Skip to main content
Explore URMC
menu

News

20202019201820172016

Congratulations to Dr. Yarovinsky

Wednesday, October 14, 2020

Felix Yarovinsky has been appointed as a Chair of the Innate Immunity and Inflammation (III)  Study Section, NIH.  

Congratulations!

Can the Common Cold Help Protect You from COVID-19?

Thursday, October 1, 2020

Seasonal colds are by all accounts no fun, but new research suggests the colds you’ve had in the past may provide some protection from COVID-19. The study, authored by infectious disease experts at the University of Rochester Medical Center, also suggests that immunity to COVID-19 is likely to last a long time – maybe even a lifetime.

The study, published in mBio, is the first to show that the COVID-19-causing virus, SARS-CoV-2, induces memory B cells, long-lived immune cells that detect pathogens, create antibodies to destroy them and remember them for the future. The next time that pathogen tries to enter the body, those memory B cells can hop into action even faster to clear the infection before it starts.

Because memory B cells can survive for decades, they could protect COVID-19 survivors from subsequent infections for a long time, but further research will have to bear that out.

The study is also the first to report cross-reactivity of memory B cells – meaning B cells that once attacked cold-causing coronaviruses appeared to also recognize SARS-CoV-2. Study authors believe this could mean that anyone who has been infected by a common coronavirus – which is nearly everyone –  may have some degree of pre-existing immunity to COVID-19.

“When we looked at blood samples from people who were recovering from COVID-19, it looked like many of them had a pre-existing pool of memory B cells that could recognize SARS-CoV-2 and rapidly produce antibodies that could attack it,” said lead study author Mark Sangster, Ph.D., a research professor of Microbiology and Immunology at URMC.

Sangster’s findings are based on a comparison of blood samples from 26 people who were recovering from mild to moderate COVID-19 and 21 healthy donors whose samples were collected six to 10 years ago – long before they could have been exposed to COVID-19. From those samples, study authors measured levels of memory B cells and antibodies that target specific parts of the Spike protein, which exists in all coronaviruses and is crucial for helping the viruses infect cells.

Read More: Can the Common Cold Help Protect You from COVID-19?

Cells Sacrifice Themselves to Boost Immune Response to Viruses

Wednesday, September 30, 2020

Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection.  New research appearing in the journal Nature Immunology describes how different cells in the immune system work together, communicate, and – in the case of cells called neutrophils – bring about their own death to help fight off infections.  The findings could have important implications for the development of vaccines and anti-viral therapies.  

“The immune system consists of several different types of cells, all acting in coordination,” said Minsoo Kim, Ph.D., a professor of Microbiology and Immunology at the University of Rochester Medical Center (URMC) and senior author of the study.  “These findings show that cells called neutrophils play an important altruistic role that benefits other immune cells by providing key resources for their survival and, in the process, enhancing the body’s immune response against a virus.”

Neutrophils are a key component of the innate immune system, the part of the body’s defenses that is always switched on and alert for bacterial and viral invaders.  The vast majority of white cells circulating in blood are neutrophils and, as a result, these cells are the first on the scene to respond to an infection. 

However, neutrophils are not fully equipped to eliminate a viral threat by themselves.  Instead, when the respiratory tract is infected with a virus like influenza or COVID-19, a large number of neutrophils rush to the infection site and release chemical signals.  This triggers the production of specialized T cells, which are part of the body’s adaptive immune system, which is activated to produce a more direct response to specific infections.   Once mobilized in sufficient quantities, a process that typically takes several days, these T cells target and ultimately destroy the infected cells.     

The new study, which was conducted in mice infected with the flu virus, shows that in addition to jump-starting the adaptive immune response, neutrophils have one more important mission that requires that they sacrifice themselves.  As T cells arrive at the infection site, the neutrophils initiate a process called apoptosis, or controlled death, which releases large quantities of a molecule called epidermal growth factor (EGF).  EGF provides T cells with the extra boost in energy necessary to finish the job. 

“This study represents an important paradigm shift and shows that the adaptive immune system doesn’t generate a successful response without instruction and help from the innate immune system,” said Kim.  “The findings reveal, for the first time, how different immune cells work together, and even sacrifice themselves, to accomplish the same goal of protecting the host from the viral infection.”

