Skip to main content
Explore URMC

URMC Logo

menu
URMC / Labs / Schieber Lab / News

News

2017

Electrical Stimulation in Brain Bypasses Senses, Instructs Movement

Thursday, December 7, 2017

robotic hand

The brain’s complex network of neurons enables us to interpret and effortlessly navigate and interact with the world around us. But when these links are damaged due to injury or stroke, critical tasks like perception and movement can be disrupted. New research is helping scientists figure out how to harness the brain’s plasticity to rewire these lost connections, an advance that could accelerate the development of neuro-prosthetics.

A new study authored by Marc Schieber, M.D., Ph.D., and Kevin Mazurek, Ph.D. with the University of Rochester Medical Center Department of Neurology and the Del Monte Institute for Neuroscience, which appears today in the journal Neuron, shows that very low levels of electrical stimulation delivered directly to an area of the brain responsible for motor function can instruct an appropriate response or action, essentially replacing the signals we would normally receive from the parts of the brain that process what we hear, see, and feel.

“The analogy is what happens when we approach a red light,” said Schieber. “The light itself does not cause us to step on the brake, rather our brain has been trained to process this visual cue and send signals to another parts of the brain that control movement. In this study, what we describe is akin to replacing the red light with an electrical stimulation which the brain has learned to associate with the need to take an action that stops the car.”

Read More: Electrical Stimulation in Brain Bypasses Senses, Instructs Movement

Neuron Accepts Kevin Mazurek's paper, "Injecting Instructions in Premotor Cortex".

Thursday, November 2, 2017

Postdoctoral Fellow Wins Prize for Brain Injury Research

Tuesday, October 24, 2017

Overby Photo

Stephen Steadman '64, center, presents Kevin Mazurek, left, with the first place honor and audience prize at the Meliora Weekend competition for the Steadman Family Postdoctoral Associate Prize in Interdisciplinary Research. Steadman, who received a BS in physics from the University of Rochester, is a scientific administrator at the Laboratory for Nuclear Science and the Department of Physics at MIT. Melissa Sturge-Apple, dean of graduate studies, is at right. (University of Rochester photo / Bob Marcotte)

Even simple movements require the integration of information from multiple areas of the brain. This process breaks down when brain damage occurs, resulting in neurological disorders.

But what if researchers could find a way to bypass those damaged areas and maintain the flow of information?

Kevin Mazurek, a postdoctoral fellow in the lab of Marc Schieber, professor of neurology, described how the lab is making progress in doing just that. He finished in first place and took the audience prize as well in the Meliora Weekend competition for the Steadman Family Postdoctoral Associate Prize in Interdisciplinary Research.

Mazurek’s prizes were worth $1,250.

Using micro electrical stimulation in primates, “we’ve shown that we can deliver the information successfully to two functionally different areas of the brain,” Mazurek explained. “This is an important first step.”

The next steps in the research, which incorporates neurology, neuroscience, electrical engineering, and biomedical engineering, include expanding the ability to communicate information across a wide reach of brain areas. This could “potentially improve the quality of living for individuals with injuries such as stroke, traumatic brain injury, or Alzheimer’s disease.”

This is the second year of the competition.

It is open to all postdoctoral scholars and appointees in the School of Medicine and Dentistry, and in Arts, Sciences & Engineering. Four prizes are awarded for research that exemplifies the importance of cross- disciplinary approaches toward examining high impact questions of science. Prizes were awarded based on 3-minute oral presentations to a panel of judges.

This year’s topics ranged from “Recent Breakthroughs in Understanding the Brain’s Waste Removal System” to “Catalytic Solar-Driven Generation of H2 in Artificial Photosynthesis” – and the benefits of yoga in helping cancer patients cope with the side affects of chemotherapy.

"Read More: Postdoctoral Fellow Wins Prize for Brain Injury Research

Dr. Adam Rouse Receives an NIH K99/R00 Award

Friday, May 12, 2017

Photo of Adam Rouse

Dr. Adam Rouse, Post-doctoral Fellow in Neuroscience, recently received an NIH K99/R00 Pathway to Independence Award from the National Institute of Neurological Disorders and Stroke (NINDS). His project “Neural encoding of motor precision for advancing brain-machine interfaces” will study how motor areas of the brain encode different movements and use advanced mathematical models to build brain-machine interfaces that are more precise and intuitive to the user. In addition to his current mentor, Dr. Marc Schieber, Professor in Neurology and Neuroscience, the award will also support Dr. Rouse’s career development with additional mentoring from Dr. Robert Jacobs, Professor in Brain and Cognitive Sciences, and Dr. Sridevi Sarma, Associate Professor in Biomedical Engineering at Johns Hopkins University.

"