Skip to main content

Coronavirus (COVID-19): Visitor Restrictions, Resources, and Updates

Explore URMC
menu

News

20202019201820172016

Subscribe to Neuroscience LISTSERV

‘Time is vision’ after a stroke

Wednesday, May 27, 2020

Huxlin photo

A research team including professor of ophthalmology Krystel Huxlin (right, in a 2019 photo) provided stroke patients with a form of physical therapy for the visual system using a device Huxlin developed. (University of Rochester photo / J. Adam Fenster)

A person who has a stroke that causes vision loss is often told there is nothing they can do to improve or regain the vision they have lost.

But research from the University of Rochester, published in the journal Brain, may offer hope to stroke patients in regaining vision.

The Rochester team found that survivors of occipital strokes—strokes that occur in the occipital lobe of the brain and affect the ability to see—may retain some visual capabilities immediately after the stroke, but these abilities diminish and eventually disappear permanently after approximately six months. By capitalizing on this initial preserved vision, early vision training interventions can help stroke patients recover more of their vision loss than if training is administered after six months. 

“One of our key findings, which has never been reported before, is that an occipital stroke that damages the visual cortex causes gradual degeneration of visual structures all the way back to the eyes,” says Krystel Huxlin, the James V. Aquavella, MD Professor in Ophthalmology at the University of Rochester’s Flaum Eye Institute

The Rochester research team—including Elizabeth Saionz, a PhD candidate in Huxlin’s lab and the first author of the paper; Duje Tadin, professor and chair of the Department of Brain and Cognitive Sciences; and Michael Melnick, a postdoctoral associate in Tadin and Huxlin’s labs—also discovered that early intervention in the form of visual training appears to stop the gradual loss of visual processing that stroke victims may experience.

Vision stroke rehabilitation remains a developing field, and previous studies and trials of experimental therapies have focused on patients with chronic vision loss—that is, patients who are more than six months post-stroke. 

“Right now, the ‘standard of care’ for vision stroke patients is that they don’t receive any targeted therapy to restore vision,” Saionz says. “They might be offered therapy to help maximize use of their remaining vision or learn how to navigate the world with their new limited vision, but there are no treatments offered that can give them back any of the vision that they lost.”

The new study compared chronic patients—those who were more than six-months post-stroke—with early subacute patients, who started training within the first three months after their stroke.

The researchers trained both groups of stroke patients using a computer-based device Huxlin developed. The training is a form of physical therapy for the visual system and involves a set of exercises that stimulates undamaged portions of the visual cortical system to use visual information. With repeated stimulation, these undamaged parts of the brain can learn to more effectively process visual information that is not filtered by the damaged primary visual cortex, partially restoring conscious visual sensations.

The researchers discovered that the subacute patients who underwent such vision training recovered global motion discrimination—the ability to determine the direction of motion in a noisy environment—as well as luminance detection—the ability to detect a spot of light—faster and much more efficiently than the chronic patients. 

Overall, the group’s findings suggest that individuals may maintain visual abilities early after a stroke, indicating they have preserved some sensory information processing that may temporarily circumvent the permanently damaged regions of the brain. Early visual training may therefore be critical both to prevent vision from degrading and to enhance restoration of any preserved perceptual abilities. 

“For the first time, we can now conclusively say that just as for sensorimotor stroke, ‘time is vision’ after an occipital stroke,” Huxlin says.

The study was funded by the National Institutes of Health, including NIH’s National Center for Advancing Translational Sciences and National Institute of General Medical Sciences, as well as the Research to Prevent Blindness Foundation.

Read More: ‘Time is vision’ after a stroke

NGP Student Honored with Edward Peck Curtis Award for Excellence in Teaching

Friday, May 22, 2020

Neuroscience graduate student Monique Mendes, M.S., has received the Edward Peck Curtis Award for Excellence in Teaching by a Graduate Student.

"I’m extremely proud of my students and what they have accomplished in and outside of the lab. I am incredibly fortunate to have been presented with opportunities to teach students throughout my Ph.D. I want to thank them because I have learned so much in the process,” Mendes said.

Mendes was one of 13 graduate students to be honored with this award, which requires graduate students to have significant interaction with undergraduate students in the classroom or lab, and excel in advancing the teaching mission of the University by providing highly-skilled and innovative instruction.

“I was thoroughly convinced by the nomination submitted by the faculty that Monique is an outstanding educator with a bright future,” Vice Provost and University Dean of Graduate Education Melissa Sturge-Apple, Ph.D., said.  In presenting the award to Mendes virtually earlier this month, Sturge-Apple presented Mendes remarked “I’m grateful for all of your hard work and your mentoring and teaching which is central to the mission of our University, so I was so honored to give you this award. I wish I could do it in person.”

During the presentation, Sturge-Apple read some of the nomination letters considered in the process:

“She [Monique] has a very didactic nature to her that is beautiful complimented by her enthusiasm and her vigor. She sets the setting naturally and her persistent work ethic is taught without words but through actions.”

“As a younger black woman who wants to go into science and medicine I don’t have very many people in my life who go into my field of interest and definitely not many who look like me, so Monique is a role model in that sense as well. She takes away some of the feelings of otherness that I had in certain situations and serves as a reminder that I can do this and I do belong.”


“She has a passion that’s contagious and she is clear and succinct in conveying information. She wants those around her to understand the material and to love it the same way that she does.”

Mendes is a 5th year student in the Neuroscience Graduate Program and is studying the dynamics and kinetics of microglia self-renewal in the adult brain.

