Skip to content
Ruola Ning, Ph.D.

Ruola Ning, Ph.D.

Contact

About Me

Professional Background

Dr. Ruola Ning is a Professor of Imaging Sciences and Electrical and Computer Engineering at the University of Rochester. He received his BS degree in electronic physics from Zhongshan University, China, in 1982, a MS degree in electrical engineering in 1986, and a PhD degree in electrical engineeri...
Dr. Ruola Ning is a Professor of Imaging Sciences and Electrical and Computer Engineering at the University of Rochester. He received his BS degree in electronic physics from Zhongshan University, China, in 1982, a MS degree in electrical engineering in 1986, and a PhD degree in electrical engineering in 1989 from the University of Utah. He is a member of SPIE, and AAPM. Since 1989, he has been on the faculty of the University of Rochester. He is an ABR-certified medical physicist and is the author of more than 120 refereed journal articles and proceedings. He is also the inventor of fourteen issued US patents.
Dr. Ruola Ning is the Director of the Cone Beam CT Imaging Lab. Currently his research interests include the development of cone beam CT technology, cone beam CT breast imaging, x-ray phase contrast imaging, cone beam CT angiography imaging, 3-D and 4-D medical imaging, and computer-aided detection and diagnosis. He also collaborates on a project of cone beam CT-based evaluation of bone cancer treatment using allografting.

Faculty Appointments

Professor (Part-Time) - Department of Imaging Sciences (SMD)

Credentials

Education

PhD | University of Utah. Electrical Engineering. 1989

MS | University of Utah. Electrical Engineering. 1986

BS | China - Non-Medical School. Physics, All Other. 1982

Awards

Honorable Mention Poster Award, SPIE Medical Imaging 99, SPIE. Med. Imag. For Paper 3659-64 1999

Honorable Mention Poster Award, SPIE Medical Imaging 99, SPIE Med. Imag. for Paper 3659-86 1999

Honorable Mention Poster Award, SPIE Medical Imaging 97, SPIE Med. Imag. 1997

Award of First Independent Research Support and Transition (FIRST), NIH 1993

Publications

Journal Articles

Phantom study for volume-of-interest breast imaging using differential phase contrast cone beam CT (DPC-CBCT)

Jiangkun Liu, Ruola Ning and Weixing Cai.

Proc. SPIE. 2013; 8668: 866850.

Feasibility study of spectral imaging for differential phase contrast cone beam CT: computer simulations

Weixing Cai, Ruola Ning and Jiangkun Liu.

Proc. SPIE. 2013; 8668: 86684Z.

Enhancement of breast calcification visualization and detection using a modified PG method in cone beam breast CT

Jiangkun Liu, Ruola Ning, Weixing Cai, Ricardo Betancourt-Benitez.

J. X-ray Sci. Technol. 2012; 20(1): 107-120.

Performance investigation of a hospital-grade x-ray tube-based differential phase-contrast cone beam CT system

Yang Yu, Ruola Ning, Weixing Cai, Jiangkun Liu and David Conover.

Proc. SPIE. 2012; 8313: 83134F.

Investigation of moiré pattern-based phase retrieval approach for differential phase-contrast cone beam CT imaging using a hospital-grade tube

Weixing Cai, Ruola Ning, Yang Yu, Jiangkun Liu and David Conover.

Proc. SPIE. 2012; 8313: 83132R.

Investigation of source grating stepping for differential phase-contrast cone beam CT system

Weixing Cai, Yang Yu, Ruola Ning, Jiangkun Liu and David Conover.

Proc. SPIE. 2012; 8313: 83132S.

Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

Weixing Cai, Binghui Zhao, David Conover, Jiangkun Liu and Ruola Ning.

Med. Phys. 2012; 39(1): 543-553.

Performance evaluation of a differential phase-contrast cone-beam CT (DPC-CBCT) system for soft tissue imaging

Yang Yu, Ruola Ning and Weixing Cai.

Proc SPIE. 2011; 7961: 79614X.

