Skip to main content
Explore URMC

URMC Logo

menu
URMC / Department of Neuroscience / NeuroNews @ UR

Neuroscience News from the UR Community

20182017201620152014 Archive

Krishnan Padmanabhan Recognized as a Polak Young Investigator

Tuesday, April 24, 2018

Krishnan Padmanabhan, PhD was recently awarded one of the 2018 Polak Young Investigator Awards by the Association for Chemoreception Sciences (AChemS).

The purpose of this award is to encourage and recognize innovative research at the annual conference by young investigators. The Incoming Program Chair, with help from the Program Committee will select 5-6 young investigators based upon the scientific merit of their abstract submission. Each selected investigator will deliver an oral slide presentation during the AChemS meeting (or satellite conference). The abstract will be organized within the program-at-large by scientific topic and presenters will be recognized as Polak Young Investigators during the introduction of their presentations by the session chair or the abstracts may be presented in one awards session.Krishnan Padmanabhan talk for the Polak Young Scientist Award

Congratulations Dr. Padmanabhan!!

Read More: Krishnan Padmanabhan Recognized as a Polak Young Investigator

National Initiative Focuses on New Treatments for Lewy Body Dementia

Wednesday, April 18, 2018

The University of Rochester Medical Center (URMC) has been selected to participate in a national network created to develop new ways to diagnose and treat Lewy Body Dementia (LBD). The new initiative, which is being organized by the Lewy Body Dementia Association, will seek to raise awareness and advance research for this complex disorder.

“Lewy Body Dementia is a challenging, multifaceted disease and research to find new diagnostic tools and treatments is still in its infancy,” said URMC neurologist Irene Richard, M.D., who will serve as director of the URMC Lewy Body Dementia Association Research Center of Excellence. “This new network of will create an infrastructure of clinician researchers who understand the disease, are able to identify patients to participate in research, and have experience participating in multi-site clinical trials.”

LBD is a progressive brain disorder marked by abnormal protein deposits – called Lewy Bodies – in areas of the brain important for behavior, cognition, and motor control. This complex disease gives rise to a range of symptoms, including cognitive impairment, sleep disturbances, hallucinations, difficulty with blood pressure regulation, and problems with movement and balance. Individuals with the disease will often experience marked fluctuations in their levels of alertness and clarity of thought.

Read More: National Initiative Focuses on New Treatments for Lewy Body Dementia

Mobile Apps Could Hold Key to Parkinson’s Research, Care

Monday, March 26, 2018

By Mark Michaud

A new study out today in the journal JAMA Neurology shows that smartphone software and technology can accurately track the severity of the symptoms of Parkinson’s disease. The findings could provide researchers and clinicians with a new tool to both develop new drugs and better treat this challenging disease.

“This study demonstrates that we can create both an objective measure of the progression of Parkinson’s and one that provides a richer picture of the daily lived experience of the disease,” said University of Rochester Medical Center (URMC) neurologist Ray Dorsey, M.D., a co-author of the study.

One of the difficulties in managing Parkinson’s is that symptoms of the disease can fluctuate widely on a daily basis. This makes the process of tracking the progression of the disease and adjusting treatment a challenge for physicians who may only get a snapshot of a patient’s condition once every several months when they visit the clinic. This variation also limits the insight that researchers can gather on the effectiveness of experimental treatments.

The new study, which was led by Suchi Saria, Ph.D., an assistant professor of Computer Science at Johns Hopkins University, harnesses the capabilities of technology that already resides in most of our pockets all day, every day.

Researchers recruited 129 individuals who remotely completed a series of tasks on a smartphone application. The Android app called HopkinsPD, which was originally developed by Max Little, Ph.D., an associate professor of Mathematics at Aston University in the U.K., consists of a series of tasks which measure voice fluctuations, the speed of finger tapping, walking speed, and balance.

The Android app is a predecessor to the mPower iPhone app which was developed by Little, Dorsey, and Sage Bionetworks and has been download more than 15,000 times from Apple’s App Store since its introduction in 2015.

As a part of the study, the researchers also conducted in-person visits with 50 individuals with Parkinson’s disease and controls in the clinic at URMC. Participants were asked to complete the tasks on the app and were also seen by a neurologist and scored using a standard clinical evaluation tool for the disease. This aspect of the study was overseen by URMC’s Center for Health + Technology.

