Principal Investigator

Jong-Hoon Nam, Ph.D. University of Rochester work Rochester NY 14627-0126 office: Hopeman 212 p (585) 273-4555


Mechano-Biology of the Inner Ear Sensory System

Our laboratory investigates the mechano-transduction of the inner ear — how the inner ear selects and amplifies external stimuli. Inner ear sensory cells are called mechanoelectric transducers because they are mechanically stimulated by surrounding soft tissues or fluid to generate electric signals. We focus on the mechanical interaction between inner ear sensory cells and their surrounding structures. Computational and experimental methods are combined for our research. Various engineering and biological principles are incorporated such as structural acoustics, micro-fluidics, microelectromechanical systems, and electrophysiology.

Our goal is to:

  1. Contribute to understanding sensorineural hearing and balance disorders
  2. Provide new insights for the design of biologically inspired mechano-transduction sensors and prosthetics

Multi-scaled computational model of cochlear mechano-transduction. Acoustic energy travels along the cochlear duct (left) to eventually activate the transduction channel (right). We will identify the role of the OHC during forward and reverse transduction between the transduction channels and the cochlear duct. Our focus is on the OHCs in this forward and backward energy transfer.