Computer aided breast density evaluation in cone beam breast CT

Xiaohua Zhang and Ruola Ning.

Proc. SPIE. 2011; 7963: 796321.

Scatter correction for clinical cone beam CT breast imaging based on breast phantom studies

Weixing Cai, Ruola Ning and David Conover.

J. X-ray Sci. Technol. 2011; 19(1): 91-109.

Pseudo super-resolution for improved calcification characterization for cone beam breast CT (CBBCT)

Jiangkun Liu, Ruola Ning and Weixing Cai.

Proc. SPIE. 2010; 7622: 762236.

Design and construction of a micro-focus in-line phase-contrast cone-beam CT (PC-CBCT) system for soft tissue imaging

Weixing Cai and Ruola Ning.

Proc SPIE. 2010; 7622: 76225F.

Computer aided breast calcification auto-detection in cone beam breast CT

Xiaohua Zhang, Ruola Ning and Jiangkun Liu.

Proc. SPIE. 2010; 7624: 76242M.

Development and characterization of a beam hardening filter for a cone beam CT imaging system

Ricardo Betancourt Benitez, Ruola Ning and Dong Yang.

Proc. SPIE. 2010; 7622: 762210.

Cone Beam Computed Tomography (CT) for Breast Imaging: Radiation Dose, Breast Coverage, and Image Quality

Avice O'Connell, David Conover, Yan Zhang, P Seifert, W Logan-Young, CL Lin, Larry Sahler and Ruola Ning.

Am. J. Roentgenol. 2010; 195: 496-509.

Image quality improvement based on wavelet regularization for cone beam breast CT (CBBCT)

Dong Yang, Ruola Ning, Xiaohua Zhang, Ricardo Betancourt Benitez and Shaohua Liu.

Proc. SPIE. 2009; 7259: 725929.

Three dimensional breast masses auto detection in cone beam breast CT

Xiaohua Zhang, Ruola Ning and Dong Yang.

Proc. SPIE. 2009; 7260: 726027.

A quantitative analysis of breast densities using cone beam CT images

Ricardo Betancourt Benitez, Ruola Ning, David Conover and Shaohua Liu.

Proc. SPIE. 2009; 7260: 72602C.

Dose efficiency consideration for volume-of-interest bresat imaging using x-ray differential phase-contrast CT

Weixing Cai and Ruola Ning.

Proc. SPIE. 2009; 7258: 72584D.

Cone beam breast CT noise reduction using 3D adaptive Gaussian filtering

Xiaohua Zhang, Ruola Ning and Dong Yang.

J. X-ray Sci. Technol. 2009; 17(4): 319-333.

NPS characterization and evaluation of a cone beam CT breast imaging system

Ricardo Betancourt Benitez, Ruola Ning, David Conover and Shaohua Liu.

J. X-ray Sci. Technol. 2009; 17(1): 17-40.

Composite MTF evaluation of a cone beam CT breast imaging system

Ricardo Betancourt Benitez, Ruola Ning, David Conover, and Shaohua Liu.

Opt. Eng. 2009; 48(11): 117002.

Measurements of the modulation transfer function, normalized noise power spectrum and detective quantum efficiency for two flat panel detectors: a fluoroscopic and a cone beam computed tomography flat panel detector

Ricardo Betancourt Benitez, Ruola Ning, David Conover and Shaohua Liu.

J. X-ray Sci. Technol. 2009; 17(4): 279-293.

Circle plus partial helical scan scheme for a flat panel detector-based cone beam breast x-ray CT (CBBCT)

Dong Yang, Ruola Ning and Weixing Cai.

Int. J. Biomed. Imag. 2009; 2009: 637867.

Development of a quality control program for a Cone Beam CT

Betancourt-Benítez R; Ning R; Conover D.

Proc. SPIE. 2008; 6913: 691356.

Cone-beam reconstruction using retrieved phase projections of in-line holography for breast imaging

Cai W; Ning R.

Proc. SPIE. 2008; 6913: 69132Q.