Read More: Mobile Apps Could Hold Key to Parkinson’s Research, Care

New Career Development Awardees to Study Suicide Prevention and Neural Processing

Monday, March 12, 2018

Kevin Mazurek, Ph.D., postdoctoral fellow in the Department of Neurology at URMC, will investigate how areas of the brain communicate information about how and why movements are performed and how neurologic diseases such as epilepsy affect this communication.

Electrophysiological techniques allow for investigating which cortical areas communicate information related to the performance of voluntary movements. For his KL2 project, Dr. Mazurek will analyze changes in neural communication as participants perform the same hand and finger movements when instructed with different sensory cues (e.g. visual, auditory). He will compare healthy individuals and individuals with intractable epilepsy to identify changes in neural communication pathways. Identifying the exact nature in which epileptic activity affects cortical communication could lead to a biomarker for the appropriate connections to target for rehabilitative treatment.

Read More: New Career Development Awardees to Study Suicide Prevention and Neural Processing

Professor Studies Complex Brain Networks Involved in Vision

Monday, March 12, 2018

Our brains are made up of an intricate network of neurons. Understanding the complex neuronal circuits—the connections of these neurons—is important in understanding how our brains process visual information.

Farran Briggs, a new associate professor of neuroscience and of brain and cognitive sciences at the University of Rochester, studies neuronal circuits in the brain’s vision system and how attention affects the brain’s ability to process visual information.

Previously a professor at the Geisel School of Medicine at Dartmouth, Briggs became interested in neuroscience in high school. “I took a class and just became really fascinated by the brain and how it works,” she says. Today, her research on the fundamental levels of vision may provide new insight on impairments associated with attention deficit disorders.

Read More: Professor Studies Complex Brain Networks Involved in Vision

Biological Sex Tweaks Nervous System Networks, Plays Role in Shaping Behavior

Thursday, March 8, 2018

By Mark Michaud

New research published today in the journal Current Biology demonstrates how biological sex can modify communication between nerve cells and generate different responses in males and females to the same stimulus. The findings could new shed light on the genetic underpinnings of sex differences in neural development, behavior, and susceptibility to diseases.

“While the nervous systems of males and females are virtually identical, we know that there is a sex bias in how many neurological diseases manifest themselves, that biological sex can influence behavior in animals, and that some of these differences are likely to be biologically driven,” said Douglas Portman, Ph.D., an associate professor in the Departments of Biomedical Genetics, Neuroscience, and the Center for Neurotherapeutics Discovery at the University of Rochester Medical Center (URMC) and lead author of the study. “This study demonstrates a connection between biological sex and the control and function of neural circuits and that these different sex-dependent configurations can modify behavior.”

The findings were made in experiments involving the nematode C. elegans, a microscopic roundworm that has long been used by researchers to understand fundamental mechanisms in biology. Many of the discoveries made using these worms apply throughout the animal kingdom and this research has led to a broader understanding of human biology. In fact, three Nobel Prizes in medicine and chemistry have been awarded for discoveries involving C. elegans.

The study focuses on the different behaviors of male and female worms. There are two sexes of C. elegans, males and hermaphrodites. Although the hermaphrodites are able to self-fertilize, they are also mating partners for males, and are considered to be modified females.

The behavior of C. elegans is driven by sensory cues, primarily smell and taste, which are used by the worms to navigate their environment and communicate with each other. Female worms secrete a pheromone that is known to attract males who are drawn by this signal in search of a mate. Other females, however, are repelled by the same pheromone. It is not entirely understood why, but scientists speculate that that the pheromone signals to females to avoid areas where there may be too much competition.

Read More: Biological Sex Tweaks Nervous System Networks, Plays Role in Shaping Behavior

URMC Investigating New Parkinson's Drug

Wednesday, February 28, 2018

The University of Rochester Medical Center Clinical Trials Coordination Center (CTCC) has been tapped to help lead a clinical trial for a potential new treatment for Parkinson’s disease. The study will evaluate nilotinib, a drug currently used to treat leukemia that has shown promise in early studies in people with Parkinson’s disease.

Cynthia Casaceli, M.B.A., the director of the CTCC, will oversee the operations of the study, which will be conducted through the Parkinson Study Group at 25 sites across the U.S. URMC is not a recruiting site for the study.  The clinical trial is being led by Tanya Simuni, M.D., with Northwestern University and supported by the Michael J. Fox Foundation.

