Skip to main content

Saturday, July 20:  All UR Medicine facilities are open as scheduled and providing safe patient care, with a goal to return all clinical services to full efficiency by early next week.
Patients: click here for more information. Faculty/Staff: click here for information.


  • miller lab research photo 1
  • miller lab research photo 2
  • miller lab research photo 3
  • miller lab research photo 4
  • miller lab research photo 5
  • miller lab research photo 6
  • miller lab research photo 7
  • miller lab research photo 8

Benjamin Miller Lab

Molecular Recognition & Biosensing

Research in the Miller group focuses on two fundamental areas: the control of biomolecular interactions through the synthesis of new small-molecule probes, and the observation of biomolecular interactions through the development of novel optical sensing technologies. In the area of control, we are particularly interested in the sequence-selective recognition of RNA. New RNA sequences with important functions in basic biology and human health and disease are being discovered at an ever-increasing rate, and yet our ability to target these sequences specifically is still at a rudimentary stage. To address this gap, we are applying techniques of molecular design and a novel combinatorial method of small-molecule evolution called Dynamic Combinatorial Chemistry, which allows us to rapidly prototype sequence-selective RNA binding molecules. Thus far we have used this methodology to RNA targets important in Myotonic Dystrophy and HIV. Protein-targeted small-molecule discovery projects are also of interest, and current projects include the mechanism of tight junction formation and the transport of beta-amyloid across the blood-brain barrier.

To the end of achieving better methods of observing biomolecular interactions, our group has a longstanding program in the use of the optical properties of nanostructured materials as the basis for new biosensors and diagnostic tools. Two examples of current efforts include Arrayed Imaging Reflectometry (AIR) and sensors based on two-dimensional photonic crystals (2-D PhC). AIR relies on the creation of a near-perfect antireflection coating on the surface of a silicon chip; binding of a biomolecular target destroys this antireflective condition and is visible by a change in reflected light. This allows for highly multiplexed (10's to 1000's of targets) and quantitative detection. Photonic crystal sensors, on the other hand, offer the possibility of ultrasensitive detection: for example, a major long-term goal of our work is the production of sensors that can effectively detect one virus in a blood sample.

Benjamin L. Miller, Ph.D.

Benjamin L. Miller, Ph.D.
Principal Investigator


Photo Featured in Lab on a ChipGraduate Student John Cognetti’s Research Featured on Inside-Cover of Lab on a Chip

A photonic biosensor-integrated tissue chip platform for real-time sensing of lung epithelial inflammatory markers

See the Handout

Read the Full Article in Lab on a Chip


Contact Us

  Benjamin Miller Lab
MC 5-6141A
601 Elmwood Ave
Rochester, NY 14642