Pharmaceuticals. The study results were published last July in Journal of the American Medical Association.

The URMC Clinical Trials Coordination Center (CTCC) and Department of Biostatistics and Computational Biology – under the leadership of Elise Kayson, M.S., A.N.P., and David Oakes Ph.D. – provided scientific, technical, logistical, and analytical support for the First-HD study The CTCC is part of the Center for Human Experimental Therapeutics (CHET) and is a unique academic-based research organization with decades of experience working with industry, foundations, and governmental researchers in bringing new therapies to market for neurological disorders.

Since 1987, the CTCC – currently directed by Cynthia Casaceli, M.B.A. – has played a central role in bringing seven new drugs to the market, including pramipexole, entacapone, rasagiline, and rotigitine for Parkinson’s, tetrabenezine and deutrabenazine for Huntington’s, and dichlorphenamide for periodic paralysis.

“This is a great day for the HD community,” said URMC neurologist Ray Dorsey, M.D., M.B.A., chair of the HSG and director of CHET. “The unmet need for therapeutics for individuals with HD is immense, and this approval brings us closer to making HD an increasingly treatable condition.”

The First-HD study showed that deutetrabenazine significantly decreased chorea, the involuntary movements that many individuals experience during the course of the disease. Huntington’s is an autosomal-dominant, inherited disease that usually causes symptoms in people in their 30s and 40s. In addition to chorea, the disease can cause multiple symptoms, including, cognitive problems, changes in personality, and depression.

“We are very grateful to the patients and families who made this development possible by participating in this ground-breaking trial,” said Samuel Frank, M.D., Huntington Study Group’s principal investigator for First-HD and associate professor of Neurology at Beth Israel Deaconess Medical Center/Harvard Medical School. “Research participants are the key to bringing new treatments to the entire HD community,”

Claudia Testa, M.D., Ph.D., associate professor of Neurology at Virginia Commonwealth University served as the co-principal investigator of the First-HD study.

Teva Pharmaceuticals is also investigating the potential of deutetrabenazine to treat tardive dyskinesia, a disorder that causes involuntary and repetitive movements, and for tics associated with Tourette syndrome.

Study Shed New Light on Brain’s Decision-making Process

Thursday, March 30, 2017

Image of a floor map reading stop, look and listen

New research reveals the complex circuits involved in regulating the neurotransmitter dopamine in our brains. Traditionally thought to be limited to reward seeking, the new study shows that parts of the ‘emotional’ brain may also manipulate dopamine to help us pay attention and react to new information in the environment.

The study, which appears in the journal Neuropsychopharmacology, was led by Julie Fudge, M.D., with the University of Rochester Medical Center (URMC) Department of Neuroscience.

The research focuses on an area of the brain called the amygdala, which is known to be important for social and emotional development and behaviors. The amygdala receives sensory information – sight, sound, and smells – and processes it by combining it with information stored in our memories. It evaluates changes or new information to help determine whether it is worthy of our attention or if it can be ignored. The new study shows that one way the amygdala can accomplish this is by communicating with the brain’s dopamine producing cells.

Read More: Study Shed New Light on Brain’s Decision-making Process

Professor Ed Brown receives NIH grant for research project, "Using Second Harmonic Generation to Predict Metastatic Outcome in Colon Adenocarcinoma"

Monday, March 20, 2017

Professor Edward Brown has received NIH funding for his research project titled, "Using Second Harmonic Generation to Predict Metastatic Outcome in Colon Adenocarcinoma."

"In summary, we previously discovered that an optical scattering phenomenon from primary tumor samples provides an independent prognostic indicator of time to metastasis in colon cancer patients," Professor Brown says. "With this grant we will explore if and how this can be used to improve prediction of outcomes for individual patients, leading to improved therapy decisions."