Nilotinib is a FDA-approved treatment for chronic myelogenous leukemia. The drug inhibits the activity of c-Abl, a protein that can accumulate in toxic levels in the brain and has been linked to cellular pathways associated with Parkinson's disease.

Read More: URMC Investigating New Parkinson's Drug

Brain Signal Indicates When You Understand What You’ve Been Told

Friday, February 23, 2018

Photo of EEG cap

During everyday interactions, people routinely speak at rates of 120 to 200 words per minute. For a listener to understand speech at these rates – and not lose track of the conversation – the brain must comprehend the meaning of each of these words very rapidly.

“That we can do this so easily is an amazing feat of the human brain – especially given that the meaning of words can vary greatly depending on the context,” says Edmund Lalor, associate professor of biomedical engineering and neuroscience at the University of Rochester and Trinity College Dublin. “For example, ‘I saw a bat flying overhead last night’ versus ‘the baseball player hit a home run with his favorite bat.’”

Now, researchers in Lalor’s lab have identified a brain signal that indicates whether a person is indeed comprehending what others are saying – and have shown they can track the signal using relatively inexpensive EEG (electroencephalography) readings taken on a person’s scalp.

Read More: Brain Signal Indicates When You Understand What You’ve Been Told

Drinking Alcohol Tied To Long Life In New Study

Thursday, February 22, 2018

Drinking could help you live longer—that's the good news for happy-hour enthusiasts from a study presented last week at the annual meeting of the American Association for the Advancement of Science. According to the study, people who live to 90 or older often drink moderately.

Neurologist Claudia Kawas and her team at the University of California, Irvine, have been studying the habits of people who live until their 90s since 2003. There’s a paltry amount of research on the oldest-old group, defined as 85 and older by the Social Security Administration, and Kawas wanted to delve into the lifestyle habits of those who live past 90. She began asking about dietary habits, medical history and daily activities via survey, wondering if such data could help identify trends among these who lived longest. Ultimately she gathered information on the habits of 1,700 people between the ages of 90-99.

In general, research on alcohol has shown mixed results. A recent study published in Scientific Reports showed that drinking might help clear toxins from the brain. The study was conducted on mice, who were given the human equivalent of two and a half alcoholic beverages.

Dr. Maiken Nedergaard of the University of Rochester Medical Center told Newsweek at the time that alcohol did have real health benefits. “Except for a few types of cancer, including unfortunately breast cancer, alcohol is good for almost everything,” Nedergaard said.

Read More: Drinking Alcohol Tied To Long Life In New Study

Training brains—young and old, sick and healthy—with virtual reality

Tuesday, February 13, 2018

An accidental discovery by Rochester researchers in 2003 touched off a wave of research into the area of neuroplasticity in adults, or how the brain’s neural connections change throughout a person’s lifespan.

Fifteen years ago, Shawn Green was a graduate student of Daphne Bavelier, then an associate professor of brain and cognitive sciences at the University. As the two created visual tests together, Green demonstrated exceptional proficiency at taking these tests himself. The two researchers hypothesized that it might be due to his extensive experience playing first-person, action-based video games. From there, Green and Bavelier demonstrated that, indeed, action-based video games enhance the brain’s ability to process visual information.

In years since, video gaming technology has gotten more sophisticated, regularly incorporating or featuring virtual reality (VR). The Oculus Rift headset, for example, connects directly to your PC to create an immersive VR gaming experience.

If we know that action-based video games enhance visual attention, might VR games do the same (and perhaps to a greater degree) because of the increased level of immersion?

That’s the question a current group of Rochester researchers—Duje Tadin, associate professor of brain and cognitive sciences; Jeffrey Bazarian, professor of emergency medicine; and Feng (Vankee) Lin, assistant professor in the School of Nursing—hope to answer.

Read More: Training brains—young and old, sick and healthy—with virtual reality

In Wine, There’s Health: Low Levels of Alcohol Good for the Brain

Friday, February 2, 2018

By Mark Michaud

While a couple of glasses of wine can help clear the mind after a busy day, new research shows that it may actually help clean the mind as well. The new study, which appears in the journal Scientific Reports, shows that low levels of alcohol consumption tamp down inflammation and helps the brain clear away toxins, including those associated with Alzheimer’s disease.

