Principal Investigator

Danielle Benoit, Ph.D. University of Rochester work Rochester NY 14627-0168 office: Goergen Hall 308 p (585) 273-2698

Honors & News

2015 2014 2013 2012 2011 Archives

  • June 11, 2015

    Scientists Hand Out Lemonade to Support National Foundation

    Danielle Benoit, Ph.D. will leave her Therapeutic Biomaterials Lab at the University of Rochester this weekend to host the 6th Annual Benoit Laboratory Lemonade Stand at the Rochester and Brighton public markets.

    Benoit and her students will be serving lemonade and explaining their work on childhood cancer therapies as part of a national effort organized by Alex's Lemonade Stand Foundation, which has helped fund her research.

    Most people don't realize that treating cancer in children is much different from treating cancer in adults, said Benoit, an assistant professor of biomedical engineering. At the same time, funding for childhood cancer research is woefully miniscule, compared to the money that goes into studying adult cancers.

    The name, Alex's Lemonade Stand, comes from Alexandra Alex Scott of Connecticut, a four-year-old girl who was diagnosed with cancer before her first birthday. Alex set up lemonade stands every year before her death at age eight to raise money so that doctors could find a cure for cancer, the leading cause of death for children 15 and younger. The idea spread, and children in other parts of the country set up their own lemonade stands to join the cause.

    Benoit hopes to raise $2,000 by the end of the weekend.

    Event Details

    What: Benoit Laboratory Lemonade Stand

    When & Where: Saturday, June 13, 10 am-1 pm, at Rochester Public Market

    280 N. Union St.

    Sunday, June 10, 9 am-1 pm, at Brighton Farmers Market

    1150 Winton Rd. South

  • June 10, 2015

    The Benoit Lab Welcomes Katherine Amelia

    Danielle and her husband, Pat, are delighted to announce the birth of their daughter, Katherine Amelia. She was born at 7:50 pm on 6/3, weighing in at 7 lbs, 13 oz and 19.25 inches. Congratulations!

  • June 9, 2015

    Joseph Vella Awarded AAFPRS Leslie Bernstein Grant

    Joe Vella, MD, MSE, PhD, Clinical Fellow (Otolaryngology) in the Benoit Lab, has been awarded the AAFPRS Leslie Bernstein Grant. The Leslie Bernstein Grants Program is generously funded by an endowment from Leslie Bernstein, MD, DDS. The program is coordinated by the Research Committee of the Educational and Research Foundation for the American Academy of Facial Plastic and Reconstructive Surgery and the Centralized Otolaryngology Research Efforts (C.O.R.E.). The purpose of the grant is to encourage original research projects which will advance facial plastic and reconstructive surgery. A $25,000 grant may be awarded annually to an Academy Member. Grants may be used as seed money for research projects. Congrats Joe!

  • June 3, 2015

    Congratulations to Dominic Malcolm for a successful qualifying exam!

    Congratulations to Dominic Malcolm for a Successful Qualifying Exam! Dominic is currently a graduate student in the Benoit Lab, and his current project is Development of Bilayer Hydrogels for Spatiotemporally Controlled Nanoparticle-Mediated siRNA Delivery, which is supported by the National Science Foundation with DMR-1206219 and NYSTEM with IDEA N11G-035.

  • May 15, 2015

    6th Annual Benoit Lab Lemonade Stand Set to Raise Money for Childhood Cancer

    The Benoit Lab will once again participate in Alex's Lemonade Stand Foundation Lemonade Days to raise money and awareness for the fight against childhood cancers. The fundraiser will be held at the Rochester Public Market and Brighton Farmer's Market, on Saturday June 13th and Sunday June 14thfrom 10am-1pm.

    Founded by an inspiring young girl, Alex's Lemonade Stand Foundation is a national organization that supports some of the research currently performed in the Benoit Laboratory. Please visit the Benoit Lab Lemonade Stand page. The money you donate will pay for research to find better treatments and cures for childhood cancer. Please help kids and their families by providing desperately needed hope! Thanks for your support!

  • May 5, 2015

    Amy Van Hove Receives Commendation in the Outstanding Dissertation Award Competition

    BME graduate student, Amy Van Hove (Benoit Lab) has been selected to receive Commendation in the Outstanding Dissertation Award competition Engineering. Amy was chosen from the other BME PhD graduates as the most outstanding thesis within the department to get to the Hajim level. While this recognition does not come with a monetary award, this recognition is a testament to her exceptional work as a graduate student at the University of Rochester.

    Congrats Amy!

  • May 5, 2015

    Congratulations to Michael Baranello for successfully defending his Ph.D. Thesis!

    Congratulations to Michael Baranello for a successfully defending his Ph.D. Thesis! Mike worked in the Benoit Lab, and his project, Functionalized Poly(styrene-alt-maleic anhydride)-b-poly(styrene) Micelles for Targeted Delivery of Parthenolide to Leukemia Cells, was supported by was supported by the National Science Foundation Graduate Research Fellowship Program, Alex's Lemonade Stand Foundation for Childhood Cancer, Leukemia Research Foundation, and I Care I Cure Foundation.