Read More: Cells Sacrifice Themselves to Boost Immune Response to Viruses

The Program for Advanced Immune Bioimaging (NIH Program Project P01) has funds to support a limited number of meritorious Pilot Projects

Monday, September 28, 2020

The P01 focuses on the cellular dynamics of inflammatory disease and the regulation of immune function.  The goal of this pilot program is to develop new collaborations with researchers developing novel imaging techniques, computational image processing and data analysis, single cell and spatial transcriptomics, optogenetics and new mouse models of infections or immune mediated disease. Successful projects will have a collaborative component with one of the existing P01 faculty (Drs. Deborah Fowell, Minsoo Kim, David Topham, Jim Miller, Patrick Oakes, Nozomi Nishimura).  Applicants are encouraged to contact P01 faculty members to discuss their potential project before submission.

Applicants may request a maximum of $40,000 Direct Costs for the duration of one year and must hold a faculty level position.  Funds are restricted to research expenses and staff salaries, and cannot be used to support travel, faculty salary, or equipment purchases. 

Initial applications should include a one-page abstract describing the goals and objectives of the proposed project, the relevance to the mission of the P01, and the investigators involved (there is no form template for the abstract portion). It is critical that research ideas are expressed in such a way that a non-expert can understand the ideas and appreciate their significance and potential impact. Additionally, funds may only be spent between January 1, 2021 and December 31, 2021, so awardees must commit to completing the specific aims of the project within the allowed one-year time period. Abstracts will be reviewed and those applicants selected to submit full applications will be contacted shortly thereafter.

The deadline for submitting initial applications is October 30, 2020

Questions? Contact Deborah FowellMinsoo Kim, or Stefanie Fingler or visit the Program for Advanced Immune Bioimaging web site.

Please submit your abstracts to Stefanie Fingler via email to the address above.

Read More: The Program for Advanced Immune Bioimaging (NIH Program Project P01) has funds to support a limited number of meritorious Pilot Projects

Sangster Weighs in on COVID-19 Vaccine, Antibodies

Wednesday, August 5, 2020

With millions of lives on the line, researchers have been working at an unprecedented pace to develop a COVID-19 vaccine.

But that speed—and some widely touted breakthroughs—belie the enormous complexity and potential risks involved. Researchers have an incomplete understanding of the coronavirus and are using technology that’s largely unproven.

Among many worries: A handful of studies on COVID-19 survivors suggest that antibodies—key immune system proteins that fight infection—begin to disappear within months. That’s led scientists to worry that the protection provided by vaccines could fade quickly as well. Some even question whether vaccines will really end the pandemic. If vaccines produce limited protection against infection, experts note, people will need to continue wearing masks and social distancing even after vaccines roll out.

People with severe symptoms from COVID-19 tend to have higher antibody levels than those with milder cases.

Some people fail to generate antibodies because they have compromised immune systems, said Mark Sangster, a research professor at the University of Rochester Medical Center.

Even when people do generate antibodies against the novel coronavirus, studies suggest the antibodies may not last long.

Read More: Sangster Weighs in on COVID-19 Vaccine, Antibodies

National Institute of Allergy and Infection Diseases Funding Awarded

Tuesday, May 19, 2020

NIAID is funding a CEIRS network wide COVID-19 and influenza Southern Hemisphere surveillance study, “Natural history of SARS-CoV-2 in comparison to influenza A virus: a multi-site study focused in the Southern Hemisphere and equatorial regions.” 

The New York Influenza Center of Excellence, at the University of Rochester, under the direction of Dr. David Topham, will receive just over $1M in funding. Dr. Topham’s lab has partnered with investigators in Australia and Vietnam to carry out the proposed research, which will include samples from Vietnam that will be shipped to Rochester for immune response analysis. The Australian samples will be analyzed at the WHO collaborating center for influenza located at the Doherty Institute in Melbourne. 

Together, the CEIRS Network offers a unified human surveillance effort designed to gather critical information on the spectrum of disease, risk factors, duration of viral shedding, viral genomics, viral dynamics within and between populations and innate and memory immune responses to infection. By targeting international locations where seasonality is muted or winter is just beginning, we will gain much-needed insight into the impact of the seasons on SARS-CoV-2 spread. We will furthermore capture co-circulation of SARS-CoV-2 with other respiratory viruses, including influenza viruses, allowing a valuable comparative approach to be taken in our clinical, virological and immunological analyses.

Dr. Deborah Fowell appointed next Chair of the Department of Microbiology and Immunology

Tuesday, May 12, 2020

Photo of Dr. FowellWe congratulate Dr. Deborah Fowell on her new position as Chair of the Department of Microbiology and Immunology at Cornell University College of Veterinary Medicine, where she will start this fall. As a valued faculty member and Dean’s Professor in the Department of Microbiology and Immunology, Center for Vaccine Biology and Immunology, this is a bittersweet goodbye – but a wonderful new opportunity for Deb!