“Prolonged intake of excessive amounts of ethanol is known to have adverse effects on the central nervous system,” said Maiken Nedergaard, M.D., D.M.Sc., co-director of the Center for Translational Neuromedicine at the University of Rochester Medical Center (URMC) and lead author of the study. “However, in this study we have shown for the first time that low doses of alcohol are potentially beneficial to brain health, namely it improves the brain’s ability to remove waste.”

The finding adds to a growing body of research that point to the health benefits of low doses of alcohol. While excessive consumption of alcohol is a well-documented health hazard, many studies have linked lower levels of drinking with a reduced risk of cardiovascular diseases as well as a number of cancers.

Read More: In Wine, There’s Health: Low Levels of Alcohol Good for the Brain

Lungs Mays Hold Key to Thwarting Brain Damage after a Stroke

Wednesday, January 31, 2018

By Mark Michaud

The harm caused by a stroke can be exacerbated when immune cells rush to the brain an inadvertently make the situation worse. Researchers at the University of Rochester Medical Center (URMC) are studying new ways to head off this second wave of brain damage by using the lungs to moderate the immune system’s response.

“It has become increasingly clear that lungs serve as an important regulator of the body’s immune system and could serve as a target for therapies that can mitigate the secondary damage that occurs in stroke,” said URMC neurologist Marc Halterman, M.D., Ph.D. “We are exploring a number of drugs that could help suppress the immune response during these non-infection events and provide protection to the brain and other organs.”

Halterman’s lab, which is part of the Center for NeuroTherapeutics Discovery, has been investigating domino effect that occurs after cardiac arrest. When blood circulation is interrupted, the integrity of our intestines becomes compromised, releasing bacteria that reside in the gut into the blood stream. This prompts a massive immune response which can cause systemic inflammation, making a bad situation worse.

While looking at mouse models of stroke, his lab observed that a similar phenomenon occurs. During a stroke blood vessels in the brain leak and the proteins that comprise the wreckage of damaged neurons and glia cells in the brain make their way into blood stream. The immune system, which is not used to seeing these proteins in circulation, responds to these damage-associated molecular patterns and ramps up to respond. Mobilized immune cells make their way into the brain and, finding no infection, nevertheless trigger inflammation and attack healthy tissue, compounding the damage.

The culprit in this system-wide immune response is neutrophils, a white cell in the blood system that serves as the shock troops of the body’s immune system. Because our entire blood supply constantly circulates through the lungs, the organ serves as an important way station for neutrophils. It is here that the cells are often primed and instructed to go search for new infections. The activated neutrophils can also cause inflammation in the lungs, which Halterman suspects may be mistakenly identified as post-stroke pneumonia. The damage caused by activated neutrophils can also spread to other organs including the kidneys, and liver.

Read More: Lungs Mays Hold Key to Thwarting Brain Damage after a Stroke

Remembering a Pioneer of Environmental Health Science

Wednesday, January 31, 2018

By Pete Myers, Richard Stahlhut, Joan Cranmer, Steven Gilbert, Shanna Swan

Colleagues honor Bernard "Bernie" Weiss (1925-2018)—a remarkable scientist, thinker, visionary and writer


One rarely is lucky enough to drive the early evolution of a new scientific discipline, but Bernard (Bernie) Weiss was there, always at the forefront as the field of behavioral toxicology took shape.


And along with the many students he inspired, he remained there throughout his career. Blending psychology, toxicology, and technology, Bernie Weiss shaped this discipline using new methods to explore the subtle, and not so subtle, effects of environmental chemicals on behavior and the nervous system.

He was a remarkable scientist, thinker, visionary, and writer. Bernie Weiss passed away on the morning of January 22, 2018.

Bernie was born in Brooklyn, NY, in 1925 and served in the Air Force from 1944-45. He earned a Bachelor of Arts degree in Psychology from New York University in 1949, and a Ph.D. in Experimental Psychology in 1953 from the University of Rochester. From Rochester, he took a job at Johns Hopkins School of Medicine, but was recruited back to University of Rochester in 1965 by Dr. Harold Hodge to explore the behavioral consequences of exposure to toxicants, such as inorganic mercury vapor.

