Skip to main content
URMC / Labs / Benoit Lab / News




Benoit Lab graduate students honored at CMSR Research Symposium

Thursday, October 25, 2018

Several members of the Benoit Lab received awards at the 8th Annual Center for Musculoskeletal Research Symposium:

  • Graduate student Marian Ackun-Farmmer won the Predoctoral Randy N. Rosier MD PhD Award Competition for her oral presentation entitled, "Targeted Nanoparticle Delivery of Maraviroc to Normalize the Leukemic Bone Marrow Microenvironment."
  • Postdoctoral trainee Yuanhui Song, Ph.D., won the Postdoctoral Randy N. Rosier MD PhD Award Competition for his oral presentation entitled, "Engineering Salivary Gland Tissue Chips."
  • Graduate student Clyde Overby was a finalist for the poster presentation competition for his work entitled, "Semi-Randomized Zwitterionic Peptides for Antifouling Applications in Polymeric Nanoparticles."



Marian Ackun-Farmmer presents work at BMES Annual Meeting

Friday, October 19, 2018

Marian Ackun-Farmmer presented her work at the 50th Anniversary Meeting of the Biomedical Engineering Society on October 19, 2018. Her presentation was "Nanoparticle Drug Delivery to Treat Acute Myeloid Leukemia (AML).”

Maureen Newman successfully defends thesis

Friday, August 3, 2018

Maureen Newman defended her thesis on Aug 3. Her research project was titled, “Bone-targeted Polymer Delivery of Osteoanabolics for Bone Regeneration.”

Lemonade Stand Supports Efforts to Cure Childhood Cancer

Tuesday, June 5, 2018

The lab of Danielle Benoit, an associate professor of biomedical engineering, will hold its ninth annual fundraiser this weekend in support of Alex's Lemonade Stand Foundation and its efforts to cure childhood cancer. Donations are accepted online or by dropping by the lab's lemonade stand, being held from 10 a.m. to 1 p.m. Saturday June 9, at the Rochester Public Market, 280 North Union Street, or from 9 a.m. to 1 p.m. Sunday, June 10, at the Brighton Farmers Market, 1150 Winton Road South.

Read More: Lemonade Stand Supports Efforts to Cure Childhood Cancer

Professor Benoit receives University of Maine Francis Crowe Engineering Distinguished Alumni Award

Sunday, May 13, 2018

benoit award

From left to right: Professor Hemant Pends, Professor Danielle Benoit, Dean Dana Humphrey

Professor Danielle Benoit was presented with the 2018 University of Maine Francis Crowe Engineering Distinguished Alumni Award during the University’s graduation ceremonies on May 12. The award, presented by Hermant P. Pendse, chair of chemical and biomedical engineering and Dana N. Humphrey, dean of the college of engineering, recognizes outstanding service to the field of engineering. As a distinguished member of the Francis Crowe Society, Professor Benoit will now be known as Distinguished Engineer Danielle S.W. Benoit, Ph.D., ‘02.

Professor Benoit receives Drug Development Award from UR Ventures

Tuesday, May 8, 2018

Professor Danielle Benoit, along with Profs. Rudi Fasan and Ben Frisch, received a Drug Development Award from UR Ventures for their project entitled, "Synergistic agents to normalize the marrow niche and potentiate AML cytotoxic agents." The goal of this drug discovery lead study application is to perform pharmacokinetics/biodistribution and preliminary efficacy studies for a new AML drug therapy involving one repurposed FDA approved drug (Maraviroc, to prime the microenvironment for cytotoxic agents, identified as a potential AML-acting drug by Prof. Frisch) and a new selective antileukemic drug entity (micheliolide-64, a cytotoxic agent developed by Prof. Fasan). Data will provide initial assessments of the therapeutic potential of a new, synergistic treatment based on bone marrow-directed delivery of marrow priming agents and AML cell-targeting cytotoxic agents. As these drugs suffer from significant delivery barriers hindering efficacy they are loaded into a targeted drug delivery system developed by Prof. Benoit. Critical towards these studies is the bone marrow microenvironment and AML therapy development expertise of Prof. Frisch.

Jomy Varghese successful defends thesis

Friday, April 20, 2018

Jomy Varghese successfully defended his thesis April 19, 2018. Jomy’s thesis is entitled, "Salivary Gland Radiation Protection”.

Kenneth Sims wins SFB STAR Award

Tuesday, April 10, 2018

Kenneth Sims Jr. will present his 15 minute oral presentation on "Enhancing Design of Nanoparticles for Anti-Biofilm Drug Delivery" during the "Racing for the Surface: Recent Development in Antimicrobial and Osteoinductive Biomaterials" session of the Society for Biomaterials 2018 Annual Meeting and Exposition: Exploring the Nexus of Research and Application being held in Atlanta, GA, April 11-14, 2018.

