Skip to main content
Explore URMC

URMC Logo

menu

Anna Majewska, Ph.D.

Contact Information

Phone Numbers

Office: (585) 275-4173

Research Labs

Biography

My specific interests lie in understanding how visual activity shapes the structure and function of connections between neurons in the visual cortex. During the critical period, closure of one eye leads to a shift in the responses of neurons towards the open eye. My labs current work focuses on the structural basis for this rapid ocular dominance plasticity using in vivo two-photon microscopy to elucidate single cell structure deep in the intact brain. Dendritic spines are the postsynaptic structures of most excitatory synapses in the CNS. Interestingly, spine structure is highly dynamic making the precise morphology of the spine a possible candidate for the coding of synaptic strength.
These experiments have shown increased spine motility as well as increased spine and axon terminal turnover following even one day of monocular deprivation. These synaptic changes occur in the absence of changes in gross dendritic or axonal structure, suggesting that fine scale changes in synaptic connectivity underlie rapid ocular dominance plasticity without an overall remodeling of the pre and postsynaptic scaffold.

Professional Background

Stanford University, Stanford, CA B.S. 1992-1995 Biology/Chemistry
Stanford University, Stanford, CA M.S. 1995-1996 Biology
Columbia University, New York, NY Ph.D. 1996-2001 Neurobiology and Behavior
Massachusetts Institute of Technology Post-Doc 2000-2005 Brain and Cognitive Sciences

Positions and Employment

2005- Present Assistant Professor, Department of Neurobiology and Anatomy, Center for Visual Science, University of Rochester Medical Center
2000-2005 Post doctoral fellow, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology

Honors

1995: Graduated with honors in biological sciences, Stanford University
1997: Columbia University award for summer study at Woods Hole – Methods in Computational Neuroscience, the Marine Biological Laboratory.
1999: Newberry award for the most promising student in the field of vertebrate zoology, Biological sciences department, Columbia University
2003: Young Scientist Award – Polish Neuroscience Society
2001-2004: MIT Whiteman Science Fellowship awarded to an outstanding postdoctoral fellow in the Department of Brain and Cognitive Science
2003-2008: Burroughs-Wellcome Fund career development award in the Biomedical Sciences.
2006: Cajal Club Cortical Explorer Award.
2007: Alfred P. Sloan Fellow
2008: National Academy of Sciences' Kavli Fellow

Research

Research: Imaging of synaptic structure and function in the visual system.

My lab uses advanced imaging techniques to study the structure and function of single cells in networks in the intact brain. Although a vast literature describes the development and function of neuronal connectivity, most of this work has been carried out in culture and excised or fixed tissue, where dynamic processes are inferred from static images compared across animals. Little is known about the function of subcellular compartments in the computations carried out by neurons in vivo. The goal of our work is to understand structural and functional changes occurring at synapses during plasticity elicited by sensory stimuli.
My specific interests lie in understanding how visual activity shapes the structure and function of connections between neurons in the visual cortex. During the critical period, closure of one eye leads to a shift in the responses of neurons towards the open eye. My labs current work focuses on the structural basis for this rapid ocular dominance plasticity using in vivo two-photon microscopy to elucidate single cell structure deep in the intact brain. Dendritic spines are the postsynaptic structures of most excitatory synapses in the CNS. Interestingly, spine structure is highly dynamic making the precise morphology of the spine a possible candidate for the coding of synaptic strength. By combining structural two-photon imaging with functional intrinsic signal imaging in the ferret and mouse, we can correlate changes in synaptic structure with changes in response properties of the visual cortex. These experiments have shown increased spine motility as well as increased spine and axon terminal turnover following even one day of monocular deprivation. These synaptic changes occur in the absence of changes in gross dendritic or axonal structure, suggesting that fine scale changes in synaptic connectivity underlie rapid ocular dominance plasticity without an overall remodeling of the pre and postsynaptic scaffold.
My lab is also interested in the mechanisms which underlie structural remodeling at synapses. Imaging carried out in reduced preparations such as the acute brain slice allows us to explore the contributions of different pathways to structural plasticity. Our work has shown that both intracellular pathways and the extracellular matrix are involved in the remodeling of the spine during synaptic plasticity.