Bernie was a pioneer. In the 1960s he was one of the first to use LINC (Laboratory Instrument Computer) and Digital Equipment Computer (DEC). Computer systems would later allow researchers to perform incredibly complex experiments and collect data at a level of detail never before imagined, thereby revealing subtle effects of chemicals on behavior.

Bernie's lab led the way in computer-controlled experiments in behavioral toxicology, as well as to assess the effects of low levels of drugs and metals on the sensory systems of vision, touch and hearing. Many of these testing capabilities were transferred to and shared with other research laboratories.

Bernie also addressed the investigation of rare, idiosyncratic toxicity, such as food additives and multiple chemical sensitivity. By their nature, these investigations require less traditional study designs in which the subjects are not randomly assigned to the exposure group (most people would never respond), but the exposures are randomly applied in a blinded fashion to people believed to have the conditions.

Bernie was a master of technical details, but he also kept his eye on the big picture. Just one example: he pioneered the idea that small decreases in the average IQ of a population could lead to big decreases in intellectual stars, and big increases in people with individual cognitive disabilities.

Population level effects have consequences.

As the science of behavioral toxicology and related research methods evolved, Bernie continued to champion the scientific facts demonstrating that low levels of exposure to chemicals could have profound effects on the developing nervous system. He encouraged others to take on this work, pursuing for him what became a lifelong goal: to make the world a safer, more resilient place for all.

Bernie was a generous and enduring collaborator. One notable example is his long-term collaboration with Victor Laties (Ph.D. Psychology University of Rochester, '54). Together they shepherded the discipline of behavioral toxicology from its origins in behavioral pharmacology to its distinguished and impactful status today.

Bernie was also a great mentor, who created a unique atmosphere of stability with flexibility that gave his students, staff and collaborators support and encouraged creativity necessary for good science and to explore new ways to answer research questions. He always made himself available to students and staff to discuss problems and scientific challenges, and to explore new methods to try to answer questions.

Bernie wasn't satisfied to remain quietly within the cloistered halls of academia. He saw the human implications of his work and while always the scientist, he pushed hard to apply that science to protect human and environmental health. Many of Bernie's students went on to have important and impactful careers in academia, government and industry.

The family encourages gifts of remembrance be donated to the University of Rochester Weiss Endowment Fund, supporting the Weiss Toxicology Scholar Award for pre-doctoral and postdoctoral trainees. The Fund has supported 8 scholars since 2014.

Pete Myers, Environmental Health Sciences; Richard W. Stahlhut, University of Missouri at Columbia; Joan Cranmer, University of Arkansas for Medical Sciences; Steven G. Gilbert, Institute of Neurotoxicology & Neurological Disorders; Shanna H. Swan, Icahn School of Medicine at Mount Sinai.

Read More: Remembering a Pioneer of Environmental Health Science

URMC Professor Emeritus and Pioneer of Neurotoxicology Dies at 92

Thursday, January 25, 2018

Weiss

Bernard "Bernie" Weiss, Ph.D.

By Susanne Pallo

Bernard “Bernie” Weiss, ’53 (Ph.D.), professor emeritus of Environmental Medicine and Developmental & Behavioral Pediatrics, passed away on January 22 at the age of 92 as the result of a fall.

Weiss was a monumental and beloved figure in the scientific community, and helped found a field of research that tracks the impact of toxic chemicals on human behavior. His research sparked national discussions about the dangers of artificial food dyes, pesticides, and chemicals in plastics. He often advocated for better policies to protect the public.

As recently as 2015, Weiss participated in a national debate over the safety of food dyes, which the Food and Drug Administration had declared safe. Citing studies that showed an association between children ingesting food dyes and hyperactivity, Weiss supported a ban. Several large manufacturers, including Kraft, announced they would remove artificial food coloring such as Yellow No. 5 and Yellow No. 6 from its macaroni and cheese, replacing the dyes with natural ingredients such as turmeric and paprika.

”We are all gamblers. We scheme to conquer chance, to beguile it into surrender, to lull it into forgiveness. In the end, it subdues us; but without malice, and at times to our advantage. Like other lives, mine has been hostage to random collisions… Neurotoxicology will continue to be an adventure as long as its practitioners remain adventurers.”

Into the final years of his career, Weiss sat on advisory boards that review data and make recommendations about dioxin (an industrial waste product), metals, dental amalgams, the environmental conditions on NASA spacecraft, and air quality aboard commercial airplanes. Up to about two years ago, he could be found in lab several days a week, happy to offer consultation and support to other researchers. A scientific paper he co-authored is in the process of being published.