A 3D metal artifact correction method in cone-beam CT bone imaging by an implant image library

Zhang Y; Ning R; Conover D.

Proc. SPIE. 2008; 6913: 691336.

Cone beam CT Tumor Vasculature Dynamic Study (Murine model)

Yang D; Ning R; Conover D; Betancourt-Benítez R; Liu S.

Proc. SPIE. 2008; 6916: 691629.

Preliminary study of a phase-contrast cone-beam computed tomography system: the edge-enhancement effect in the tomographic reconstruction of in-line holographic images

Cai W; Ning R.

Opt. Eng. 2008; 47(3): 037004.

A simplified method of scatter correction using beam-stop-array algorithm for cone-beam computed tomography breast imaging

Cai W; Ning R; Conover D.

Opt. Eng. 2008; 47(9): 097003.

A novel cone beam breast CT scanner: system evaluation

Ning R; Conover D; Yu Y; Zhang Y; Cai W, Betancourt-Benitez R; Lu X.

Proc. SPIE. 2007; 6510: 651030.

Implementation and evaluation of 4D cone beam CT (CBCT) reconstruction

Yang D; Ning R; Liu S; Conover D.

Proc. SPIE. 2007; 6510: 65105T.

Metal artifacts correction in cone-beam CT bone imaging

Zhang Y; Ning R; Conover D.

Proc. SPIE. 2007; 6510: 65105K.

Complete MTF evaluation of two cone beam CT systems

Betancourt-Benítez R; Ning R; Conover D.

Proc. SPIE. 2007; 6510: 65104I.

Evaluation of a new breast-shaped compensation filter for a newly built breast imaging system

Cai W, Ning R, Zhang Y and Conover D.

Proc. SPIE. 2007; 6510: 651039.

Implementation and evaluation of 4D cone beam CT (CBCT) reconstruction

Yang D; Ning R; Liu S; Conover D.

Proc. SPIE. 2007; 6510: 65105T.

Metal artifacts correction in cone-beam CT bone imaging

Zhang Y; Ning R; Conover D.

Proc. SPIE. 2007; 6510: 65105K.

Complete MTF evaluation of two cone beam CT systems

Betancourt-Benítez R; Ning R; Conover D.

Proc. SPIE. 2007; 6510: 65104I.

Cone beam computed tomography angiogenesis imaging: Preliminary studies

Conover D; Ning R; Paoni S; Wilson; Lu X; Zhang Y; Fenton B.

Proc. SPIE, Medical Imaging. 2006; 6143: 61433G.

Comparison measurements of DQE for two flat panel detectors: Fluoroscopic detector vs. cone beam CT detector

Betancourt Benítez R; Ning R; Conover, D.

Proc. SPIE Medical Imaging. 2006; 6142: 61422K.

Scatter correction using beam stop array algorithm for cone-beam CT breast imaging

Cai W, Ning R, and Conover D.

Proc. SPIE, Physics of Medical Imaging. 2006; 61423E.

Reconstruction implementation based on a flat panel detector cone beam breast CT (CBCTBI)

Yang D, Ning R, Conover D, Yu Y.

Proc. SPIE Physics of Medical Imaging. 2006; 6142: 61424H.

Flat panel detector-based cone beam CT for dynamic imaging: system evaluation

Ning R, Conover D, Yu Y, Zhang Y, Cai W, Yang D and Lu X.

SPIE Physics of Medical Imaging. 2006; 6142: 61422C.

A novel cone beam CT breast-imaging scanner: Preliminary System Evaluation

Ning R, Conover D, Yu Y, Willison K, Shiffhauer L, Zhang Y, and Lu X,.

SPIE Physics of Medical Imaging. 2006; 6142: 614211.

Blood flow measurement by cone-beam CT bolus imaging

Chen Z, Ning R, Conover D and Lu X.

SPIE Medical Imaging. 2006; 6143: 61432J.