Abstract:

When treating a colon adenocarcinoma (CA) patient, after surgical resection of the tumor the clinician must formulate a plan for adjuvant systemic therapy. This decision is based upon an assessment of the risk of systemic disease recurrence, and is currently informed by pathological factors such as stage, histological grade, and lymph node status. Improvement of the accuracy of risk assessment for individual patients is an area of recognized need. Much of the current information used to assess risk focuses on the cells within tumors, including their morphological properties. Less attention is paid to the extracellular matrix through which metastasizing cells must travel. Second harmonic generation (SHG) is an optical scattering phenomenon whose directionality (as quantified by the “F/B” ratio) is affected by the diameter, spacing, and disorder of fibrils within collagen fibers. Our preliminary data suggests that F/B analysis of tumor samples provides prognostic information about future metastasis that is “matrix-focused” and hence complementary to current “cell-focused” methods. Consequently we hypothesize that F/B is a clinically useful predictor of metastatic outcome in colon adenocarcinoma. In a preliminary study in 44 Stage I colon adenocarcinoma samples we found that F/B of the primary tumor is a significant prognostic indicator of progression free survival time. Significantly, the quartile of patients with the lowest F/B ratio had a 15 year progression free survival percentage of below 50%. In other words, in this study F/B could identify a subset of Stage I patients who had survival statistics similar to Stage III patients. Stage I patients are rarely prescribed adjuvant chemotherapy while Stage III patients are almost always prescribed it. This suggests that F/B can identify patients who would have benefitted from adjuvant chemotherapy and who were left untreated based upon current prognostic indicators. The prognostic trend was also evident in a cohort of 72 Stage II colon adenocarcinoma samples, although it was not significant. This project will move this idea closer to the clinic by first (Aim 1) using archived samples and follow up data in separate training and validation sets to develop predictive algorithms that include F/B, in addition to clinical and genomic information. Second it will (Aim 2) quantify the effect of adjuvant chemotherapy on the predictive ability of the algorithms, as well as quantify their ability to predict chemotherapeutic efficacy. We predict that F/B analysis will be an effective tool that can reach the clinic rapidly after this study to improve metastatic risk assessment. Improving the accuracy of risk estimation for an individual patient will allow clinicians to treat those patients who are destined for metastases, improving outcomes, while avoiding treatment for those patients who are not, reducing overtreatment.

Read More: Professor Ed Brown receives NIH grant for research project, "Using Second Harmonic Generation to Predict Metastatic Outcome in Colon Adenocarcinoma"

Annual Death Toll From Alzheimer's Nearly Doubles in 15 Years

Thursday, March 9, 2017

Alzheimer’s disease claims nearly twice as many American lives annually as it did 15 years ago, according to a new report. “Partly, it is due to increasing numbers of older individuals, partly due to success in treating other leading causes of death, and partly due to increasing awareness that AD [Alzheimer’s] is a lethal disease,” says Anton Porsteinsson, the William and Sheila Konar Endowed Professor of Psychiatry and director of the University’s Alzheimer’s Disease Care, Research, and Education Program.

Read More: Annual Death Toll From Alzheimer's Nearly Doubles in 15 Years

Protein Key to Nerve Health Hitches a Ride on Brain’s Garbage Truck

Thursday, March 9, 2017

A new study led by Rashid Deane, research professor of neurosurgery, shows that the brain’s waste-removal system serves as both trash collector and delivery service, providing neurons with a protein important to maintaining cognitive function while simultaneously cleaning brain tissue. The research may help explain why different genetic varieties of the protein can indicate risk for Alzheimer’s disease or promote longevity.

Read More: Protein Key to Nerve Health Hitches a Ride on Brain’s Garbage Truck

Protein Key to Nerve Health Hitches a Ride on Brain’s Garbage Truck

Thursday, March 9, 2017

astrocytes and neuronsA new study shows that the brain’s waste removal system serves as both trash collector and delivery service, providing neurons with a protein important to maintaining cognitive function while simultaneously cleaning brain tissue. The research may help explain why different genetic varieties of the protein, called apolipoprotein E (apoE), can indicate risk for Alzheimer’s disease or promote longevity.

The study was led by Rashid Deane, B.Sc., Ph.D., a research professor in the University of Rochester Medical Center Department of Neurosurgery and member of the Center for Translational Neuromedicine, and appears in the journal Molecular Neurodegeneration.

ApoE is responsible for delivering cholesterol to nerve cells in the brain and plays a key role in synaptic plasticity, the process by which neurons build new connections in order to learn and store memories.

"Read More: Protein Key to Nerve Health Hitches a Ride on Brain’s Garbage Truck

Clinical Trials Aim to Reduce Stress Burden for Dementia Caregivers

Monday, March 6, 2017

Photo of an elderly couple

Caring for a loved one with dementia can be very
stressful, but two URMC research studies are
exploring ways to help caregivers manage stress
and improve their own health.