Since joining UR in April 2000, Dr. Fowell has achieved great success in her research program. One example is her organization and leadership of an accomplished, interdisciplinary team of investigators in an NIH funded program project to visualize the immune system in action, which was recently renewed. Her efforts have led to tremendous advancements in the field and will continue to enhance our understanding of tissue inflammation and immune responses, while also providing new therapeutic targets for mitigation of a wide variety of inflammatory diseases.

Not only is Dr. Fowell an outstanding researcher, she is also deeply committed to excellence in graduate education. She recently took over as Program Director and successfully renewed the University’s Predoctoral Training Grant in Immunology. In addition, she has received multiple mentoring awards at the UR, including the 2015 Graduate Alumni Award, which is the most prestigious student teaching and mentoring award here at the School of Medicine and Dentistry.

Dr. Fowell has a strong reputation among her peers as a highly innovative researcher with rigorous intellectual standards, and as a consistent advocate of the highest quality science and long-term success for academic research. Her collaborative approach to research, commitment to enriching learning and intellectual discourse, coupled with her drive and energy, will ensure her success at Cornell.

It’s with pride, warm wishes and anticipation of exciting future collaborations that we wish Deb every success in her new role!

Read More: Dr. Deborah Fowell appointed next Chair of the Department of Microbiology and Immunology

New URMC Coronavirus Research Examines Immune Response

Thursday, April 16, 2020

The University of Rochester Medical Center (URMC) have launched a new study to understand how the body’s immune system responds to COVID-19, including if and when a person could be re-infected with the virus and whether some people have pre-existing immunity. The findings could have significant implications for the public health response to the pandemic, the development of COVID-19 vaccines, and decisions related to re-opening the economy and society.

This study was featured on 13WHAM.

The new coronavirus research is being led by David Topham, Ph.D., Angela Branche, M.D., and Ann Falsey, M.D., under the URMC New York Influenza Center of Excellence(NYICE), one of the five international centers in the Centers of Excellence in Influenza Research and Surveillance network. The research is supported by approximately $5 million in funding from the National Institute of Allergy and Infectious Diseases (NIAID), the institute headed by Anthony Fauci, M.D.

“This research will seek to answer several important questions, including the durability of immunity from the virus once a person has been infected and recovered, whether the virus is mutating, whether previous exposure to other seasonal coronaviruses provides a degree of protection from COVID-19, and how long potential vaccines could provide immunity from the virus,” said Topham.

The study will recruit up to 100 COVID-19 positive individuals across all age groups from the Rochester community and follow them for 90 days. The researchers will collect samples that will enable them to isolate and study the virus, and measure immune response to the infection.

Specifically, it will track the production of antibodies that seek out and flag the virus for destruction by immune cells. Once produced in sufficient quantity, these antibodies and other cells generated by the immune system provide protection from re-infection. These cells are also activated after vaccination. However, as is the case with other viral infections such as the flu, it is speculated that immunity to COVID-19 will weaken over time.

This research builds on more than a decade of influenza and respiratory pathogens research by the NYICE. For the past 13 years, URMC researchers have been conducting surveillance studies in an effort to better understand the immune response to the flu and vaccination. At the request of NIAID, URMC researchers have retooled and expanded the influenza study to include on COVID-19.

Read More: New URMC Coronavirus Research Examines Immune Response

A Hopeful Antidote for COVID-19

Thursday, March 5, 2020

Stock image of a virus under high magnificationDr. Topham was featured in the Rochester Beacon today in the Health & Science section.

Good news is that an antiviral treatment effective against the new coronavirus could start to be available in as little as three months and could be tested on some local coronavirus patients even sooner. The bad news is that every other warning and caution against the potentially deadly virus still applies and will continue to apply for the foreseeable future.

There is more good news though. The antiviral is remdesivir, a drug that has previously been used to help combat Middle East Respiratory Syndrome, also known as MERS, and Severe Acute Respiratory Syndrome, or SARS viral infections and is thus already produced, with some stockpiles available, and known to be safe.

The three-month timeline for remdesivir’s availability as an anti-corona virus agent is the informed projection of David Topham, a University of Rochester Medical Center virologist and immunologist whose local laboratory is one of five in New York State involved in researching COVID-19, the new coronavirus rapidly spreading to pandemic proportions. His lab is tied into a national and global network of researchers studying the disease.

Read More: A Hopeful Antidote for COVID-19

Farewell Americo Lopez Yglesias

Tuesday, January 14, 2020

Farewell for Americo Lopez Yglesias, a very successful trainee #12 moving to his faculty position at the University of Indiana!

Felix and Americo

Americo with gift shirt front

Americo with gift shirt rear

Americo with beer