Nonlinear dual-spectral image fusion for improving cone-beam-CT-based breast cancer diagnosis

Chen Z, Ning R, Conover D, and Willison K.

SPIE Physics of Medical Imaging. 2006; 6142: 61422P.

Investigation of image lag in a newly built high-speed flat-panel detector-based cone beam CT breast imaging system

Zhang Y, Ning R, and Conover D.

SPIE Physics of Medical Imaging. 2006; 6142: 61420Z.

Computer simulation of FDK reconstruction with the in-line holographic projection data

Cai W, Ning R and Yang D.

SPIE Physics of Medical Imaging. 2006; 6142: 61424G.

Volume fusion of two-circular-orbits cone-beam tomography

Chen Z; Ning R.

Appl Opt. 2006; 45(23): 5960-6.

Spatial shift variance and anisotropic blurring of cone-beam CT system

Chen Z; Ning R; Conover D; Yu Y.

Optical Engineering. 2006; 45(9): 097003.

FDK Half-scan with a heuristic weighting scheme on a flat panel detector-based Cone Beam CT (FDHHSCW)

Yang D; Ning R.

International Journal of Biomedical Imaging. 2006; 2006: 83983.

Supergridded cone-beam reconstruction and its application to point-spread function calculation.

Chen Z, Ning R

Applied optics.. 2005 August 144 (22):4615-24. Epub 1900 01 01.

Forest representation of vessels in cone-beam computed tomographic angiography.

Chen Z, Ning R

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.. 2005 January 29 (1):1-14. Epub 01/24/2005.

Johnson AM. Small animal imaging using a flat panel detector-based cone beam computed tomography (FPD-CBCT) imaging system

Conover DL, Ning R, Yu Y, Lu X, Wood R, Reeder JE.

Proc. SPIE, Medical Imaging. 2005; 5745: 307-318.

Flat panel detector-based cone beam CT lung imaging: preliminary system evaluation

Ning R, Conover D, Yu Y, Cai W, Lu X.

Proc. SPIE, Medical Imaging. 2005; 5745: 147-158.

Evaluation of flat panel detector cone beam CT breast imaging with different sizes of breast phantoms

Ning R, Conover D, Lu X, Zhang Y, Yu Y, Schiffhauer L, Cullinan, J.

Proc. SPIE, Medical Imaging. 2005; 5745: 626-636.

Image noise due to quantum fluctuations in flat panel detector based cone beam CT imaging

Zhang Y, Ning R, Conover D, Yu Y.

Proc. SPIE, Medical Imaging. 2005; 5745: 656-663.

Three-dimensional PSF characterization of circle-plus-arc cone-beam computed tomography

Chen Z, Ning R, Yu Y, Conover D.

Proc. SPIE, Medical Imaging. 2005; 5745: 664-675.

Modified FDK half-scan (MFDKHS) scheme on flat panel detector-based cone beam CT

Yang D, Ning R, Yu Y, Conover D, Lu X.

Proc. SPIE, Medical Imaging. 2005; 5745: 1030-1037.

Dual-basis-material decomposition for dual-kVp cone-beam CT breast imaging

Chen Z, Ning R, Conover D, Yu Y, Lu X.

Proc. SPIE, Medical Imaging. 2005; 5745: 1322-1333.

Image denoising with edge preservation based on multiscale singularity detection and adaptive directional filtering

Zhong J; Ning R.

IEEE, Trans on Image Process. 2005; 14(10): 1435-47.

Modified FDK half-scan (MFDKHS) scheme on a flat panel detector-based Cone-Beam CT

Yang D, Ning R (senior author), Conover D, Yu Y.

SPIE Medical Imaging. 2005; .

The influence of quantum noise on image quality in cone beam CT imaging

Zhang Y, Ning R (senior author), Conover D, Yu Y.

SPIE Medical Imaging. 2005; .

Pixel-pyramid model for divergent projection geometry

Chen Z (Post Doc) and Ning R (senior author).

Optical Engineering. 2005; 44(2): 027002.