Deborah Cory-Slechta, Ph.D., professor and former chair of Environmental Medicine at URMC, trained as a postdoc in his lab. “Many of the issues Bernie began to address thirty or forty years ago are still major issues in the field today," she said. "He moved issues forward with creativity and foresight and his legacies will be with the field for a long time to come.”

Another colleague was fellow environmental health pioneer David Ozonoff, M.D., M.P.H., chair emeritus of environmental health at Boston University School of Public Health and co-editor-in-chief of the online journal, Environmental Health. He admired Weiss for his steadfastness, persistence to shared ideals, willingness to put his expertise at the service of the common good, his good humor, and not least, his major contributions to science.

“His legacy will not only be the scientific advances he made but those that will be made by others inspired and mentored by him,” Ozonoff said.

Weiss’ career began and ended at the University of Rochester. He earned a doctoral degree in Psychology at the University in 1953 and returned 12 years later as a faculty member.

In the intervening years, Weiss, a WWII Air Force veteran, conducted research at the Air Force School of Aviation Medicine in Texas, then Johns Hopkins University. He began developing ways to measure the impact of drugs, nutrients and chemicals on the brain, and built one of the first mini-computers ever used in research.

In 1965, Weiss was lured back to URMC as it launched one of the world’s first programs to grant a doctoral degree in toxicology. His research and mentorship helped build the program, which recently established the Bernard Weiss Endowment Fund in honor of his indelible mark on the program. The fund, which was organized by a group of URMC Toxicology Graduate Program alumni and staff, provides support for future leaders in the fields of neurotoxicology and toxicology.

Weiss received several honors. He was named Scientist of the Year by the Association of Children and Adults with Learning Disabilities in 1986. In 2003 he received a Distinguished Investigator Award from the Neurotoxicology Specialty Section of the Society of Toxicology. During the mid-1970s, Weiss took part in the U.S.-U.S.S.R. Environmental Health Exchange Agreement, where he led several U.S. delegations in discussions of behavioral toxicology with their counterparts across the globe.

When asked for an autobiographical statement for the journal Neurotoxicology forty years ago, Weiss wrote:

”We are all gamblers. We scheme to conquer chance, to beguile it into surrender, to lull it into forgiveness. In the end, it subdues us; but without malice, and at times to our advantage. Like other lives, mine has been hostage to random collisions… Neurotoxicology will continue to be an adventure as long as its practitioners remain adventurers.”

Weiss is survived by his children, Wendy (Les) Calkins and Tom (Debora) Weiss; grandchildren, Zachary (Sara), Nicole, William, Emily (Marcelo); brother, Leonard (Sandra); beloved partner, Marti Willit; nieces and nephews. A memorial service will be held at a later date.

To honor Weiss, consider making a contribution to the Bernard Weiss Endowment Fund.

Read More: URMC Professor Emeritus and Pioneer of Neurotoxicology Dies at 92

Ross Maddox Presents: When ears aren't enough: how your eyes help you listen

Wednesday, January 24, 2018

Ross will be talking to the public about audio-visual integration in San Diego! His talk is entitled: "When ears aren't enough: how your eyes help you listen." Feb 9 at 5 PM.

Read More: Ross Maddox Presents: When ears aren't enough: how your eyes help you listen

Introducing a New Faculty Member

Friday, January 5, 2018

Michele Rucci has joined the Department of Brain and Cognitive Sciences as a professor after serving as a professor of psychological and brain sciences at Boston University. Rucci’s research program combines experimental and theoretical approaches to study mechanisms of visual perception. His primary interests lie in the elucidation of how motor and sensory processes interact in the human brain and how motor behavior contributes to the extraction and processing of visual information. Rucci and his colleagues have explained the functional roles of microscopic eye movements that take place while we fixate on an object of interest. He has demonstrated that these miniature eye movements play important roles in reformatting the visual input to be processed efficiently and for systematically exploring objects during tasks that require high spatial precision. He received Laurea (MA) and PhD degrees in biomedical engineering from the University of Florence and the Scuola Superiore S. Anna in Pisa, respectively. Before joining the faculty of Boston University, he was a fellow in computational neuroscience at the Neurosciences Institute in San Diego.