Caring for a loved one with Alzheimer’s disease or dementia can not only be very stressful, but can negatively affect the well-being of the caregiver. A pair of studies at the University of Rochester Medical Center is exploring ways to help caregivers manage stress and improve their own health so they can more effectively provide care for their loved one.

Kathi Heffner, Ph.D., associate professor in the School of Nursing and Department of Psychiatry, and Jan Moynihan, Ph.D., the George L. Engel Professor in Psychosocial Medicine in the Departments of Psychiatry and Microbiology and Immunology, were awarded more than $5.66 million in NIH funding for two five-year randomized clinical intervention trials focusing on reducing the effects of caregiving on immune health.

Heffner is principal investigator on a cognitive training intervention trial looking at different types of brain training activities and whether they have an effect on the aging of the caregiver’s immune system. Moynihan is leading a study on mindfulness-based stress reduction (MBSR), to see if mindfulness can lead to better immune response to the influenza vaccine.

Read More: Clinical Trials Aim to Reduce Stress Burden for Dementia Caregivers

SFN Rochester Chapter News

Thursday, March 2, 2017

The grant application to support the Rochester Society for Neuroscience chapter was recently funded due to efforts by Past President, Doug Portman. Thanks to Doug’s efforts and excellent leadership over the last two years, we can continue our efforts to increase neuroscience awareness and education in our community.

The current Chapter President, Liz Romanski, would like to congratulate the organizers and volunteers for hosting a very successful, first ever, Rochester Brain Bee on February 11, 2017 (picture attached). Ten students from high schools in the Rochester area competed in the Brain Bee, answering questions spanning a large body of neuroscience facts covering brain development, cognition, disease processes, neuroimaging, etc. The three finalists in the Brain Bee were:

  1. Neli Kotlyar, Pittsford Mendon High School (grade 10)
  2. Maha Khokhar, Pittsford Sutherland High School (grade 12)
  3. Kathryn Gentile, Pittsford Mendon High School (grade 11)

Photo of the 2017 Brain Bee Team

Heather Natola and Nicole Peltier were the organizers of the Brain Bee, and were assisted by volunteers from the Brain Awareness committee including Neuroscience graduate students Jessie Hogestyn and Josh Hinkle, and BCS grad students Alyssa Kersey, Carol Jew, and Matt Overlan. The winner of the Brain Bee will fly to Baltimore, MD in March for the National Brain Bee. Funding was made possible by the Society for Neuroscience Chapter, the Neuroscience Graduate Program, and the Department of Neuroscience with prizes from local businesses and donations from Drs. Huxlin and Nehrke. Great job all!

Professor Edward Brown and Professor Catherine K. Kuo receive grant from Department of Defense office of the Congressionally Directed Medical Research Programs

Thursday, February 23, 2017

The Department of Defense office of the Congressionally Directed Medical Research Programs has awarded Professor Edward Brown and Professor Catherine K. Kuo a grant for their research project titled, "Understanding the Role of Matrix Microstructure in Metastasis.” The goal of this project is to evaluate molecular mechanisms underlying the ability of an optical scattering phenomenon to predict metastatic outcome in patient samples.

Schor to Receive Child Neurology Society's Highest Honor

Tuesday, February 21, 2017

Photo of Nina Schor

Nina Schor, M.D., Ph.D., William H. Eilinger Chair of Pediatrics and the pediatrician-in-chief at UR Medicine’s Golisano Children’s Hospital, has been named the recipient of the Child Neurology Society’s 2017 Hower Award, the organization’s highest honor.

The award is given annually to a child neurologist for being an outstanding teacher, scholar, and for making high levels of contributions to the field and to the Child Neurology Society. Schor, who has spent much of her career researching neuroblastoma, one of the most common childhood cancers, will be recognized at the society’s annual meeting in October, in Kansas City, Mo. She will also have the honor of giving the annual Hower lecture.

“I am so honored and excited to accept this award and present the associated lecture to an audience comprised of my colleagues, friends, mentors, and trainees,” said Schor.

The Child Neurology Society is the preeminent non-profit professional association of pediatric neurologists in the United States, Canada, and worldwide. Schor, the University of Rochester Medical Center’s seventh Chair of the Department of Pediatrics, joined the university in 2006.

Read More: Schor to Receive Child Neurology Society's Highest Honor