Pitfalls in point-spread-function measurement of computed tomography system by micro phantom reconstruction

Chen Z (Post Doc) and Ning R (senior author).

Optical Engineering. 2005; 44(1): 017002.

Breast volume denoising and noise characterization by 3D wavelet transform.

Chen Z, Ning R

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.. 2004 July 28 (5):235-46. Epub 1900 01 01.

Three-dimensional point spread function measurement of cone-beam computed tomography system by iterative edge-blurring algorithm.

Chen Z, Ning R

Physics in medicine and biology.. 2004 May 2149 (10):1865-80. Epub 1900 01 01.

Preliminary system characterization of flat panel detector-based cone beam CT for breast imaging

Ning R, Conover D, Y Yu, X Lu, and H He.

SPIE Medical Imaging Proc. 2004; 5: 292-303.

Wavelet-based multiscale anisotropic diffusion in cone beam CT breast imaging denoising for x-ray dose reduction

Zhong J, Ning R and Conover D,.

SPIE Medical Imaging Proc. 2004; 5: 518-526.

Implementation and evaluation of the half-scan scheme based on real phantom from CBCT (cone beam CT) system

Yang D, Ning R, Yu Y, Conover D, and X Lu,.

SPIE Medical Imaging Proc. 2004; 5: 542-551.

Quantitative assessment of cone-beam CT system by 3D point-spread function

Chen Z, Ning R and Conover D,.

SPIE Medical Imaging Proc. 2004; 5: 574-585.

Design and construction of a flat panel-based cone beam computed tomography (FPD_CBCT) imaging system through the adaptation of a commercially available CT system: Recent data

Conover D, Ning R.

Med. Imag., SPIE Proc. 2004; 5368: 610-615.

Flat panel-detector-based cone beam CT imaging: preliminary system evaluation

Ning R and Conover D.

SPIE Medical Imaging Proc. 2004; 5: 616-620.

Image denoising based on multiscale singularity detection for cone beam ct breast imaging

Zhong J(Post Doc) and Ning R (senior author).

IEEE TMI. 2004; 23(6).

3D breast tumor measurement in cone-beam CT breast imaging

Chen Z (Post Doc) and Ning R (senior author).

SPIE Proc. 2004; 5368.

FDK Half-scan scheme (FDKHSCW) with newly developed cone-beam weighting function on a flat panel detector-based Cone-Beam CT

Yang D, and Ning R (senior author).

Medical Physics. 2004; .

Filling the Radon domain in computed tomography by local convex combination.

Chen Z, Ning R

Applied optics.. 2003 December 1042 (35):7043-51. Epub 1900 01 01.

Why should breast tumour detection go three dimensional?

Chen Z, Ning R

Physics in medicine and biology.. 2003 July 2148 (14):2217-28. Epub 1900 01 01.

Flat panel detector-based cone beam computed tomography with a circle-plus-two-arcs data acquisition orbit: preliminary phantom study.

Ning R, Tang X, Conover D, Yu R

Medical physics.. 2003 July 30 (7):1694-705. Epub 1900 01 01.

Design and construction of a flat panel-based cone beam computed tomography (FPD_CBCT) imaging system through the adaptation of a commercially available CT system: work in progress

Conover D, Ning R.

Med. Imag., SPIE Proc. 2003; 5030: 768-777.

Real time flat panel detector-based cone beam volume CT breast imaging: Phantom and Specimen study

Ning R, Conover D, Yu Y, Schiffhauer L, Cullinan J, and Robinson A.

Proc. SPIE. 2003; 5030: 185-190.

Flat panel detector-based cone beam volume CT breast imaging: Detector Evaluation

Yu Y, Conover D, Ning R (senior author).

Proc. SPIE. 2003; 5030: 711-719.

Accurate perspective projection calculation using a pixel-pyramid model in flat panel detector-based iterative cone beam reconstruction

Chen Z (Post Doc), Ning R (senior author), Conover D.

Proc. SPIE. 2003; 5030: 728-739.