Two 2020 NGP Graduates Honored for Thesis Work

Friday, May 22, 2020

Rianne Stowell, Ph.D. was awarded the Wallace O. Fenn Award for her thesis that characterizes the dynamics of microglia, and the mechanisms regulating the function of these cells in different areas of the brain. This award is given annually to a graduating student who has performed especially meritorious research. According to her advisor Ania Majewska, Ph.D., the research that contributed to Stowell’s thesis was published in a series of three manuscripts and two reviews. Stowell’s work put microglia in the spotlight, as heterogeneous complex cells that are exquisitely tuned to activity in the brain. One of the main ¬- ¬and surprising - findings was that their activities are largely carried out in the quiescent or sleeping brain. This discovery has broad implications for understanding how microglia fit into the functions of the brain’s networks and the development of novel therapeutics for neurological diseases where microglial function is likely altered. “The work highlights Stowell’s strong independent streak and a great work ethic,” Majewska said. “That, coupled with her innate intellectual abilities and creativity, results in a winning combination that will take her far in the future. This thesis is a great beginning to an incredibly promising scientific journey.”

Dawling Dionisio-Santos, M.D., Ph.D. was awarded The Vincent du Vigneaud Award for his thesis work that was judged as superior and unique with the potential to stimulate and extend research in the field. According to Dionisio-Santos’ advisor M. Kerry O’Banion, M.D., Ph.D., Dionisio-Santos moved his research in a more translational direction and initiated a series of experiments using glatiramer acetate, a drug currently prescribed for the treatment of multiple sclerosis. He discovered that, in addition to reducing amyloid plaque levels, glatiramer acetate also reduces tau pathology and improves behavioral performance, demonstrating clear translational relevance for patients with Alzheimer’s disease. “Dionisio-Santos is a talented future physician-scientist,” O’Banion said. “With outstanding potential based on his demonstrated ability to carry out complex experiments and analyses, develop new ideas and experiments based on thorough evaluation of the literature, and inspire others with his passion for wanting to better understand neurodegenerative diseases.”

Maiken Nedergaard honored by American Stroke Association for dedication to stroke research

Monday, February 24, 2020

Maiken Nedergaard, M.D., D.M.Sc., co-director of the Center for Translational Neuromedicine, professor in the Departments of Neurology, Neuroscience and Neurosurgery, received the Thomas Willis Lecture Award from the American Stroke Association. The award honors Nedergaard’s career of significant contributions to the basic science of stroke research.

The Nedergaard lab is dedicated to deciphering the role of neuroglia, cell types that constitute half of the entire cell population of the brain and spinal cord.

Last month, the lab published research showing that during a stroke the glymphatic system goes awry, triggers edema and drowns brain cells. In 2012, Nedergaard and her colleagues first described the glymphatic system, a network that piggybacks on the brain’s blood circulation system and is comprised of layers of plumbing, with the inner blood vessel encased by a ‘tube’ that transports cerebrospinal fluid (CSF). The system pumps CSF through brain tissue, primarily while we sleep, washing away toxic proteins and other waste.

The Thomas Willis Award honors the prominent British physician credited with providing the first detailed description of the brain stem, the cerebellum and the ventricles, with extensive hypothesis about the functions of these brain parts. The award recognizes contributions to the investigation and management of stroke basic science.

Nedergaard was one of eleven leading scientists honored for their work by the American Stroke Association. The awards were given during the American Stroke Association’s International Stroke Conference in Los Angeles.

Suzanne Haber Honored by Society of Biological Psychiatry for Research on Mental Disorders

Thursday, January 30, 2020

Suzanne N. Haber, Ph.D., Dean’s Professor in the Department of Pharmacology and Physiology, will receive the Society of Biological Psychiatry’s 2020 Gold Medal Award at the Society’s 75th Annual Scientific Convention & Meeting in the spring. The award honors members of the Society whose significant and sustained work has advanced and extended knowledge on the neurobiology of mental illness.

Haber’s lab investigates the cortico-cortical and cortico-basal ganglia systems in the brain. Her work demonstrates the specific hard-wired connections that are associated with normal decision making, emotional and cognitive control, and the connectional abnormalities in those circuits that are linked to a wide range of mental health disorders, including obsessive-compulsive disorder (OCD), drug abuse and addiction, schizophrenia, and motor control disorders such as Parkinson’s disease.  This work has played a key role in targeting and interpreting the effects of noninvasive and invasive therapeutic approaches for OCD and depression.

For the past ten years, Haber has led the Silvio O. Conte Center for Basic and Translational Mental Health Research at the University of Rochester. Funded by the National Institute of Mental Health, the Center uses translational approaches to probe the neurocircuitry that underlies neuromodulation for OCD, pinpointing specific abnormalities within the brain circuits that are associated with the disease. This information is being used to guide new treatment options for the three million-plus Americans who live with the disorder.

“Suzanne’s seminal contributions to elucidating specific neural networks that control learning, decision-making, reward and motivation, and how pathologies associated with these neural communication hubs underlie multiple neurological, movement, and mental health disorders make her uniquely qualified to receive this prestigious career award,” said Robert T. Dirksen, Ph.D., Lewis Pratt Ross Professor and Chair of the Department of Pharmacology and Physiology. “Her work is making a difference in the lives of individuals and families suffering from neurological and mental health disorders. We are extremely proud that she represents the University of Rochester as a Society of Biological Psychiatry Gold Medal Award winner.”

The Society of Biological Psychiatry was founded in 1945 to emphasize the medical and scientific study and treatment of mental disorders. It’s the oldest neuropsychiatry research society in America, currently made up of more than 1,500 members from across the United States, Canada, Europe and Asia. Members conduct research in areas spanning from basic cellular studies to clinical trials and prevention research.

Haber, who is also a professor of Neuroscience, Brain and Cognitive Science, and Psychiatry, will split the 2020 Gold Medal Award with Carol Tamminga, M.D. of UT Southwestern Medical Center.