Skip to main content
menu

News

20242023202220212020

Mitchell O'Connell Lab To Open

Monday, December 12, 2016

Current Postdoctoral Berkeley Fellow, Mitchell O'Connell, Ph.D. is set to open his new lab in April 2017, in the department of Biochemistry & Biophysics, at URMC. Currently Mitch is working in Jennifer Doudna's lab and his research aims to understand the mechanisms of RNA-mediated gene regulation through the development of new RNA-targeting tools based on CRISPR/Cas technology.

Welcome Mitch!

‘Antisense’ compounds offer new weapon against influenza A

Thursday, November 17, 2016

Challenging a long-held convention, University researchers have shown they can inhibit the influenza A virus by targeting its genomic RNA with “antisense” compounds.

Their findings, highlighted on the cover of Nucleic Acid Therapeutics, offer scientists a new way to attack an increasingly drug-resistant pathogen that causes an estimated 250,000 to 500,000 deaths a year.

“Antisense” compounds are synthesized with nucleotides, the building blocks of nucleic acid, often shown as various combinations of A, U, G and C. When the compounds – called antisense oligonucleotides (ASOs) – bind to the targeted genomic RNA, they block its ability to replicate.

The collaboration, involving the labs of Douglas Turner, professor of chemistry; Luis Martinez-Sobrido, associate professor of microbiology and immunology; and two researchers in Poland, reported that “antisense” compounds targeting one of the virus’ eight genomic RNA segments caused a five- to 25-fold reduction of influenza A virus in cell cultures.

“That’s a big difference,” Martinez-Sobrido says. “When mice are infected with 10,000 viruses, they all die. However, with 25 times less virus, all animals can survive infection and they don’t even develop symptoms.”

Read More: ‘Antisense’ compounds offer new weapon against influenza A

NIH Director Visits URMC, Says it’s an Exciting Time to be a Researcher

Monday, October 10, 2016

NIH director round tableCollins' first stop was lunch with 15 graduate students and postdocs who came prepared with a wide range of questions. The discussion covered the importance of communicating science to the public and policymakers, increasing diversity in biomedical research and new mechanisms to support young scientists at the start of their careers. Postdoctoral fellow Sarah Latchney and Ph.D. graduate student Solomon Abiola attended the lunch with Collins and describe the experience here.

Members of the Center for RNA Biology highlighted their most promising work for Collins and Center director Lynne E. Maquat, Ph.D., gave Collins a tour of her lab, where he met more trainees and junior researchers (admittedly, Collins' favorite part of visits like these).

Dr. Collins SpeakingIn his keynote address at the end of the day, Collins delivered an uplifting message to a packed house in the Class of '62 auditorium: it is an extremely exciting time to be in biomedical research, and after many lean years we are turning a corner, with the NIH budget finally increasing in real terms. He detailed several of the NIH's new programs, like the Human Microbiome Project, Big Data to Knowledge (BD2K), the Precision Medicine Initiative and the Cancer Moonshot.

He applauded URMC on the renewal of the CTSI funding and cited the translational research conducted by Arthur J. Moss, M.D., which has led to new treatments for patients with Long QT syndrome (LQTS), and John J. Treanor, M.D., which is helping scientists in pursuit of a universal flu vaccine. Collins outlined several new funding initiatives, including the NIH Director's Early Independence Award, which is helping assistant professor Elaine L. Hill, Ph.D., study the impact of fracking on infant and child health.

Collins affirmed that the U.S. is the strongest biomedical research country in the world thanks to institutions like URMC. You can view his keynote, "Exceptional Opportunities in Biomedical Research," here.

Read More: NIH Director Visits URMC, Says it’s an Exciting Time to be a Researcher

American Health Council Names Dr. Harold Smith, Ph.D. to Education Board

Monday, September 19, 2016

Dr. Harold Smith, Professor at The University of Rochester, has been selected to join the Education Board at the American Health Council. Dr. Smith will be sharing his knowledge and expertise in the field of molecular biology, molecular virology, RNA biology, and drug discovery.

Dr. Harold Smith became involved in research after beginning his career as a professor in the Department of Biochemistry at The University of Rochester. As a biophysics professor, he utilized his knowledge and expertise in the areas of research and innovation of RNA, protein molecular biology, cell regulation, and drug discovery. Furthermore, Dr. Smith develops curriculum, teaches and mentors students from high school to postgraduate.

Dr. Harold Smith is also the Founder, President, and CEO of OyaGen, Inc. The objective of OyaGen, Inc. is to induce transient and beneficial changes in the protein expression and function in human tissues by involving the editing enzymes in targeting biomedically relevant pathways.

Dr. Harold Smith is a member of The American Heart Association, The Council on Atherosclerosis, The RNA Society, The American Society for Biochemistry and Molecular Biology and a fellow in the The Royal Society of Biology. In addition, Dr. Smith serves on the Scientific Advisor Board of Cannabis Sciences, Inc., IgxBio, Inc. and Trovita Health Sciences as well as the Editorial Board of the International Journal of Virology and AIDS, Frontiers in Microbiology, The Journal of Biological Chemistry, and The Journal of BioDiscovery.

Read More: American Health Council Names Dr. Harold Smith, Ph.D. to Education Board

Maquat Featured at Cornell-Ithaca Creativity Workshop

Saturday, July 30, 2016

RocHackHealth Group

J. Lowell Orbison Chair of Biochemistry and Biophysics, and of Oncology, Lynne Maquat, PhD, was a featured speaker at The Creativity Spark: a creativity workshop for scientists, a workshop put on by Cornell University, July 25.

The creativity workshop featured award winning scientists and scholars, including two Nobel Laureates, as they discussed the Creativity Spark and its role in science exploration.