Reconstruction accuracy of cone beam volume CT breast imaging for different scanning orbits

Ning R, Lu X, Yu Y.

Proc. SPIE. 2003; 5030: 1001-1009.

Cone-beam volume CT breast imaging: feasibility study.

Chen B, Ning R

Medical physics.. 2002 May 29 (5):755-70. Epub 1900 01 01.

Flat panel detector-based cone beam volume CT breast imaging: Phantom and Specimen study

Ning R, Conover D, Chen B, McHugh L, Cullinan J, Yu R.

Proc. SPIE. 2002; 4682: 218-227.

X-ray scatter suppression algorithm for cone beam volume CT

Ning R, Tang X, Yu R, Conover D.

Proc. SPIE. 2002; 4682: 774-781.

Cone beam volume CT breast imaging (CBVCTBI): wavelet analysis: based multiresolution reconstruction and de-noise technique

Chen B (Post Doc), and Ning, R (senior author).

Proc. SPIE. 2002; 4682: 236-244.

A cone beam filtered backprojection (CB-FBP) reconstruction algorithm for a circle-plus-two-arc orbit.

Tang X, Ning R

Medical physics.. 2001 June 28 (6):1042-55. Epub 1900 01 01.

Image distortion correction for image intensifier based volume tomographic angiography imaging

Ning R, Wang X, Shen J, Conover DL, and Zhang Y.

X-ray Sci. Technol. 2001; 9(2): 55-75.

Flat panel detector-based cone beam volume CT mammography imaging: Preliminary phantom study

Ning R, Chen B, Conover D, McHugh L, Cullinan J, Yu R.

Proc. SPIE. 2001; 4320: 601-610.

X-ray flat panel imager (FPI)-based cone beam CT under a circle-plus-two-arc data acquisition orbit, SPIE Med. Imaging

Tang X, Ning R, Yu R, Conover D.

Proc. SPIE. 2001; 4320: 828-838.

Investigation of x-ray scattering in x-ray flat panel imager (FPI)-based cone beam CT

Tang X, Ning R, Conover D, Yu R.

Proc. SPIE. 2001; 4320: 851-860.

Cone-Beam volume CT mammography imaging: Feasibility Study

Chen B (Post Doc), and Ning R (senior author).

Proc. SPIE. 2001; 4320: 655-664.

High speed cone beam reconstruction on PC

Yu R (Post Doc), Ning R (senior author) and Chen B (Post Doc).

Proc. SPIE. 2001; 4322: 964-973.

MR volumetric analysis of the human basal ganglia: normative data.

Ifthikharuddin SF, Shrier DA, Numaguchi Y, Tang X, Ning R, Shibata DK, Kurlan R

Academic radiology.. 2000 August 7 (8):627-34. Epub 1900 01 01.

Real time flat panel detector-based cone beam volume tomographic angiography imaging: Detector evaluation

Ning R, Colbeth R, Chen B, Yu R, Conover D, Ning Y, Blouir C.

Proc. SPIE. 2000; 3977: 396-407.

Flat panel detector-based cone beam volume CT angiography imaging: System Evaluation

Ning R, Chen B, Yu R, Conover DL, Tang X and Ning Y.

, IEEE Trans. Med. Imag. 2000; 19(9): 949-963.

An Efficient cone beam filtered back-projection (CB-FBP) reconstruction algorithm for a circle-plus-two-arc orbit, 2000

Tang X (Ph.D. student), and Ning R (senior author).

IEEE NSS-MIC. 2000; 2: 126-130.

Intravenous volume tomographic pulmonary angiography imaging

Ning R, Strang J, Chen B, Yu R, Morris TW, Conover D.

Proc. SPIE. 1999; 3660: 169-180.

Flat panel detector-based cone beam volume CT imaging: Detector evaluation

Ning R, Tang X, Yu R, Conover D, Zhang D.

Proc. SPIE. 1999; 3659: 192-203.