  • April 20, 2015

    Nanoparticles to Prevent Tooth Decay; Looking to Put Dentists Out of Business

    We’re never at a loss for toothpaste choices, but we may see the addition of With Nanotechnology! advertised on the tubes in the future. Researchers from the University of Rochester, in the Benoit Lab, and University of Pennsylvania have designed drug-releasing nanoparticles to protect the teeth from bacterial damage and decay.

    The particles are engineered with a positively-charged outer segment to bind to negatively-charged sites on plaque biofilms and tooth enamel, effectively anchoring the particles in place. The particles’ cores are hydrophobic and loaded with farnesol, a hydrophobic antibacterial drug. The cores release the drug more quickly in acidic environments – perfect for when cariogenic bacteria begin to take over the teeth and form biofilms, which can drop locally to pH of 4.5-5.5.

    They showed that head-to-head in a topical application, the drug-loaded nanoparticles were four times more powerful in destroying the bugs (Streptococcus mutans, in this study) than the free drug alone. They attributed this fact to the ability of the nanoparticles to adhere and deliver the drug in a controlled-release fashion, targeting sites of bacterial growth (biofilms) to deliver higher concentrations locally. Additionally, laboratory models of teeth and decay showed that the particles were able to greatly reduce the mechanical stability of the biofilms, rendering them more brittle and breakable. In vivo trials showed reductions in both the number and severity of dental caries in rats treated twice daily with the farnesol-loaded nanoparticles. The free farnesol applications were less effective, and likely washed away in what we imagine to be copious amounts of rat saliva.

  • April 10, 2015

    DrBicuspid.com: Dentists May Soon Prescribe Nanoparticles to Fight Biofilms

    Researchers have created a way for nanoparticles to deliver an antibacterial agent directly to dental plaque, according to a new study. Their discovery could lead to better treatments for caries and other biofilm-related diseases.

    Nanoparticles that deliver farnesol directly to cariogenic biofilm were created by researchers from multiple U.S. institutions. Farnesol is a naturally occurring antimicrobial agent that is effective against some caries-causing bacteria.

    We had two specific challenges, stated senior study author Danielle Benoit, PhD, assistant professor of biomedical engineering at the University of Rochester, in a press release. We had to figure out how to deliver the antibacterial agent to the teeth and keep it there, and also how to release the agent into the targeted sites.

  • April 7, 2015

    Congratulations to Amy Van Hove for a successfully defending her Ph.D. Thesis!

    Amy worked in the Benoit Lab, and her project, Enzymatically-responsive Poly(ethylene glycol) Hydrogels for the Controlled Delivery of Therapeutic Peptides, was supported by the Howard Hughes Medical Institute Med-into-Grad fellowship in cardiovascular science, the National Institute of Health (NIH R01 AR064200), start-up funds from the University of Rochester, the Orthopaedic Research and Education Foundation/Musculoskeletal Transplant Foundation (OREF/MTF), and the Rochester/Finger Lakes Eye & Tissue Bank (RETB/FLETB).

  • April 2, 2015

    Nanoparticles Provide Novel Way to Apply Drugs to Dental Plaque

    Therapeutic agents intended to reduce dental plaque and prevent tooth decay are often removed by saliva and the act of swallowing before they can take effect. But a team of researchers has developed a way to keep the drugs from being washed away. Dental plaque is made up of bacteria enmeshed in a sticky matrix of polymers—a polymeric matrix—that is firmly attached to teeth. The researchers, led by Danielle Benoit at the University of Rochester and Hyun Koo at the University of Pennsylvania's School of Dental Medicine, found a new way to deliver an antibacterial agent within the plaque, despite the presence of saliva.

    Their findings have been published in the journal ACS Nano. We had two specific challenges, said Benoit, an assistant professor of biomedical engineering. We had to figure out how to deliver the anti-bacterial agent to the teeth and keep it there, and also how to release the agent into the targeted sites. To deliver the agent-known as farnesol-to the targeted sites, the researchers created a spherical mass of particles, referred to as a nanoparticle carrier. They constructed the outer layer out of cationic-or positively charged-segments of the polymers. For inside the carrier, they secured the drug with hydrophobic and pH-responsive polymers.

    Read more about this at Science Magazine.org.

  • March 26, 2015

    Benoit Receives Receive NSF Career Award

    The National Science Foundation has granted its most prestigious award in support of junior faculty, the Faculty Early Career Development (CAREER) Program, to three Rochester researchers: Antonio Badolato, assistant professor of physics; Danielle Benoit, the James P. Wilmot Distinguished Assistant Professor in the Department of Biomedical Engineering; and Michael Neidig, assistant professor of chemistry.