URMC Team Revises Understanding of Genetic Code

Friday, July 1, 2016

Grayhack lab photo

Beth Grayhack, Ph.D., with lab
members and grad students
Christina Brule and Jiyu Wang

Scientists for years have known that the genetic code found in all living things contains many layers of complexity. But new research from the University of Rochester cracks the code more deeply, clarifying for example why some genes are inefficiently translated into proteins.

In a study published in the journal Cell, the researchers, co-led by Beth Grayhack, Ph.D., of the UR School of Medicine and Dentistry, discovered the existence and identity of 17 pairs of inefficient codons (DNA nucleotides or bases) within the genetic code.

Scientists have generally considered each piece of the genetic code (or codon) as a single “word” in a language. But the new data suggests some codon combinations act as compound words or phrases whose order and pairing has a significant impact on the translation of genes into proteins.

“Consider the words ‘pancake’ versus ‘cake pan,’ “ said Grayhack, an associate professor of Biochemistry and Biophysics, Pediatrics, and Cancer, in the Center for RNA Biology, at the UR Medical Center.

Read More: URMC Team Revises Understanding of Genetic Code

Review: Giving Gene Editing Technology CRISPR-Cas9 a Boost

Thursday, June 23, 2016

A new gene editing technology called CRISPR-Cas9 has taken the scientific world by storm. It allows researchers to quickly and easily make changes to the DNA of humans, animals and plants. The hope is that CRISPR-Cas9 may be used in the future to eliminate or correct faulty genes that cause disease.DNA

In a recent issue of the journal Cell, Lynne E. Maquat, Ph.D. and Maximilian W. Popp, Ph.D. of the University of Rochester Center for RNA Biology describe how scientists can make this technology more efficient. Understanding the principles of nonsense-mediated mRNA decay (NMD), a cellular mechanism that Maquat discovered early in her career, will help anyone employing the technology achieve a better result -- namely, a more complete knock out or deletion of a desired gene.

Read More: Review: Giving Gene Editing Technology CRISPR-Cas9 a Boost

Clara Kielkopf Receives EvansMDS Discovery Research Grant

Saturday, June 11, 2016

Biochemistry & Biophysics Associate Professor, Clara Kielkopf's project, entitled, Structural mechanisms and targeting of MOS-relevant pre-mRNA splicing factors has been selected by EvansMDS for funding for 2016. This year EvansMDS requested 12 full DRG proposals and were able to fund 6 of them. Their hope is that these findings will translate into improvements in therapy that can be delivered to MDS patients.

The Kielkopf lab investigates splicing defects in hematologic malignancies; roles of human pre-mRNA splicing factors in HIV-1 infectivity; development of engineered splicing factors for correction of splicing defects and splice sites and their associated proteins as therapeutic targets.

Harold Smith Publishes Commentary on RNA and DNA Editing

Sunday, June 5, 2016

Epigenetics is a popular, yet still mysterious concept in health and medicine. It’s the study of a variety of biological processes that alter the expression of our genes. Sometimes this involves modifying the structure of our chromosomes to mask or unmask genes, and other times the actual genetic code is changed in certain cells. Harold C. Smith, Ph.D., a longtime professor of Biochemistry and Biophysics at the University of Rochester School of Medicine and Dentistry has studied epigenetics in a research focus known as RNA and DNA editing since it was introduced two decades ago. He was invited to write a commentary on the progress and future of this research, published today in Trends in Biochemical Sciences, and answers a few questions about the subject.

Read More: Harold Smith Publishes Commentary on RNA and DNA Editing

Harold Smith Inducted into Royal Society of Biology

Friday, April 8, 2016

Dr. Harold Smith, Professor of Biochemistry & Biophysics has been inducted into the Royal Society of Biology.

A long time member of the department, Dr. Smith's primary interest is understanding the composition, regulation and structure of macromolecular complexes involved in regulating gene expression at the level of messenger RNA expression and processing. The lab's focus is on a platform of enzymes that change the genetic code at the DNA or RNA level by deaminating cytidine to form uridine. Current data suggest that this family of cytidine deaminase function with other proteins (auxiliary proteins) as holoenzymes complexes which we refer to as editosomes (for RNA) or mutasomes (for DNA). RNA editing or DNA mutational activity by these enzymes affect the protein coding capacity of mRNAs and thereby can diversify the proteins that are expressed by cells (the proteome). Please visit the Smith Lab for more information. Dr. Smith has a 30 year track record of teaching and mentoring graduate students, medical students and undergraduates at the University of Rochester and has lead curriculum design and reform for these programs.

The Royal Society of Biology (RSB), previously called the Society of Biology, is a learned society in the United Kingdom created to advance the interests of biology in academia, industry, education, and research. Formed in 2009 by the merger of the Biosciences Federation and the Institute of Biology, the society has around 16,000 individual members, and over 100 member organizations. In addition to engaging the public on matters related to the life sciences, the society seeks to develop the profession and to guide the development of related policies.

Professor Harold Smith to Organize Meeting on Drug Discovery

Thursday, March 31, 2016

The Clinical Science and Drug Discovery Conference had its inaugural meeting in 2015 in Baltimore, MD where Dr. Smith was asked to serve as a Keynote Speaker (and judge for poster sessions). The organizers of that meeting nominated him to organize this years meeting in Dundee, Scotland along with Drs. Ian Catchpole from GlaxoSmithKline in the UK and Nikolai Zhelev, professor at Abertay University, the hosting institution. The meeting will be held July 27-29. Dr. Smith will also deliver a keynote lecture at this meeting and chair a special topics session that he is bringing together on 'Host Cell Factors as Therapeutic Targets'. For more information, please visit the Drug Discovery Summit site, see also the CSDD Brochure.