2D wavelet-based calibration technique for flat panel imaging detectors: application in cone beam volume CT

Tang X (Ph.D. student), Ning R (senior author), Yu R.

Proc. SPIE. 1999; 3659: 806-816.

Accurate and Efficient calibration method for a selenium flat-panel detector-based volume tomographic angiography imaging system

Zhang D (visiting scholar), Ning R (senior author), Chen B.

Proc. SPIE. 1999; 3659: 626-636.

Flat-panel detector-based volume tomographic angiography imaging: Detector Evaluation

Ning R, Zhang D, Yu R, Chen B.

Proc. SPIE. 1999; 3772: 167-178.

A cone beam reconstruction algorithm for a circle-plus-an arc acquisition geometry

Wang X. (Ph.D. student), Ning R (senior author).

IEEE Trans. Med. Image. 1999; 18(9): 815-824.

Image Intensifier-based intravenous volume tomographic angiography imaging: Animal Studies

Ning R, Zhang Y, Zhang D, Conover D.

Proc. SPIE. 1998; 3336: 733-741.

Selenium flat panel detector-based volume tomographic angiography imaging: Phantom Studies

Ning R, Denny L, Wang X, Zhang Y, Conover D, Zhang D, Williams C.

Proc. SPIE. 1998; 3336: 316-324.

Accurate and efficient image intensifier distortion correction algorithm for volume tomographic angiography

Wang X (Ph.D. student), Ning R (senior author).

Opt. Eng. 1998; 37(3): 977-983.

An image intensifier-based volume tomographic angiography imaging system

Ning R, Wang X, Conover DL, Tang X.

Proc. SPIE. 1997; 3032: 238-246.

Accurate and efficient image intensifier distortion correction algorithm for volume tomographic angiography

Wang X (Ph.D. student), Ning R (senior author).

Proc. SPIE. 1997; 3032: 427-440.

Image intensifier-based computed tomography volume scanner for angiography.

Ning R, Kruger RA

Academic radiology.. 1996 April 3 (4):344-50. Epub 1900 01 01.

An image intensifier-based volume tomographic angiography imaging system: System evaluation

Ning R, Zhang D, Wang X, Conover DL.

Proc. SPIE. 1996; 2708: 328-339.

Contrast media osmolatity affects opacification during renal arteriography

Morris TW, Ning R, Hartley DF, Owusu KN.

Acad. Radiol. 1996; 3(s)2: 251-253.

An image intensifier-based volume tomographic angiography imaging system: System Evaluation

Ning R, Wang X, Shen J, Conover DL.

Proc. SPIE. 1995; 2432: 280-2432.

An image intensifier-based volume tomographic angiography imaging system: geometric distortion correction

Ning R, Riek JK, Conover DL.

Proc. SPIE. 1994; 2163: 199-211.

An image intensifier-based volume tomographic angiography imaging system: work in progress

Ning R, Rooker SJ.

Proc. SPIE. 1993; 1896: 145-155.

An image intensifier-based volume tomographic angiographic imager

Ning R, Rooker SJ, Barsotti JB, Morris TW.

Proc. SPIE. 1992; 1651: 189-196.

A clinical image intensifier-based volume CT imager for angiography

Ning R, Barsotti JB, Kido DK, Kruger RA.

Proc. SPIE. 1991; 1443: 236-249.

Image intensifier-based volume CT imager: Angiographic applications

Ning R, Kruger RA.

Proc. SPIE. 1990; 1233(285-299).

Image Intensifier-based CT volume imager for angiography: System evaluation

Ning R, Kruger RA, Hu H.

Proc. SPIE. 1989; 1090: 131-143.

Computer simulation of image intensifier-based computed tomography detector: vascular application.

Ning R, Kruger RA

Medical physics.. 1988 15 (2):188-92. Epub 1900 01 01.

Reconstruction of blood vessels from x-ray subtraction projections: limited angle geometry.

Kruger RA, Reinecke DR, Smith SW, Ning R

Medical physics.. 1987 14 (6):940-9. Epub 1900 01 01.