Selected peer-reviewed recent publications:

Rittenhouse, C., Majewska, A. (2009) "Synaptic mechanisms of activity-dependent remodeling in visual cortex." J. Exp. Neurosci. 2:23-41.
Kelly, E.A., Tremblay, M-E., McCasland, J., Majewska, A. (2010) "Postsynaptic deregulation in GAP-43 HZ mouse barrel cortex." Cerebral Cortex 20(7):1696-707. PMC 2882825
Tremblay, M-E., Lowery, R. L., Majewska, A. (2010) "Experience-dependent interactions between microglia and synapses in the mouse visual cortex in vivo." PLOS Biology 8(11): e1000527. PMC 2970556
Tropea, D.*, Majewska, A.*, Garcia, R., Sur., M. (2010) "Structural dynamics of synapses in vivo correlate with functional changes during experience-dependent plasticity in visual cortex" J Neuroscience 30: 11086-95. *equal contribution PMC 2932955
Bogart, L., Levy, A., Gladstone, M., Allen P.D., Zettel, M., Ison, J.R., Luebke, A., Majewska, A. (2011) "Loss of prestin does not alter the development of auditory cortical dendritic spines" Neural Plasticity. Vol. 2011 Article ID 305621
Jeong, J.K., Tremere, L.A., Burrows, K., Majewska, A.K., Pinaud, R. (2011) The primary visual cortex is a site of production and sensitivity to estrogens. Plos One. 6(5):e20400. PMC 3101258
Tremblay, M.E., Majewska, A. (2011) "A role for microglia in synaptic plasticity?" Communicative and Integrative Biology 4(2). PMC 3104585

Credentials

Faculty Appointments

Education

1995
BS | Stanford University
Biological Science

1996
MS | Stanford University
Biological Science

2001
PhD | Columbia University
Neurobiology

Awards

2009
Winter Brain Research Conference Travel Fellow
Sponsor: Winter Brain Research Conference

2008
National Academy of Sciences' Kavli Fellow
Sponsor: National Academy of Sciences

2007 - 2010
Whitehall research award

2007 - 2009
Alfred P. Sloan Fellow

2006
Cajal Club Cortical Explorer Award

2003 - 2008
Burroughs-Wellcome Fund career development award in the Biomedical Sciences

2003
Young Scientist Award
Sponsor: Polish Neuroscience Society

2001 - 2004
MIT Whiteman Science Fellowship

1999
Newberry award
Sponsor: Biological sciences department, Columbia University

1997
Columbia University award for summer study at Woods Hole - Methods in Computational Neuroscience
Location: The Marine Biological Laboratory

VIEW ALL expand_more

Publications

Journal Articles

3/7/2016
Sipe GO, Lowery RL, Tremblay MÈ, Kelly EA, Lamantia CE, Majewska AK. "Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex." Nature communications. 2016 Mar 7; 7:10905. Epub 2016 Mar 07.

8/2015
Lantz CL, Sipe GO, Wong EL, Majewska AK, Medina AE. "Effects of Developmental Alcohol Exposure on Potentiation and Depression of Visual Cortex Responses." Alcoholism, clinical and experimental research.. 2015 Aug 0; 39(8):1434-42. Epub 2015 Jun 24.

1/5/2015
Sullivan KD, Majewska AK, Brown EB. "Single- and two-photon fluorescence recovery after photobleaching." Cold Spring Harbor protocols.. 2015 Jan 5; 2015(1):pdb.top083519. Epub 2015 Jan 05.

Books & Chapters

2011
Chapter Title: Imaging Tumors in the Brain
Book Title: Optical Imaging Techniques: A Laboratory Manual
Author List: Madden, K.S, M.L. Zettel, A.K. Majewska, E.B. Brown
Edited By: F. Helmchen and A. Konnerth, (Series Ed.) R. Yuste
Published By: Cold Spring Harbor Laboratory Press2011 in Cold Spring Harbor, NY

2010
Chapter Title: Single- and Two-Photon Fluorescence Recovery After Photobleaching
Book Title: Imaging: A Laboratory Manual
Author List: Sullivan, K., Majewska, A., Brown, E.
Edited By: Yuste R
Published By: Cold Spring Harbor Laboratory Press2010 in Cold Spring Harbor, New York

2009
Chapter Title: Imaging Tumors in the Brain
Book Title: Imaging in Neuroscience: A Laboratory Manual
Author List: Madden, K.; Zettel, M.; Majewska, A.; Brown, E.
Edited By: Helmchen F., Konnerth A.
Published By: Cold Spring Harbor Laboratory Press2009 in Cold Spring Harbor, New York

VIEW ALL PUBLICATIONS

Videos

play_circle_filled

The Secret Life of Microglia