Skip to main content

Coronavirus (COVID-19): Visitor Restrictions, Resources, and Updates

Explore URMC
menu

Michael A. O'Reilly, Ph.D.

Contact Information

Phone Numbers

Administrative: (585) 275-5948

Office: (585) 275-5948

Research Labs

Faculty Appointments

Biography

I am a Professor of Pediatrics and Environmental Medicine at the University of Rochester Medical Center with broad training in developmental biology, carcinogenesis, and lung disease. I am also Director of the Lung Biology and Disease Program, co-director of our T32 Pulmonary Training grant, and a member of the admissions committee for the Medical Scientist Training Program and the Toxicology Graduate Program. As a basic scientist trained by physicians, I have a deep appreciation for the importance of integrating basic and clinical research to understand, treat, and prevent disease. My research expertise is on oxygen toxicity to the developing lung. It helps me teach students, review manuscripts for journals, and serve on study sections, such as for the National Institutes of Health. I also have a strong and consistent track record of mentoring and training the next generation of physician-scientists. I am proud to say that trainees who have graduated from my lab remain in science as Postdoctoral Fellows, Academic Physicians, NIH-funded Scientists, and Program Directors in industry.

Professional Background

I grew up on Long Island and became interested in biological sciences when my 7th grade biology teacher brought clams from the Sound to school for us to dissect. I earned my undergraduate degree in Biology from the State University of New York at Stony Brook in 1984 and my doctoral degree at the University of Cincinnati in 1989. My thesis research under the mentorship of Dr. Jeffrey Whitsett showed how the collagen domain was responsible for proper folding and secretion of surfactant protein A and how glucocorticoids regulate transcription of surfactant proteins A and B. As a postdoctoral fellow at the NIH, I sequenced and studied transcriptional regulation of transforming growth factor-beta2 with Drs. Michael Sporn and Anita Roberts, and learned how to created transgenic mice working with Drs. Heiner Westphal and Kathleen Mahon. I joined the Department of Pediatrics at the University of Rochester in 1995 where I began to use my research training to investigate how high levels of oxygen (hyperoxia) inhibit cell proliferation via transforming growth factor-beta and p53 signaling. The preterm birth of my son in 2006 heavily motivated me to refocus my research towards understanding how early-life oxygen exposure reprograms lung development and cardiopulmonary health.

Research

Research from my lab has shown how mitochondrial superoxide produced during hyperoxia damages DNA, thereby activating SMG1 and ATM kinases controlling p53-dependent expression of the cyclin-dependent kinase inhibitor p21. Although p21 is best known for its ability to inhibit proliferation, my lab was the first to show that it protects against oxidative stress independent of cell cycle arrest through maintenance of anti-apoptotic proteins of the Bcl-2 family. P21 has now emerged to be one of the most abundantly expressed genes in many forms of lung injury.

The preterm birth of my son reminded me of my graduate training experience where I contributed to the understanding of surfactant biology and witnessed the excitement of a Neonatology fellow who used it to successfully treat a preterm infant for the first time. Using mice and human tissues as a model system, I have spent the past 15 years investigating how the oxygen environment at birth influences cardiopulmonary health later in life. My lab has shown how early-life oxygen exposure alters differentiation of alveolar epithelial cells, the host response to influenza A virus infection, reduces cognitive performance, and promotes age-dependent pulmonary hypertension and heart failure that can shorten lifespan. RNA-seq studies, genetic lineage mapping in mice, and investigation of human tissues are currently being used to understand how neonatal oxygen causes disease via metabolic reprogramming of stem/progenitor cells.

Credentials

Education

1984
BS | SUNY at Stony Brook
Biology

1989
PhD | University of Cincinnati
Developmental Biology

Post-doctoral Training & Residency

1993 - 1995
NRC Fellow, Lab. Mamm. Genes and Develop., NICHD, NIH Dr. Heiner Westphal

1992 - 1993
Senior Staff Fellow, Laboratory of Chemoprevention, NCI, NIH

1989 - 1992
Staff Fellow, Laboratory of Chemoprevention, NCI, NIH Drs. Michael B. Sporn and Anita B. Roberts

VIEW ALL expand_more

Awards

2005
Ruth A. Lawrence Academic Faculty Service Award
Sponsor: Department of Pediatrics

2004 - 2008
Dean's Incentive Award
Location: University of Rochester Research

1993 - 1995
National Research Council
Sponsor: NICHD, NIH Research

1988 - 1989
Albert B. Ryan
Location: University of Cincinnati Ph.D Studies

1986 - 1988
NIH Training Grant
Location: University of Cincinnati

VIEW ALL expand_more

Publications

Journal Articles

8/2020
Dylag AM, Kopin HG, O'Reilly MA, Wang H, Davis SD, Ren CL, Pryhuber GS. "Early Neonatal Oxygen Exposure Predicts Pulmonary Morbidity and Functional Deficits at 1 Year." The Journal of pediatrics.. 2020 Aug 0; 223:20-28.e2.

5/10/2020
Bell RD, White RJ, Garcia-Hernandez ML, Wu E, Rahimi H, Marangoni RG, Slattery P, Duemmel S, Nuzzo M, Huertas N, Yee M, O'Reilly MA, Morrell C, Ritchlin CT, Schwarz EM, Korman BD. "TNF Induces Obliterative Pulmonary Vascular Disease in a Novel Model of Connective Tissue Disease Associated Pulmonary Arterial Hypertension (CTD-PAH)." Arthritis & rheumatology.. 2020 May 10; Epub 2020 May 10.

12/13/2019
Dylag AM, Haak J, Yee M, O'Reilly MA. "Pulmonary mechanics and structural lung development after neonatal hyperoxia in mice." Pediatric research.. 2019 Dec 13; Epub 2019 Dec 13.

Books & Chapters

2015
Chapter Title: Perinatal disruptions of lung development: Mechanisms and implications for chronic lung diseases.
Book Title: Lung Development, Clinical Correlates and Technologies for the Future
Author List: O'Reilly, MA.
Edited By: Whitsett J, Jobe A, and Abman, S
Published By: New York, Cambridge University Press 2015

2014
Chapter Title: The impact of DNA damage on epithelial cell maintenance of the lung.
Book Title: Mitochondrial Function in Lung Health and Disease.
Author List: Kalifa L and O'Reilly MA.
Edited By: Natargajan V and Parinandi NL
Published By: Springer Science+Business Media 2014

2005
Chapter Title: Cell and Animal Models of Lung Injury
Book Title: Lung Injury: Mechanisms, Pathophysiology, and Therapy
Author List: Finkelstein JN, O'Reilly MA, Holm BA, Chess PC, Notter RH
Published By: Marcel Dekker 2005 in New York, NY

VIEW ALL PUBLICATIONS

Videos

play_circle_filled

Many 'Adult' Diseases Trace Back to Baby's Earliest Days