Skip to main content
Explore URMC
menu
URMC / Department of Neuroscience / Events / Visiting Speakers

 

Visiting Speakers

Upcoming20222021202020192018

NSC 503 Guest Speaker: Dr. Adriana DiPolo

Dr. Adriana DiPolo - Professor

 Nov 01, 2021 @ 4:00 p.m.

Professor
Department of Neuroscience, University of Montreal
Axe neurosciences, CRCHUM

Dr. Adriana Di Polo's laboratory focuses on the pathobiology of retinal ganglion cells, the neurons that convey visual information from the retina to the brain via their axons in the optic nerve. Loss of vision in glaucoma, the leading cause of irreversible blindness worldwide, is caused by the death of retinal ganglion cells. At present, there is no cure for glaucoma and current treatments are often insufficient to stop disease progression. We seek to understand the mechanisms underlying retinal ganglion cell death and to develop novel therapeutics to preserve and restore vision.

Student Moderator:  Kate Andersh

NSC 503 Guest Speaker: Dr. Andre Fenton

Andre Fenton, PhD - Professor, NYU

 Feb 14, 2022 @ 4:00 p.m.

Professor of Neural Science
NYU

I study how brains store experiences as memories, and how the expression of knowledge activates information that is relevant without activating what is irrelevant. My laboratory uses molecular, electrophysiological, behavioral, engineering, and theoretical methods to investigate these fundamental and interrelated issues in neuroscience.

In work with Todd Sacktor's laboratory, we identified protein kinase M zeta (PKMzeta) as a key molecular component of long term memory. PKMζ is a persistently active kinase that maintains enhanced electrical communication at the synapses between neurons. We discovered PKMζ's role in long-term memory storage by infusing ZIP, a selective inhibitor of PKMζ, into specific brain areas. Long-term memory for a particular place was erased after infusing ZIP into hippocampus a day, even a month after rats learned a place avoidance task. Importantly, ZIP did not alter baseline synaptic activity nor did it impair the rat's ability to relearn and remember the same information if it was retrained after the erasure. Subsequent work has shown that PKMζ is involved in memory storage in many parts of the brain. Our initial work on PKMζ and memory was selected as one of the ten "Breakthroughs of the Year 2006" by the editors of Science, and received substantial attention in the popular media, including the New York Times. We are continuing to study PKMζ's role in the synaptic organization of memory and in maintaining memory-related brain activity.

Neural coordination
We are investigating the role of the hippocampus in controlling how we choose relevant information to process, by studying the interaction of memories and neural activity in signaling information from multiple spatial frames. While rats and mice solve problems that require using relevant information and ignoring distractions, we make recordings from multiple sites and use computational tools to decode information from these recordings about cognitive variables like current location, memory, attention, and cognitive control. Evidence from this work suggests that neural activity is exquisitely coordinated on multiple time scales from milliseconds to minutes, so that neurons that represent the same information discharge together in time, but are desynchronized when representing conflicting information. We are studying specific disturbances of this neural coordination in rat and mouse models of schizophrenia, intellectual disability, autism, depression, epilepsy, and traumatic brain injury.

Recording electrical brain activity
We have developed an inexpensive, miniature, wireless digital device for recording electrical brain activity from rats that have spontaneous seizures and abnormalities of neural coordination. By making recordings that last days to weeks, we can characterize abnormalities in the coordinated electrical activity that leads up to seizures. Our goal is to learn whether this activity underlies cognitive impairments, and whether behavioral and pharmacological interventions can attenuate the neural and cognitive abnormalities. Together with business and engineering partners, we have developed our brain-recording technology for medical applications.

Student Moderator:  Uday Chockanathan

NSC 503 Guest Speaker: Dr. Shane Liddlelow

Shane Liddlelow, PhD - Asst. Professor

 Mar 14, 2022 @ 4:00 p.m.

Neuroscience Institute @ NYU
Assistant Professor, Department of Neuroscience and Physiology
Assistant Professor, Department of Ophthalmology

Our work focuses on the mechanisms that induce different forms of reactive astrocytes, and how these reactive cells interact with other cells in the CNS in a positive or negative way. We use high throughput single cell and bulk RNA sequencing, and spatial transcriptomics to investigate the heterogeneity of astrocytes in multiple species. We also take advantage of genetic engineering and modern in vitro modeling to interrogate disease mechanisms and interaction with other CNS cells that change between health and disease.

Student Moderator:  Linh Le

NSC 503 Guest Speaker: Dr. Emily Corderre

Emily Coderre, PhD - Asst. Professor

 Apr 04, 2022 @ 4:00 p.m.

Assistant Professor
Dept. of Communication Sciences and Disorder
Univ. Vermont

Dr. Coderre studies the cognitive neuroscience of language using neuroimaging techniques such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Her research examines the cognitive processes underlying language in both typically-developing populations and in special population such as bilinguals and individuals with autism. She is particularly interested in how we understand the meaning of language during word, sentence, and narrative comprehension, and in how such understanding is impaired in autism. Her work aims to better understand the mechanisms of language deficits in autism in order to design more effective treatment interventions.

Student Moderator:  Kathryn Toffolo