Skip to main content
Explore URMC

URMC Logo

menu

News

201720162015

URMC Joins Landmark Brain Development Study

Tuesday, September 26, 2017

Child in an MRI scanner

The University of Rochester Medical Center (URMC) is participating in what is being characterized as the largest long-term study of brain development and child health. The study will follow the biological and behavioral development of more than 10,000 children from ages 9-10 through early adulthood.

The Adolescent Brain Cognitive Development (ABCD) Study was created by the National Institutes of Health to evaluate the developmental period during which the brain undergoes dramatic changes. The study will seek to better understand how children’s experiences impact brain maturation and other aspects of their lives, including academic achievement, social development, behavior, and overall health.

“Adolescence is a time of extraordinary physical, emotional, and intellectual growth,” said John Foxe, Ph.D., director of the Del Monte Neuroscience Institute and principal investigator of the URMC ABCD Study. “Yet there is a great deal that we don’t know about how experiences such as participation in sports or music programs, screen time, sleep patterns, and long-term exposure to medications and stimulants impact their transition to adulthood.”

Read More: URMC Joins Landmark Brain Development Study

Study Uncovers Potential Tool, Based on Rapid Eye Movements, for Detecting Autism Earlier

Tuesday, August 15, 2017

“Researchers have long fixed their attention on eye-tracking in detecting autism spectrum disorders, but now they may have discovered a new tool that could lead to earlier diagnosis and intervention.” the research is by John Foxe, the Kilian J. and Caroline F. Schmitt Professor in Neuroscience and chair of the Department of Neuroscience.

In a July 12 article in the European Journal of Neuroscience, researchers at the University of Rochester linked differences in the cerebellar vermis (in the rear of the cerebellum, which controls the development of human movement, social skills and emotional development) to the plasticity of saccadic or rapid eye movements within a subgroup of people with disorders on the autism spectrum (ASD).

Rapid eye movements (also known as saccade) may be the key, say Edward G. Freeman, Ph.D., and John J. Foxe Ph.D. These eye movements-typically quick, precise and accurate in healthy eyes-occur when we shift our gaze between objects and are important in interacting with the world. Sometimes though, in people with ASD, the movements can "over- or undershoot the intended target locations," they wrote in the study.

Read More: Study Uncovers Potential Tool, Based on Rapid Eye Movements, for Detecting Autism Earlier

Eye Test Could Help Diagnose Autism

Monday, July 24, 2017

Close-up photo of human eye

A new study out in European Journal of Neuroscience could herald a new tool that helps physicians identify a sub-group of people with Autism spectrum disorders (ASD). The test, which consists of measuring rapid eye movements, may indicate deficits in an area of the brain that plays an important role in emotional and social development.

“These findings build upon a growing field of research that show that eye movement could serve as a window into a part of the brain that plays a role in a number of neurological and development disorders, such as Autism,” said John Foxe, Ph.D., director of the University of Rochester Medical Center Del Monte Neuroscience Institute and co-author of the study.

ASD is characterized by a wide range of symptoms that can vary in severity from person to person. This unpredictability not only presents a challenge for diagnosis, but also how best to devise a course of treatment. Identifying the specific phenotype of the disorder is, therefore, an essential first step to providing effective care.

"Read More: Eye Test Could Help Diagnose Autism

Ed Freedman and John Foxe Publish in EJN

Friday, June 16, 2017

Photo of Dr. Ed Freedman

Ed Freedman and John Foxe have just published preliminary data from a study examining eye movement changes in individuals with Autism Spectrum Disorders (ASD), particularly looking at the role of the cerebellum (DOI: 10.1111/ejn.13625). The cerebellum, Latin for ‘little’ brain, sits at the base of brain, underneath the cerebral cortex. Although it has been called ‘mini’, the cerebellum actually has more neurons, or cells, than the cerebral cortex. Classically considered to play a role in the control of movements and the learning of motor patterns, it is now known to play a role in emotion and cognition through its connection to the rest of the brain. And, there is evidence that the structure of the cerebellum is altered in a sub-population of individuals with ASD.

Photo of Dr. John Foxe

In the current paper, Ed and John present the results of experiments tracking the rapid eye-movements made when looking from one object to another, or saccades, in individuals with ASD. Accuracy and precision are maintained by careful comparison of the movement command produced by the brain and the results of the actual movement. Any differences between these lead to adjustments of the commands for ensuing saccades. This type of sensorimotor adaptation is dependent on the proper functioning of the cerebellum. However, there is anatomical evidence that some people with an ASD have cerebella with slightly altered structure. If the cerebellar structure is altered, is its function also altered in this sub-group of people? Assessing the ability of people with an ASD to adapt saccade amplitudes is one way to determine whether this function of the cerebellum is altered in ASD.

Another point of interest is determining if the deficits in saccades relate to any of the other key symptoms observed in ASD.

If saccade adaptation deficits do turn out to be a consistent finding in a sub-group of children with ASD, this raises the possibility that saccade adaptation measures may have utility as an early-detection endophenotype. Changes in cerebellar structure most likely occur in utero and very recent work has shown that saccadic adaptation can be measured in children as young as 10-41 months of age is a most encouraging development indeed. - Ed and John

Read More: Ed Freedman and John Foxe Publish in EJN