Each eukaryotic cell must execute a complex program of specific gene expression. The DNA of the genome is intimately complexed with proteins into an assembly known as chromatin. Compaction and storage of genomic DNA has long been viewed as the main function of this assembly; however, recent work has demonstrated that in some instances, chromatin structure play an important role in bringing about this pattern of specific expression, and it is likely that the structural elements of chromatin have been integrated into many transcriptional control mechanisms.
The goal of the research in this laboratory is to provide detailed structure information on the protein-DNA interactions and DNA organization within chromatin, and to correlate this information with simple functional assays of the consequences of this organization. Model chromatin complexes will be prepared in vitro and structurally analyzed with chemical approaches. In addition, cloning expression of histone proteins with specific mutations will be useful in the determination of relevant domains within these proteins while facilitating the creation of site-specific probes of protein and DNA structure with chromatin.