Principal Investigator

Benjamin L. Miller, Ph.D. University of Rochester work Box 697 601 Elmwood Ave Rochester NY 14642 office: MC 6-6820 p 585-275-9805

Contact

Benjamin Miller Lab University of Rochester work MC 5-6818 601 Elmwood Ave Rochester NY 14642 p 585-275-9805

Affiliations

Molecular Recognition & Biosensing

Research in the Miller group focuses on two fundamental areas: the control of biomolecular interactions through the synthesis of new small-molecule probes, and the observation of biomolecular interactions through the development of novel optical sensing technologies. In the area of control, we are particularly interested in the sequence-selective recognition of RNA. New RNA sequences with important functions in basic biology and human health and disease are being discovered at an ever-increasing rate, and yet our ability to target these sequences specifically is still at a rudimentary stage. To address this gap, we are applying techniques of molecular design and a novel combinatorial method of small-molecule evolution called Dynamic Combinatorial Chemistry, which allows us to rapidly prototype sequence-selective RNA binding molecules. Thus far we have used this methodology to RNA targets important in Myotonic Dystrophy and HIV. Protein-targeted small-molecule discovery projects are also of interest, and current projects include the mechanism of tight junction formation and the transport of beta-amyloid across the blood-brain barrier.

To the end of achieving better methods of observing biomolecular interactions, our group has a longstanding program in the use of the optical properties of nanostructured materials as the basis for new biosensors and diagnostic tools. Two examples of current efforts include Arrayed Imaging Reflectometry (AIR) and sensors based on two-dimensional photonic crystals (2-D PhC). AIR relies on the creation of a near-perfect antireflection coating on the surface of a silicon chip; binding of a biomolecular target destroys this antireflective condition and is visible by a change in reflected light. This allows for highly multiplexed (10's to 1000's of targets) and quantitative detection. Photonic crystal sensors, on the other hand, offer the possibility of ultrasensitive detection: for example, a major long-term goal of our work is the production of sensors that can effectively detect one virus in a blood sample.

Recent Publications

    1. Ferrari R
    2. Hernandez DG
    3. Nalls MA
    4. Rohrer JD
    5. Ramasamy A
    6. Kwok JB
    7. Dobson-Stone C
    8. Brooks WS
    9. Schofield PR
    10. Halliday GM
    11. Hodges JR
    12. Piguet O
    13. Bartley L
    14. Thompson E
    15. Haan E
    16. Hernández I
    17. Ruiz A
    18. Boada M
    19. Borroni B
    20. Padovani A
    21. Cruchaga C
    22. Cairns NJ
    23. Benussi L
    24. Binetti G
    25. Ghidoni R
    26. Forloni G
    27. Galimberti D
    28. Fenoglio C
    29. Serpente M
    30. Scarpini E
    31. Clarimón J
    32. Lleó A
    33. Blesa R
    34. Waldö ML
    35. Nilsson K
    36. Nilsson C
    37. Mackenzie IR
    38. Hsiung GY
    39. Mann DM
    40. Grafman J
    41. Morris CM
    42. Attems J
    43. Griffiths TD
    44. McKeith IG
    45. Thomas AJ
    46. Pietrini P
    47. Huey ED
    48. Wassermann EM
    49. Baborie A
    50. Jaros E
    51. Tierney MC
    52. Pastor P
    53. Razquin C
    54. Ortega-Cubero S
    55. Alonso E
    56. Perneczky R
    57. Diehl-Schmid J
    58. Alexopoulos P
    59. Kurz A
    60. Rainero I
    61. Rubino E
    62. Pinessi L
    63. Rogaeva E
    64. St George-Hyslop P
    65. Rossi G
    66. Tagliavini F
    67. Giaccone G
    68. Rowe JB
    69. Schlachetzki JC
    70. Uphill J
    71. Collinge J
    72. Mead S
    73. Danek A
    74. Van Deerlin VM
    75. Grossman M
    76. Trojanowski JQ
    77. van der Zee J
    78. Deschamps W
    79. Van Langenhove T
    80. Cruts M
    81. Van Broeckhoven C
    82. Cappa SF
    83. Le Ber I
    84. Hannequin D
    85. Golfier V
    86. Vercelletto M
    87. Brice A
    88. Nacmias B
    89. Sorbi S
    90. Bagnoli S
    91. Piaceri I
    92. Nielsen JE
    93. Hjermind LE
    94. Riemenschneider M
    95. Mayhaus M
    96. Ibach B
    97. Gasparoni G
    98. Pichler S
    99. Gu W
    100. Rossor MN
    101. Fox NC
    102. Warren JD
    103. Spillantini MG
    104. Morris HR
    105. Rizzu P
    106. Heutink P
    107. Snowden JS
    108. Rollinson S
    109. Richardson A
    110. Gerhard A
    111. Bruni AC
    112. Maletta R
    113. Frangipane F
    114. Cupidi C
    115. Bernardi L
    116. Anfossi M
    117. Gallo M
    118. Conidi ME
    119. Smirne N
    120. Rademakers R
    121. Baker M
    122. Dickson DW
    123. Graff-Radford NR
    124. Petersen RC
    125. Knopman D
    126. Josephs KA
    127. Boeve BF
    128. Parisi JE
    129. Seeley WW
    130. Miller BL
    131. Karydas AM
    132. Rosen H
    133. van Swieten JC
    134. Dopper EG
    135. Seelaar H
    136. Pijnenburg YA
    137. Scheltens P
    138. Logroscino G
    139. Capozzo R
    140. Novelli V
    141. Puca AA
    142. Franceschi M
    143. Postiglione A
    144. Milan G
    145. Sorrentino P
    146. Kristiansen M
    147. Chiang HH
    148. Graff C
    149. Pasquier F
    150. Rollin A
    151. Deramecourt V
    152. Lebert F
    153. Kapogiannis D
    154. Ferrucci L
    155. Pickering-Brown S
    156. Singleton AB
    157. Hardy J
    158. Momeni P
    (2014 Jul 01). Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol. 13, 686-99.
    1. Ofori LO
    2. Hilimire TA
    3. Bennett RP
    4. Brown NW
    5. Smith HC
    6. Miller BL
    (2014 Feb 13). High-affinity recognition of HIV-1 frameshift-stimulating RNA alters frameshifting in vitro and interferes with HIV-1 infectivity. J Med Chem. 57, 723-32.
    1. Yadav AR
    2. Sriram R
    3. Carter JA
    4. Miller BL
    (2014 Feb 01). Comparative study of solution-phase and vapor-phase deposition of aminosilanes on silicon dioxide surfaces. Mater Sci Eng C Mater Biol Appl. 35, 283-90.