    Benoit is being recognized for her work in regenerative medicine and drug delivery applications. Benoit also has appointments in chemical engineering and the Center for Musculoskeletal Research.

    We are developing a completely novel and potent site-directed therapy to treat bone diseases, with a focus on osteoporosis, said Benoit. It's an honor to have the National Science Foundation recognize and support our efforts.

    The award from the NSF, which comes with a $500,000 grant over five years, will help Benoit develop educational outreach programs to excite children in grade school and high school about STEM careers. Much of Benoit's research involves regenerative strategies, including tissue engineering and drug delivery approaches, for musculoskeletal applications with a focus on bone.

  • February 13, 2015

    Hoffman, Benoit Paper Published in Biomaterials

    Graduate student, Michael Hoffman and the Benoit Lab have published a paper, Emulating Native Periosteum Cell Population and Subsequent Paracrine Factor Production To Promote Tissue Engineered Periosteum-Mediated Allograft Healing, in the journal Biomaterials.

    Emulating autograft healing within the context of decellularized bone allografts has immediate clinical applications in the treatment of critical-sized bone defects. The periosteum, a thin, osteogenic tissue that surrounds bone, houses a heterogeneous population of stem cells and osteoprogenitors. There is evidence that periosteum-cell derived paracrine factors, specifically vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2), orchestrate autograft healing through host cell recruitment and subsequent tissue elaboration. In previous work, we demonstrated that the use of poly(ethylene glycol) (PEG) hydrogels as a tissue engineered (T.E.) periosteum to localize mesenchymal stem cells (MSCs) to the surface of decellularized bone enhances allograft healing and integration. Herein, we utilize a mixed population of 50:50 MSCs and osteoprogenitor cells to better mimic native periosteum cell population and paracrine factor production to further promote allograft healing. This mixed cell population was localized to the surface of decellularized allografts within degradable hydrogels and shown to expedite allograft healing. Specifically, bone callus formation and biomechanical graft-host integration are increased as compared to unmodified allografts. These results demonstrate the dual importance of periosteum-mediated paracrine factors orchestrating host cell recruitment as well as new bone formation while developing clinically translatable strategies for allograft healing and integration.

  • February 11, 2015

    Danielle Benoit Receives NSF Faculty Early Career Award

    Danielle Benoit has received an NSF Faculty Early Career Development (CAREER) award for her proposal "Polymer therapeutics for bone regeneration: next-generation osteoporosis treatments."

    Osteoporosis results from imbalances in bone production and resorption and affects roughly 14 million Americans. The majority of osteoporosis therapies reduce the activity of cells that resorb bone. Development of therapies targeted towards cells that produce new bone matrix may revolutionize osteoporosis therapies by offering an alternative to restore bone health, however, a critical technological gap exists in developing drug delivery approaches that provide specific treatment to bone. To overcome this challenge, Benoit's research seeks to develop drug delivery approaches to efficiently and specifically target anabolic drugs to bone to develop novel treatments for osteoporosis. Successful completion of this research will significantly advance therapeutic strategies for osteoporosis and the approaches developed will be readily adaptable to treat other bone diseases.

  • February 11, 2015

    Jomy Varghese Receives Medical Faculty Council Travel Award in Basic Science Research

    Benoit Lab graduate student, Jomy Varghese is a recipient of the Medical Faculty Council URSMD Trainee / Student Travel Award for Winter 2015 in Basic Science Research. The Medical Faculty Council is proud to be able to support his promising academic work by assisting with travel costs (up to a total of $1000) for his research presentation at a scientific conference. Congrats Jomy!

  • February 10, 2015

    Benoit Lab Publishes Paper in Tissue Engineering

    The Benoit Lab has published a new paper, entitled, Development of poly(ethylene glycol) hydrogels for salivary gland tissue engineering applications, in the journal of Tissue Engineering, Part A.

  • February 9, 2015

    Benoit Lab Publishes Article in ACS Nano

    The Benoit Lab's article, pH-activated Nanoparticles for Controlled Topical Delivery of Farnesol to Disrupt Oral Biofilm Virulence has been published in ACS Nano. The authors of this work are Benjamin Horev, Marlise Klein, Geelsu Hwang, Yong Li, Dongyeop Kim, Hyun Koo, and Danielle Benoit.

  • January 12, 2015

    Andrew Shubin Awarded Grant from National Cancer Institute

    Andrew Shubin, a graduate student in Danielle Benoit's lab, was awarded an F30 grant from the National Cancer Institute (NCI) for his project titled Poly(ethylene glycol) Hydrogels for Salivary Gland Regeneration.

    Radiation for head and neck cancers causes severe damage to salivary glands resulting in permanent dry mouth. This issue greatly affects the quality of life for cancer survivors, as proper saliva production is essential for eating, speaking, and oral hygiene. This project aims to develop at 3D tissue engineering scaffold utilizing poly(ethylene glycol) hydrogels in order to regenerate salivary gland tissue to help treat this condition.

Recent Publications