About the STAR award: The Society For Biomaterials presents Student Travel Achievement Recognitions (STAR) awards for outstanding abstracts submitted by students. These STARs present a major opportunity to recognize research excellence and develop future leaders within the Society. This award of $250 is intended to help off-set travel expenses to the meeting.

Maureen Newman Wins International Section for Fracture Repair Podium Award

Monday, April 2, 2018

Maureen Newman’s podium presentation at the annual Orthopaedic Research Society meeting " Development of Bone-Targeted Polymer Conjugates of Wnt/β-catenin Agonists to Stimulate Fracture Healing" was awarded the International Section for Fracture Repair Podium Award. Congratulations Maureen!

Marian Ackun-Farmmer receives Ruth L. Kirschstein National Research Service Award (NRSA) Individual Predoctoral Fellowship

Wednesday, March 28, 2018

Marian Ackun-Farmmer, a Ph.D. candidate in Danielle Benoit's lab, has been awarded a Ruth L. Kirschstein National Research Service Award (NRSA) Individual Predoctoral Fellowship (F31) grant from the National Cancer Institute (NCI) for her project titled “Nanoparticle mediated microenvironmental targeting of CCL3 signaling for the treatment of acute myelogenous leukemia.”

Acute myelogenous leukemia (AML) is a public health concern that kills 2% of children and 70% of adults over the age of 65 diagnosed worldwide. This project is taking an unprecedented approach of treating AML by using a drug delivery approach to prime the bone marrow so that AML is less likely to evade standard chemotherapy. The proposed plan is expected to improve AML patient survival and will lead to development of a novel, versatile marrow-targeted system that is applicable for other types of leukemia and marrow associated diseases.

Yuchen Wang successful defends thesis

Wednesday, January 10, 2018

Recent PhD graduate Yuchen Wang successfully defended her thesis in January and is now employed at PaxVax as a Research Scientist. Yuchen’s research project was titled, "Development of Controlled Release Systems for Fracture-Targeted Therapeutic Delivery.”


Fracture healing is a major clinical challenge, with a 10-20% impaired healing rate, resulting in significantly prolonged hospitalization, decreased quality of life, and substantial healthcare costs. Currently, myriad therapeutics that target various mechanisms and signaling pathways have been developed to augment fracture healing. Apart from bone morphogenic protein (BMP) implants, there are currently no FDA approved fracture healing enhancement drugs on the market. A major challenge of the bench side to bedside translation is efficient drug delivery. This motivates the goal of this dissertation, which is to develop successful drug delivery systems that can overcome critical barriers to realize clinical translation. Drug delivery barriers to bone fracture enhancement therapies include short half-life in vivo, non-specific accumulation in healthy tissue, as well as associated side effects. The studies herein provide strategies for local and systemic drug delivery. Specifically, the local delivery system in this thesis consists of polymer-based hydrogels loaded with siRNA/nanoparticle (NP) complexes. The local drug delivery system takes advantages of the NP’s ability to protect siRNA and facilitate cell uptake, and the hydrogel’s ability to localize and sustain the encapsulated content at the fracture site. Results showed controlled release of siRNA/NPs complexes from hydrogels through hydrolytic degradation. Localization of NPs at fracture was associated with degradation rates of hydrogels such that hydrogels with the slowest degradation rates yielded longer localization at fracture. Hydrogels that delivered siNRA/NP for ~ 1 month were implanted in a murine fracture model, and in vivo gene silencing efficiency indicated potent and expedited healing. In the systemic drug delivery system, polymeric NPs with bone-targeting peptides conjugated onto the NP corona were used to realize bone targeting efficacy. Potent fracture-targeting efficiency was observed, and NPs accumulated at fractures for ~ 7 days. NPs loaded with a small molecule GSK-3β inhibitor and showed fracture site-specific β-catenin agonism, enhanced bone mechanical properties, and faster healing rates. Taken together, the two drug delivery strategies explored here establish solid platforms for design of next generation drug delivery systems to fracture.

Maureen Newman will be recognized for her research at 2018 Annual ORS Conference

Tuesday, January 2, 2018

Maureen Newman will be honored for her work titled, "Development of Bone-Targeted Polymer Conjugates of Wnt/β-Catenin Agonists to Stimulate Fracture Healing" during the spotlight session at the 2018 Annual Orthopaedic Research Society (ORS) Conference on March 10th, 2018 in New Orleans, Louisiana.